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1 Connections induced by Dirac (type) operators

Let

(E , γE) � (M, gM) (1)

be a bundle of (complex) Clifford modules.

Every (even) connection on E � M yields a Dirac operator:

/∇E : Sec(M, E)
∇E−→ Sec(M,T ∗M ⊗M E)

γE−→ Sec(M, E) . (2)

Definition 1.1 A connection on a Clifford module bundle is called a “Clifford connection”, provided
it fulfils:

[∇EX , γE(a)] = γE(∇Cl

X (a)) , (3)

for all a ∈ Sec(M,ClM) and X ∈ Sec(M,TM).
The set of all Clifford connections on a Clifford module bundle (E , γE) � (M, gM) is denoted by

ACl(E). It is an affine sub-space of the affine space A(E) of all (linear) connections on E � M .

Note that the underlying vector space of ACl(E) is given by Ω1(M,End+
γ (E)).

Definition 1.2 The Dirac operator of a Clifford connection is called “a Dirac operator of Clifford
type”.

Notation:
We denote a Clifford connection by ∂A ∈ ACl(E), for it locally reads:

∂A

loc.
= d+ ω + A . (4)

Let U ⊂ M be a local subset and e1, . . . , en ∈ Sec(U, TM) be a locally defined (orthonormal)
frame. Also, let e1, . . . , en ∈ Sec(U, T ∗M) be the corresponding dual frame. The locally defined
one-form ω ∈ Ω1(U,End+(E)) is the “spin-connection form”:

ω ≡ − ε
8 gM(∇kea, eb) ek ⊗ [γE(e

a), γE(e
b)] (5)

and A ∈ Ω1(U,End+
γ (E)) is a local “gauge potential”.

If E = S ⊗M E � M is a twisted spinor bundle, than a Clifford connection is but a twisted spin
connection:

∂A = ∇S⊗E

= ∇S ⊗ idE + idS ⊗∇E . (6)
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Whence,

ACl(E) ' A(E) . (7)

In the case of twisted Grassmann bundles: E = ΛM ⊗M E � M , the Clifford connections are
locally parameterized by local gauge potentials:

A ∈ Ω1
(
U, (Clop

M )C ⊗M End(E)
)+

. (8)

Definition 1.3 Let (E , γE) � (M, gM) be a Clifford module bundle. The one-form Θ ∈ Ω1(M,End−(E)),
which is defined by

Θ(v) := ε
n γE(v

[) (9)

for all v ∈ TM , is called the “canonical one-form” on the Clifford module.

Let U ⊂ M be an open subset and e1, . . . , en ∈ Sec(U, TM) be a locally defined (orthonormal)
frame with the dual frame e1, . . . , en ∈ Sec(U, T ∗M).

Θ
loc.
= ε

n gM(ea, eb) e
a ⊗ γE(eb)

≡ ε
n e

a ⊗ γE(e[a) . (10)

Lemma 1.1 A connection on a Clifford module bundle is a Clifford connection if and only if the
induced connection on T ∗M ⊗M End(E) � M fulfils:

∇T∗M⊗End(E)Θ ≡ 0 . (11)

Proof: Nice exercise!

Definition 1.4 Let (E , γE) � (M, gM) be a Clifford bi-module bundle. A connection is called “S-
reducible”, provided its induced connection on T ∗M ⊗M End(E) � M fulfils:

∇T∗M⊗End(E)Θop ≡ 0 . (12)

Here, Θop(v) := ε
n γ

op
E (v[), for all v ∈ TM and γop

E : Clop
M → End(E) is the representation of the

algebra bundle of opposite Clifford algebras.
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A connection on a twisted Grassmann bundle is S-reducible if and only if it is locally parameterized
by a gauge potential

A ∈ Ω1(U,End(E)) . (13)

Furthermore, a connection on the Grassmann bundle over a spin-manifold is S-reducible if and only
if it coincides with the spin-connection.

Definition 1.5 On a Clifford module bundle the (linear extension of the) map:

δγ : Ω∗(M,End(E)) −→ Ω0(M,End(E))
ω = α⊗B 7→ /ω ≡ γE(σ

−1
Ch (ω)) ◦B (14)

is called the “quantization map”.

The restriction of the quantization map to Ω1(M,End(E)) has a canonical right-inverse that is
given by the odd map:

extΘ : Ω0(M,End±(E)) −→ Ω1(M,End∓(E))
Φ 7→ Θ ∧ Φ ≡ ΘΦ , (15)

with (Θ ∧ Φ)(v) := Θ(v) ◦ Φ, for all v ∈ TM .
Whence,

℘ := extΘ ◦ δγ : Ω1(M,End(E))→ Ω1(M,End(E)) (16)

is an idempotent. Its complement ℘′ := idΩ1 − ℘ sends A(E) into the set of “twistor operators” on
the underlying Clifford module bundle:

∇E 7→ T (∇E) := ∇E −Θ ◦ /∇E . (17)

Definition 1.6 Two connections on a Clifford module bundle are said to be equivalent if they yield
the same Dirac operator:

∇E ∼ ∇′E :⇔ /∇E = /∇′E . (18)

Clearly,

∇E ∼ ∇′E ⇔ ∇′E −∇E ∈ Ker(℘) . (19)
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Proposition 1.1 Let /D ∈ Dγ(E) be a Dirac operator on (E , γE) � (M, gM). The equivalence class
of connections on E � M that is defined by /D has a natural representative.

Proof: Every Dirac operator /D ∈ Dγ(E) on a Clifford module bundle yields a unique connection,
called the “Bochner connection” of /D:

2 evg(df, ∂Bψ) := ε
(
[ /D2, f ]− δgdf

)
ψ , (20)

for all f ∈ C∞(M) and ψ ∈ Sec(M, E).
This yields the first order decomposition of /D:

/D = /∂
B

+ ΦD , (21)

with ΦD ∈ Sec(M,End−(E)) being uniquely defined by /D.
The connection that corresponds to

∂D := ∂B + extΘ ∧ ΦD (22)

is thus uniquely defined by /D. Furthermore,

/∂
D

= /D . (23)

2

Definition 1.7 For given /D ∈ Dγ(E), the even one-form:

ωD := extΘ ∧ ΦD , (24)

is called the “Dirac form” of /D ∈ Dγ(E).
The tangent vector field on M :

ξD := trE(ω
]
D) , (25)

is called the “Dirac field” of /D ∈ Dγ(E).
The connection on the underlying Clifford module bundle that corresponds to ∂D is called the

“Dirac connection” of /D ∈ Dγ(E). Its curvature

curv( /D) := ∂D ∧ ∂D ∈ Ω2(M,End+(E)) (26)

is called the “Dirac curvature” of /D ∈ Dγ(E).
Finally,

FD := curv( /D)− /Riem(gM) ∈ Ω2(M,End+(E)) (27)

is called the “relative curvature” of /D ∈ Dγ(E).
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Lemma 1.2 Let /D ∈ Dγ(E) be a Dirac operator. Its induced equivalence class of connections on the
underlying Clifford module bundle contains at most one Clifford connection. This is the case if and
only if

∂T∗M ⊗ End(E)

D Θ ≡ 0 . (28)

Proof: First, let the Dirac connection of /D be a Clifford connection. Any other connection ∇E
whose quantization equals /D thus reads:

∇E = ∂D + α , α ∈ Ker(℘) . (29)

In particular, if ∇E = ∂A is also a Clifford connection, than α ∈ Ω1(M,End+
γ (E)). The map extΘ is

injective. Hence, Ker(℘) = Ker(δγ|Ω1). However, α 6∈ Ker(δγ|Ω1) since the restriction of the quanti-
zation map to Ω∗(M,Endγ(E)) is an isomorphism.

Now, let ∂A ∼ ∂D. Since /∂
A

= /D, it follows that the Bochner connection of /D equals the Clifford
connection: ∂B = ∂A. Therefore, ∂D = ∂A.

Whence, if the connection class of /D contains a Clifford connection, it must be unique and equal
to the Dirac connection of /D. Only in this case, one gets:

∂D = ∂B = ∂A . (30)

2

Remark:
If a Dirac operator /D ∈ Dγ(E) is of Clifford type: /D = /∂

A
, than its curvature reads:

curv( /∂
A
) = /Riem(gM) + FA , (31)

whereby the relative curvature FA of /∂
A

fulfils:

FA ∈ Ω2(M,Endγ(E)) . (32)

In the case of a twisted spinor bundle E = S ⊗M E −→ M , the relative curvature of a Clifford
type Dirac operator is given by

FA = ∇E ∧∇E ∈ Ω2(M,End+(E)) . (33)

In terms of Yang-Mills gauge theories, the relative curvature of a Clifford type Dirac operator
thus plays the role of the Yang-Mills curvature.

Definition 1.8 A Dirac operator /D ∈ Dγ(E) on a Clifford bi-module bundle is called “S-reducible”,
if its Dirac connection is S-reducible.
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On a twisted Grassmann bundle over a spin manifold, a Dirac operator is S-reducible if and only
if it coincides with a twisted spin-Dirac operator.

Proposition 1.2 Two Dirac operators /D′, /D ∈ Dγ(E) on a given Clifford module bundle yield the
same Bochner connection if and only if

{( /D′ − /D), γE(α)} ≡ 0 , (34)

for all α ∈ T ∗M .

Proof: Making use of the definition of the Bochner connection of a Dirac operator, the proof follows
from showing that

∂′B = ∂B + αB , (35)

with the one-form αB ∈ Ω1(M,End+(E)) being defined by

αB(v) = ε
2 {( /D

′ − /D), γE(v
[)} , (36)

for all v ∈ TM . 2

Definition 1.9 A Dirac operator /D ∈ Dγ(E) is called of “simple type” if its Bochner connection
equals a Clifford connection.

Proposition 1.3 Let (E , γE) � (M, gM) be a Clifford module bundle. A Dirac operator /D ∈ Dγ(E)
is of simple type if and only if /D − /∂

B
anti-commutes with the Clifford action γE.

Proof: First, let the Bochner connection of /D be a Clifford connection: ∂B = ∂A. Since the Bochner
connection of Clifford type Dirac operator /∂

A
equals ∂A, it follows that /D and /∂

B
yield the same

Bochner connection (namely ∂B). Whence, according to the foregoing Proposition it follows that
/D − /∂

B
anti-commute with the Clifford action.

Next, assume that the zero-order operator ΦD = /D − /∂
B

anti-commute with the Clifford action.
Hence, there is a unique zero-order operator φD ∈ Sec(M,End−γ (E)), such that

ΦD = τE ◦ φD . (37)

Furthermore, /D and /∂
B

have the same Bochner connection due to the foregoing Proposition. Hence,
the Bochner connection of /∂

B
coincides with ∂B, which holds true if and only if ∂B is a Clifford con-

nection. 2

Corollary 1.1 Let (E , γE) � (M, gM) be a Clifford module bundle. A Dirac operator /D ∈ Dγ(E) is
of simple type if and only if there is Clifford connection and a φ ∈ Sec(M,End−γ (E)), such that

/D = /∂
A

+ τE ◦ φ . (38)
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2

The set of simple type Dirac operators is the largest class of Dirac operators whose Bochner con-
nections are Clifford connections. Simple type Dirac operators thus build a natural generalization of
Clifford type Dirac operators.

Definition 1.10 A Dirac operator /D ∈ Dγ(E) on a Clifford module bundle is called of “Yang-Mills-
Higgs type”, if there is a Clifford connection such that

/D − /∂
A
∈ Sec(M,End−γ (E)) . (39)

Since the Clifford connection is unique, there is a unique

ΦH ∈ Sec(M,End−γ (E)) , (40)

such that

/D = /∂
A

+ ΦH . (41)

It follows that the Dirac connection of a Yang-Mills-Higgs type Dirac operator reads:

∂D ≡ ∂YMH

= ∂A +H , (42)

with

H := ΦHΘ ∈ Ω1(M,End+(E)) (43)

being the “Higgs gauge potential”.

The relative curvature of a Yang-Mills-Higgs type Dirac operator simply reads:

FD = FA + dAH +H ∧H

= FA + ( dAΦH + ΦH ∧Θ) ∧Θ . (44)

Remark:
Every Dirac operator /D ∈ Dγ(E) may be decomposed as

/D = /∂
A

+ Φ . (45)
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However, this decomposition is not unique, in general, for Φ ∈ Sec(M,End−(E)) also depends on
the choice of ∂A.

Simple type Dirac operators generalize Dirac operators of Clifford type in the sense that

– ∂B = ∂A ;

– Φ is uniquely determined by /D .

In contrast, Yang-Mills-Higgs type Dirac operators /∂
YMH

generalize Dirac operators of Clifford
type in the sense that the decomposition

/∂
YMH

= /∂
A

+ Φ (46)

is unique, though ∂B 6= ∂A.
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2 The universal Dirac-Lagrangian and the Einstein-Hilbert

Action

Definition 2.1 Let /D ∈ Dγ(E) be an arbitrary Dirac operator on a Clifford module bundle (E , γE) �

(M, gM). The associated second order differential operator:

4B := εevg(∂
T∗M⊗E
B ◦ ∂B) , (47)

is called the “Bochner (or connection/trace) Laplacian”.

Proposition 2.1 Every Dirac operator /D ∈ Dγ(E) has a unique second order decomposition:

/D2 = 4B + VD , (48)

with VD ∈ Sec(M,End+(E)) being uniquely defined by /D.

Furthermore, the “Dirac potential” explicitly reads:

VD = δγ(curv( /D)) + εevg
(
∂DωD)− ω2

D

)
. (49)

Basically, the proof follows from the very definition of the Bochner connection of a Dirac operator.

In the case where /D = /∂
A

is of Clifford type, it follows that

VD = ε
4 scal(gM) idE + δγ(FA) (50)

coincides with the well-known Schrödinger-Lichnerowicz formula of the zero-order operator of the
square of a twisted spin-Dirac operator /∇S⊗E.

Note that the zero-order operator

δγ(FA) ∈ Sec(M,End+(E)) (51)

is always trace-free. This is because FA ∈ Ω2(M,End+
γ (E)).

Definition 2.2 Let E = E+ ⊕ E− � M be a Hermitian vector bundle with the Hermitian product
being denoted by 〈·, ·〉E.

The map:

LD : D(E) −→ Ωn(M,C)
/D 7→ ∗trEVD , (52)

is called the “universal Dirac-Lagrangian”.
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Likewise, the map:

LD,tot : D(E)× Sec(M, E) −→ Ωn(M,C)
( /D, ψ) 7→ ∗(〈ψ, /Dψ〉E + trEVD) , (53)

is called the “total Dirac-Lagrangian”.

Proposition 2.2 The universal Dirac-Lagrangian is equivariant with respect to the action of the
“affine gauge group”:

GD = GD,tot n TD , (54)

where, respectively,

GD,tot := Diff(M) n Aut(E) , (55)

TD := Ω1(M,End+
γ (E)) (56)

is the gauge group of the total Dirac-Lagrangian and the “translation group”.

The proof needs some (home)work! Indeed, it can be shown that the universal Dirac-Lagrangian is
actually invariant with respect to the (linear extension of the) map:

D(E)× TD −→ D(E)
( /D, df) 7→ /D + [ /D, f ] . (57)

(58)

Note that the gauge group of the total Dirac-Lagrangian is only a (proper) subgroup of the gauge
group of the universal Dirac-Lagrangian.

Up to the boundary term ∗divξD ∈ Ωn(M,C), the universal Dirac-Lagrangian explicitly reads:

LD( /D) = ∗trγ(curv( /D)− εevg(ω2
D)) , (59)

with

trγ ≡ trE ◦ δγ : Ω∗(M,End(E))→ C∞(M,C) . (60)

being the “quantized trace”.

It follows that when restricted to the subset of Clifford type Dirac operators, the universal Dirac-
Lagrangian coincides with the Lagrangian density of General Relativity:

LD( /∂
A
) = ∗trγ(curv( /∂

A
)

= ε rank(E)
4 ∗ scal(gM) . (61)


