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1 Dirac operators of simple type and spontaneous symme-

try breaking

Two seemingly unrelated topics:

1) The “issue of fermionic mass”:

i/∂
A
ψ = mψ ⇔

{
i/∂

A
ψR = mψL ,

i/∂
A
ψL = mψR .

(1)

These coupled Weyl equations are gauge invariant if and only if the Weyl spinors: ψR, ψL carry
the same representation of the underlying gauge group:

Way out:
Since the action of the gauge group is supposed to commute with the parity involution, one necessarily
has to replace the constant mass matrix: m ∈ End+

γ (E), by the “Higgs field”:

ΦH ∈ Sec(M,End−γ (E)) . (2)

Note that this turns Dirac’s first order differential operator: i/∂
A
−m, into a Dirac operator of Yang-

Mills-Higgs type: /∂
YMH

= i/∂
A
− ΦH.

More explicitly, let E := S ⊗M E � M be a twisted spinor bundle. Accordingly, fix the grading
by the involution:

τE := τM ⊗ τE , (3)

i.e.

E+ := SR ⊗M ER ⊕ SL ⊗M EL , (4)

E− := SR ⊗M EL ⊕ SL ⊗M ER . (5)

Whence, the Clifford action and the action of the Higgs field reads, respectively:

γE := γW ⊗ idE , (6)

ΦH := idS ⊗ φH . (7)

It is common to re-write this as follows:

E ≡
ER

⊕
EL

:=
S ⊗M ER

⊕
S ⊗M EL

. (8)

Then, respectively, the grading involution and the Dirac operator reads:

τE =

(
τM 0
0 −τM

)
, i/∂

A
− ΦH =

(
i/∂

A
−ΦH,RL

−ΦH,LR i/∂
A

)
. (9)
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How does one get back Dirac’s original equation from
Yang-Mills-Higgs type Dirac operators?

2) Einstein’s “biggest blunder”:

IEH,Λ :=
∫
M
∗(scal(gM) + Λ) , (10)

with Λ ∈ R being the “cosmological constant”.

According to “Lovelock’s Theorem”, the functional IEH,Λ is the most general functional whose
Euler-Lagrange equations fulfil:

– The field equations with respect to gM are tensorial,

– The field equations are linear to highest order,

– The field equations are div-free.

Indeed,

ELEH,Λ = 0 ⇔ Ric(gM) = Λ gM . (11)

Hence, the stationary points of IEH,Λ are Einstein manifolds with scalar curvature satisfying

scal(gM) ∼ Λ . (12)

How to describe this in terms of Dirac operators?

Lemma 1.1 Let E = E+⊕E− �M be an Hermitian vector bundle. The restriction of the universal
Dirac-Lagrangian to the subset of symmetric Dirac operators of Yang-Mills-Higgs type gives rise to
the density:

LD( /∂
YMH

) = − ε rank(E)
4 ∗(scal(gM) + ΛH) , (13)

with the “cosmological term” being given by

ΛH := λ ‖ΦH‖2 . (14)

Here, λ ∈ R is a purely numerical constant that is basically determined by dim(M) and

‖ΦH‖2 := trE(Φ
†
H ◦ ΦH) . (15)

The proof is a straightforward calculation of the Dirac potential VD. Furthermore, one notices the
vanishing of the Dirac field ξD of both simple type and Yang-Mills-Higgs type Dirac operators.
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The Einstein equation implies that ΛH must be constant. Accordingly, an admissible (M, gM)
must be an Einstein manifold with the scalar curvature fulfilling:

scal(gM) ∼ ΛH . (16)

However,

ΛH = const. ⇒ ΦH ∈ Sec(M,SΛH/λ
) , (17)

with

SΛH/λ
↪→ Endγ(E) �M (18)

being the sphere sub-bundle of radius |ΛH/λ|.

Note that ΛH = 0 ⇔ ΦH = 0 corresponds to the case where gM and ΦH are treated as independent
variables.

Lemma 1.2 Assume that the Yang-Mills gauge group:

GYM := Autγ(E) ⊂ GD,tot , (19)

acts transitively on SΛH/λ
�M . In this case, any choice of a “fermionic mass matrix”:

mD ∈ SΛH/λ
⊂ Endγ(E) , (20)

yields a reduction of GYM to the isotropy group:

I(mD) := {h ∈ GYM | [h,mD] = 0} . (21)

2

Note that for E = S ⊗M E �M :

Autγ(E) = Aut(E) , (22)

which is the Yang-Mills gauge group of E �M .

Remark:
The mechanism of “spontaneous symmetry breaking” in terms of Yang-Mills-Higgs type Dirac opera-
tors is analogous to the mechanism of spontaneous symmetry breaking provided by the usual Higgs
potential.
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In particular, since

spec(mD) = const. (23)

throughout M , the Clifford module bundle decomposes:

E = ker(mD)⊕

 ⊕
m∈ spec(mD)

Em = E+
m ⊕ E−m

 . (24)

When restricted to an eigen bundle of mD, the quantized Yang-Mills-Higgs connection formally looks
like Dirac’s (gauge covariant) first order differential operator:

/∂
YMH
|Em = /∂

A
+ µ , (25)

where,

µ ∈ End−γ (Em) . (26)

In the case of E = S ⊗M E �M , it follows that

E = S ⊗M

ker(mD)⊕

 ⊕
m∈ spec(mD)

Em

 . (27)

Whence, for non-degenerated mass spectra all eigen bundles Em �M are complex line bundles:

/∂
A

+ µ =

(
/∂
A

m
m /∂

A

)
:

Sec(M,SR ⊗M Em)
⊕

Sec(M,SL ⊗M Em)
−→

Sec(M,SL ⊗M Em)
⊕

Sec(M,SR ⊗M Em)
. (28)

This may happen only if HYM ' U(1). Also, the complex vector bundle ker(mD) � M carries the
trivial representation of the reduced gauge group HYM.

Furthermore, since a connection on E �M is compatible with the gauge reduction:

GYM  HYM ' I(mD), (29)

if and only if

∇End(E)

X mD = 0 , (30)

for all X ∈ Sec(M,TM), the mapping:

m2
YM : ACl(E) −→ C∞(M)

∂A 7→ 2−n ‖∂End(E)

A mD‖2 , (31)

yields the usual “Yang-Mills mass matrix”. Its rank equals the co-dimension of the sphere sub-bundle
SΛD/λ ⊂ Endγ(E). The defect of m2

YM equals the rank of the reduced gauge group HYM ⊂ Autγ(E).
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Note that

∂A = ∂′A + αG , (32)

with ∂′A being HYM−reducible. Then,

m2
YM(∂A) ∼ ‖mD‖2 〈ad(Ta), ad(Tb)〉 gM(αaG, α

b
G) , (33)

where αG

loc.
= αaG ⊗ Ta ∈ Ω1(U,Endγ(E)), such that [Ta,mD] 6= 0.



2 REAL DIRAC OPERATORS 7

2 Real Dirac operators, the STM and the mass of the Higgs

Definition 2.1 A Hermitian Clifford module bundle (E , γE) � (M, gM) is called a “real Clifford
module bundle”, if there exists a C−anti-linear involution JE making the complex vector bundle E =
ME ⊗ C �M real and

JE ◦ γE(α) = ±γE(α) ◦ JE ,
JE ◦ τE = ±τE ◦ JE ,

〈JE(z), JE(w)〉E = ±〈w, z〉E , (34)

for all α ∈ T ∗M and z, w ∈ E.
In particular, a real Clifford module bundle is called a “Majorana module bundle”, provided

JE ◦ τM = −τM ◦ JE . (35)

Definition 2.2 A real Clifford module bundle (S, 〈·, ·〉S, τS, γS, JS) is called a “Dirac module bundle”,
provided there is a Majorana module bundle (W , 〈·, ·〉W , τW , γW , JW) over (M, gM), such that

S := 2W =W ⊗ C2 (36)

and

τS =

(
idW 0
0 −idW

)
, γS =

(
0 γW
γW 0

)
, JS =

(
0 JW
JW 0

)
. (37)

Finally, 〈(
u1

v1

)
,

(
u2

v2

)〉
S

= 〈u1, v2〉W ± 〈v1, u2〉W , (38)

depending on whether 〈JW(u), JW(v)〉W = ±〈v, u〉W, for all u, v ∈ W.

Definition 2.3 The doubling

(P , 〈·, ·〉P , τP , γP , JP) (39)

of a real Clifford module bundle (E , 〈·, ·〉E , τE , γE , JE) is called a “Pauli module bundle”, whereby

τP :=

(
τE 0
0 −τE

)
, γP :=

(
γE 0
0 γE

)
, JP :=

(
0 JE
JE 0

)
. (40)

Proposition 2.1 The most general real Dirac operator on a Pauli module bundle reads:

/DP =

(
/DE φE −FE

φE + FE /Dcc

E

)
. (41)

Here, respectively, /DE is any Dirac operator on the underlying real Clifford module bundle (E , 〈·, ·〉E , τE , γE , JE)
and

φcc

E = +φE ,
F cc

E = −FE (42)

are general even endomorphisms thereof.
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The proof needs some thought but is true.

Definition 2.4 Let (E , 〈·, ·〉E , τE , γE , JE) be a real Clifford module bundle. A real Dirac operator /P
D
∈

Dγ(P) is called “of Pauli type”, provided

φE := 0 ,
FE := iδγ(FD) (43)

is defined by the relative curvature of /DE ∈ Dγ(E).

Note that δγ(FD) ∈ Sec(M,End+(E)) is even and real for all real Dirac operators /DE ∈ D(E).
Whence, F cc

E = −FE , as required.

Remark:
When restricted to the complexification of the distinguished real sub-bundle:

VP :=

{
2
z ≡

(
z

z

)
∈ P | z ∈ME

}
↪→ P �M , (44)

whereby MC
E = E , the two mappings:

Sec(M, E)×D(E) −→ Ωn(M,C)

(ψ, /DE) 7→
{
∗〈ψ, /DEψ〉E ,
∗〈 2ψ, /P

D

2ψ〉P
(45)

provide the same information.

Consider the following sequence of real Clifford module bundles and Dirac operators, starting
with a Majorana module bundle (W , 〈·, ·〉W , τW , γW , JW) and a Yang-Mills-Higgs connection:

W −→ S −→ E ≡ 2S −→ P
/∂

YMH
−→ /∂

A
+ iµD −→ /∂A + iµD −→ /P

D
,

(46)

where, respectively:

/∂
A

+ iµD :=

(
0 /∂

A
− iϕD

/∂
A

+ iϕD 0

)
∈ Dγ(S) (47)

is of simple type and

/∂A + iµD :=

(
/∂
A

+ iµD 0
0 (/∂

A
+ iµD)cc

)
∈ Dγ(E) (48)

is real and of simple type.
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Theorem 2.1 Let (W , 〈·, ·〉W , τW , γW , JW) be a Majorana module, such that γcc
W = −γW. Also, let

/∂
YMH

= /∂
A

+ iϕD ∈ Dγ(W) be a YMH type Dirac operator.

Consider the real Dirac operator of simple type, called “Dirac-Yukawa-Majorana operator”:

/∂A + iµYM :=

(
/∂
A

+ iµD iµM

−iµM (/∂
A

+ iµD)cc

)
∈ Dγ(E) . (49)

Here, the Majorana mass operator µM ∈ Ω0(M,End+
γ (S)) is real and constant.

The Euler-Lagrange equations of the fermionic part of the density:

LD,tot( /PD
, 2ψ) = ∗

(
〈 2ψ, /P

D

2ψ〉P + trγ
(
curv( /P

D
)− ε evg(ω2

D)
))

(50)

read:

i/∂
A
ψ = µDψ + µMψ

cc , (51)

(i/∂
A
ψ)cc = µcc

Dψ
cc + µMψ . (52)

When restricted to τSψ = ψ, these equations become equivalent to:

i/∂
A
χ = ϕDχ+mMχ

cc ⇔
{
i/∂ν = mD,νν +mM,νν

cc ,
i/∂

A
e = ϕD,ee ,

(53)

(i/∂
A
χ)cc = ϕcc

Dχ
cc +mMχ , (54)

whereby χ = (ν, e) ∈ Sec(M,W = Wν ⊕We). The splitting of the Majorana module bundle into an
“uncharged” and “charged” sector is defined in terms of the kernel of the Majorana mass operator.

Furthermore, when restricted to the thus defined class of Pauli type Dirac operators, the universal
Dirac-Lagrangian explicitly reads:

LD( /P
D
) =∫

M
∗
(
trγ(curv( /∂A)) + a1 trgF

2
A + a2 ε trg(∂

End(E)

A µYM)2 − a2 trEµ
4
YM − a4 trEµ

2
YM

)
(55)

with a1 = (n− 3), a2 = 2(n− 2)(n−1
n )2, a3 = 2 (n−1)3

n2 , a4 = 2 .

Furthermore,

trg(∂
End(E)

A µYM)2 = −4Re trg(∂
End(We)

A ϕD,e)
2 , (56)

a trEµ
4
YM + trEµ

2
YM = 4Re

(
a trWeϕ

4
D,e − trWeϕ

2
D,e + ΛDM,ν

)
, (57)

whereby a ≡ 2 (n−1)3

n2 and

ΛDM,ν ≡ a trWν
m4

D,ν − trWν
m2

D,ν + a trWν
m4

M,ν − trWν
m2

M,ν

− 2a trWν
(mD,ν ◦mM,ν)

2 (58)

is a “true cosmological constant”.
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The proof basically consists of a (rather tedious) calculation of the Dirac potential of the Pauli
type Dirac operator associated with the Dirac-Yukawa-Majorana operator.

Remarks:
– To obtain a non-trivial “kinetic term” ∂End(We)

A ϕD,e for the Higgs field, it is essential that the Dirac-
Yukawa-Majorana operator is of simple type. The same holds true with respect to the specific form
of the “cosmological constant” ΛDM,ν.

– To obtain the correct Dirac/Majorana equation, it is crucial that the Dirac-Yukawa-Majorana op-
erator is induced by a Dirac operator of Yang-Mills-Higgs type.

– The specific form of Pauli type Dirac operators is essential to obtain the correct relative signs
within the various terms of LD( /P

D
) and to cancel out the curvature term in the fermionic part of the

total Lagrangian.

The connection enters directly the fermionic part of the total action. In contrast, connections enter
the bosonic part of the total action only via their curvatures. Curvature terms never enter the

fermionic action for reasons of renormalization and connections never enter the bosonic action for
reasons of gauge invariance.

– The Standard Model Action is recovered by disregarding Majorana masses:

µM ≡ 0 . (59)

Whence, Yang-Mills-Higgs type Dirac operators

/∂
YMH

= δγ ◦ (∂A +H) (60)

maybe regarded to provide the appropriate “square root” of the STM action.

The geometrical description of the Standard Model in terms of Yang-Mills-Higgs type Dirac
operators also allow to make a prediction with regard to the mass of the Higgs boson:

mH = 184± 20 GeV . (61)

This holds true in “top-mass approximation” and on “one-loop level”.

According to the usual (non-geometrical) description of the Standard Model the mass of the Higgs
boson is expected to be within the range:

114 GeV < mH ≤ 193 GeV . (62)

– The Yang-Mills Action is recovered by also disregarding Dirac masses:

µD ≡ 0 . (63)

Whence, Clifford type Dirac operators

/∂
A

= δγ ◦ ∂A (64)

maybe regarded to provide the appropriate “square root” of the YM action.
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3 A bit more geometry concerning Dirac operators

LD : D(E) −→ Ωn(M,C)
/D 7→ ∗trEVD (65)

is invariant with respect to the action of the translation subgroup TD ⊂ GD.

Whence it is constant along the “Dirac principal fibering”:

D(E) � D(E)/TD
/D 7→ [ /D] . (66)

Consider the case of a twisted Grassmann bundle:

E := ΛM ⊗M E �M . (67)

In this case:

D(E)/TD ' MD := Sec(M, EEH ×M End(E))/∼ , (68)

where

(gM,Φ) ∼ (g′M,Φ
′) :⇔

{
g′M = gM ,

Φ′ = Φ + γ(α) , α ∈ Ω1(M,Endγ(E)) .
(69)

The TD−principal fibering D(E) �MD is trivial but in a non-canonical way, in general. A natural
class of global sections are provided by connections on E �M :

σA : MD −→ D(E)
[(gM,Φ)] 7→ dA + δA + Φ . (70)

In particular, because of the canonical inclusion:

Sec(M, EEH) ↪→ MD

gM 7→ [(gM, 0)] , (71)

every connection on E �M yields the inclusion:

σA : Sec(M, EEH) ↪→ D(E)
gM 7→ dA + δA , (72)

such that

σ∗ALD ∼ LEH . (73)



3 A BIT MORE GEOMETRY OF DOP’S 12

This is independent of the choice of the connection on E � M (i.e. independent of the section
σA), because of the translational invariance of the universal Dirac-Lagrangian. Thus, the image of
the inclusion

σA : Sec(M, EEH) ↪→ D(E) (74)

maybe geometrically interpreted as “making the metric gauge covariant”.

Note that for trivial E = M × CN �M , there is a canonical section

σ0 : Sec(M, EEH) ↪→ D(E)
gM 7→ d+ δ , (75)

such that all other sections σA read:

σA(gA) = d+ δ + A , A ∈ Ω1(M,Endγ(E)) . (76)

Whence, the Yang-Mills gauge potential maybe considered as a “perturbation” of the metric.

Theorem 3.1 Let (E , 〈·, ·〉E , τE , γE , JE) be a real Clifford bi-module.
On the induced Pauli module there exists a class of real Dirac operators of simple type:

/D = /∂A + τP ◦ φ , (77)

such that the restriction of the universal Dirac-Lagrangian to this class decomposes as:

LD( /D) = ∗trγ
(
curv( /D)− εevg(ω2

D)
)

= ∗
(
trγ(curv( /∂A))− trPφ

2
)

= LEH + LYM + LH ∈ Ωn(M) . (78)

Here,

LEH ≡ λEH ∗ scal(gM) ,

LYM ≡ λYM trEFA ∧ ∗FA ,

LH ≡ λH trE( dAϕ ∧ ∗ dAϕ)− VH (79)

and the Higgs potential:

VH = λ trEϕ
4 − µ2 trEϕ

2 . (80)

λEH, λYM , λH , λ and µ2 are appropriate real constants, basically fixed by dim(M) and rank(E).
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“. . .It often happens that the requirements of simplicity and beauty are the same,
but where they clash the latter must take precedence”

(“Paul Dirac – The man and his work”, Cambridge Univ. Press 1998)

End of lectures

Thank you!


