Dirac cohomology of Harish-Chandra modules

Pavle Pandžić, University of Zagreb

30th Winter School Geometry and Physics Srni, January 2010

Background.

G a Lie group acting on a manifold X
$\Rightarrow G$ acts on functions on X, via
$(g \cdot f)(x)=f\left(g^{-1} \cdot x\right)$.
E.g.:
$C^{\infty}(X)$ - a smooth representation of G
$L^{2}(X)$ wrt G-invt $d x$ - a unitary rep. of G
Δ a G-invariant diff. op. on X \Rightarrow any eigenspace of Δ is G-invariant.

Conversely, Δ typically acts by scalars on irreducible G-subspaces.

So decomposing the representation is related to finding Δ-eigenspaces.
G : connected real reductive Lie group (e.g. $S L(n, \mathbb{R}), U(p, q), S p(2 n, \mathbb{R}), \ldots)$
$\Theta: \quad$ Cartan involution $\left(\Theta(g)={ }^{t} \bar{g}^{-1}\right)$
$K=G^{\Theta}$: maximal compact subgroup
$(S O(n), U(p) \times U(q), U(n), \ldots)$

Representation of G : a complex topological vector space V with a continuous G-action by linear operators
V_{K} : the space of K-finite vectors in V
V_{K} has an action of the Lie algebra \mathfrak{g}_{0} (K-finite \Rightarrow smooth)
$\mathfrak{g}=\left(\mathfrak{g}_{0}\right)_{\mathbb{C}}$ also acts

Get a (\mathfrak{g}, K)-module; an algebraic version of V.

A (\mathfrak{g}, K)-module is a vector space M
with a Lie algebra action of \mathfrak{g}
and a locally finite action of K,
which are compatible.
(I.e., induce the same action of $\mathfrak{k}_{0}=$ the Lie algebra of K.)

Such M can be decomposed under K as

$$
M=\bigoplus_{\delta \in \widehat{K}} m_{\delta} V_{\delta}
$$

M is a Harish-Chandra module if it is finitely generated and all $m_{\delta}<\infty$.

Example: $\quad G=S U(1,1) \quad(\cong S L(2, \mathbb{R}))$.

The Lie algebra is
$\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})=2 \times 2$ matrices of trace 0
\mathfrak{g} has a basis

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

The commutation relations are

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h .
$$

Since h spans \mathfrak{k}, it diagonalizes on (\mathfrak{g}, K)-modules and has integer eigenvalues. The possible modules are
where $k>0$ and $n \geq 0$ are integers.

Each dot represents a 1-dim eigenspace for h. Numbers are the corresponding eigenvalues.

In each picture, e raises the eigenvalue by 2 , and f lowers the eigenvalue by 2 .

Since ef-fe=h and since we know ef at each lowest weight space and $f e$ at each highest weight space, pictures (1), (2) and (3) define unique modules.

For picture (4), it is enough to determine ef + $f e$. We use

$$
\mathrm{Cas}_{\mathfrak{g}}=\frac{1}{2} h^{2}+e f+f e,
$$

which commutes with \mathfrak{g} and so acts by a scalar on any irreducible module.

Fixing this scalar determines the module.
(Not all values are allowed, the module may break up.)

In general, can define $\mathrm{Cas}_{\mathfrak{g}} \in Z(\mathfrak{g}) \subset U(\mathfrak{g})$:
Fix a nondegenerate invariant bilinear form B on \mathfrak{g} (e.g. $\operatorname{tr} X Y$)

Take dual bases b_{i}, d_{i} of \mathfrak{g} w.r.t. B

Write Cas $_{\mathfrak{g}}=\sum b_{i} d_{i}$.

In general, $Z(\mathfrak{g})$ has generators other than $\mathrm{Cas}_{\mathfrak{g}}$; all of them act as scalars on irred. modules;
get infinitesimal character $\chi_{M}: Z(\mathfrak{g}) \rightarrow \mathbb{C}$.
Harish-Chandra proved that $Z(\mathfrak{g}) \cong P\left(\mathfrak{h}^{*}\right)^{W}$, so inf. chars correspond to \mathfrak{h}^{*} / W.

Here \mathfrak{h} is a CSA of \mathfrak{g} and W is the Weyl group of $(\mathfrak{g}, \mathfrak{h})$.

Dirac operator on \mathbb{R}^{n} :

Look for D such that $D^{2}=-\sum \partial_{i}^{2}$.

If $D=\sum e_{i} \partial_{i}$, get

$$
e_{i}^{2}=-1 ; \quad e_{i} e_{j}+e_{j} e_{i}=0, \quad i \neq j
$$

So the coefficients should belong to the Clifford algebra $C\left(\mathbb{R}^{n}\right)$.

Identifying $\partial_{i} \leftrightarrow e_{i}$, get

$$
D=\sum e_{i} \otimes e_{i} \in D_{c c}\left(\mathbb{R}^{n}\right) \otimes C\left(\mathbb{R}^{n}\right)
$$

where $D_{c c}\left(\mathbb{R}^{n}\right)$ denotes the algebra of constant coefficient diff. ops on \mathbb{R}^{n}.

Back to G :

Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition $\left(\mathfrak{p}=\mathfrak{k}^{\perp}\right)$
$C(\mathfrak{p})$: Clifford algebra of \mathfrak{p} wrt B

Dirac operator:

$$
D=\sum_{i} b_{i} \otimes d_{i} \quad \in U(\mathfrak{g}) \otimes C(\mathfrak{p})
$$

(b_{i} a basis of \mathfrak{p}, d_{i} dual basis)
D is independent of choice of basis and K invariant.
$D^{2}=-\mathrm{Cas}_{\mathfrak{g}} \otimes 1+\operatorname{diag}\left(\mathrm{Cas}_{\mathfrak{k}}\right)+$ const.

Parthasarathy - used D to construct the discrete series.

Let M be a (\mathfrak{g}, K)-module

Let S be a spin module for $C(\mathfrak{p})$
$(S=\wedge(U), U \subset \mathfrak{p}$ max. isotropic.)
$M \otimes S$ is a $(U(\mathfrak{g}) \otimes C(\mathfrak{p}), \tilde{K})$-module ($\widetilde{K}=$ spin double cover of K)

In particular, D acts on $M \otimes S$

Dirac cohomology:

$$
H_{D}(M)=\operatorname{Ker} D / \operatorname{Im} D \cap \operatorname{Ker} D
$$

(introduced by Vogan)

Properties:

1. $H_{D}(M)$ is a \widetilde{K}-module
2. For M unitary, D is symmetric, so

$$
H_{D}(M)=\operatorname{Ker} D=\operatorname{Ker} D^{2}
$$

and $D^{2} \geq 0$ (Parthasarathy's Dirac inequality)

For $S L(2):$ exactly (1)-(3) have $H_{D} \neq 0$.
$H_{D}(M)$ is equal to h.wt. +1 and/or I.wt.-1

More notation:

$\mathfrak{h}=\mathfrak{t} \oplus \mathfrak{a}:$ a fundamental CSA of \mathfrak{g}
$\Lambda \in \mathfrak{h}^{*}$: infinitesimal character of M
(assume \mathfrak{g}-dominant)
$\mu \in \mathfrak{t}^{*} \subset \mathfrak{h}^{*}:$ the h.wt. of $E_{\mu} \subset H_{D}(M)$

Main fact:

$$
\wedge=\mu+\rho_{\mathfrak{k}} \quad \text { up to } \quad W
$$

(conjectured by Vogan; proved by Huang-P.; generalized to other settings:
Kostant: replace \mathfrak{k} by quadratic $\mathfrak{r} \subset \mathfrak{g}$
Kumar, Alexeev-Meinrenken: noncommutative equivariant cohomology
Huang-P.: \mathfrak{g} superalgebra of Riemannian type Kac-Moseneder-Frajria-Papi: \mathfrak{g} affine)

Partial converse:

If M is unitary and if $\mu=w \wedge-\rho_{\mathfrak{k}}$ is the h.wt. of some $E_{\mu} \subset M \otimes S$, then $E_{\mu} \subset H_{D}(M)$.

Problems:

1) Classify irreducible unitary M with $H_{D} \neq 0$
2) Calculate $H_{D}(M)$ for given M

Motivation:

1. unitarity - sharpening the Dirac inequality
2. irred. unitary M with $H_{D} \neq 0$ are interesting:

- discrete series - Parthasarathy;
- $A_{q}(\lambda)$ modules - Huang-Kang-P.;
- unitary h.wt. modules - Enright, Huang-P.-Renard; more directly by Huang-P.Protsak in special cases;
- some unipotent reps - Barbasch-P.
- also fd mod. - Kostant, Huang-Kang-P.

3. irred. unitary M with $H_{D} \neq 0$ should form a nice part of the unitary dual
4. H_{D} is related to \mathfrak{n}-cohomology
(Huang-P.-Renard)
5. H_{D} is related to (\mathfrak{g}, K)-cohomology (Huang-Kang-P)
6. can construct reps with $H_{D} \neq 0$ via Dirac induction (P.-Renard)

Example: Wallach modules of $\mathfrak{s p}(2 n, \mathbb{R})$

(with Huang and Protsak)
$\mathfrak{t}=\operatorname{CSA}$ in $\mathfrak{g}=\mathfrak{s p}(2 n, \mathbb{C})$ and $\mathfrak{k}=\mathfrak{g l}(n, \mathbb{C})$.

Positive roots:
compact: $e_{i}-e_{j}, 1 \leq i<j \leq n$.
noncompact: $e_{i}+e_{j}, i<j ; 2 e_{i}, i=1, \ldots, n$.

$$
\begin{gathered}
\rho=(n, n-1, \ldots, 1) \\
\rho_{\mathfrak{k}}=\left(\frac{n-1}{2}, \frac{n-3}{2}, \ldots,-\frac{n-1}{2}\right)
\end{gathered}
$$

$W_{\mathfrak{k}}$: permutations of coordinates
$W_{\mathfrak{g}}$: permutations and arbitrary sign changes
fund. ch. for $\mathfrak{g}: x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0$
fund. ch. for $\mathfrak{k}: x_{1} \geq x_{2} \geq \cdots \geq x_{n}$.
(open chambers: $>$ in place of \geq)
Let $W^{1}=\left\{w \in W_{\mathfrak{g}} \mid w \rho\right.$ is $\mathfrak{k}-$ dominant $\}$
Then $W^{1} \leftrightarrow \mathbb{Z}_{2}^{n}$
(\forall sign change, \exists ! rearrangement.)

Wallach modules: $V_{k}, k \in\{1,2, \ldots, n\}$.
V_{k} has lowest weight $\left(\frac{k}{2}, \frac{k}{2}, \ldots, \frac{k}{2}\right)$.
Infinitesimal character (\mathfrak{g}-dominant representative):

$$
\begin{array}{r}
\Lambda=\left(\frac{k}{2}+n-k, \frac{k}{2}+n-k-1, \ldots, \frac{k}{2}+1, \frac{k}{2},\right. \\
\left.\frac{k}{2}-1, \frac{k}{2}-1, \frac{k}{2}-2, \frac{k}{2}-2, \ldots\right)
\end{array}
$$

ending with $1,1,0$ if k is even and with $\frac{1}{2}, \frac{1}{2}$ if k is odd.
K-types (all of multiplicity 1):

$$
\begin{aligned}
& \qquad\left(\frac{k}{2}, \frac{k}{2}, \ldots, \frac{k}{2}\right)+\left(d_{1}, d_{2}, \ldots, d_{k}, 0, \ldots, 0\right) \\
& d_{1} \geq d_{2} \geq \cdots \geq d_{k} \geq 0 \text { integers of the same } \\
& \text { parity. }
\end{aligned}
$$

All d_{i} even: $V_{k}^{+} \subset V_{k}$, irreducible
All d_{i} odd: $V_{k}^{-} \subset V_{k}$, irreducible
$k=1$: Weil representation

These modules are nice and small and appear in many situations (dual pairs, invariant theory, important in classification...)

To calculate H_{D}, we need to match

$$
w \wedge-\rho_{\mathfrak{k}}=\left[\text { h.wt. in } S+\text { I.wt. in } V_{k}\right]^{\prime}
$$

where []' denotes the \mathfrak{k}-dominant $W_{K^{-}}$-conjugate.

Highest weights in S are $\sigma \rho-\rho_{k}, \sigma \in W^{1}$.

Lowest weights in V_{k} are

$$
\left(\frac{k}{2}, \frac{k}{2}, \ldots, \frac{k}{2}\right)+\left(0, \ldots, 0, d_{k}, \ldots, d_{1}\right)
$$

$w \wedge-\rho_{\mathfrak{k}}$ is \mathfrak{k}-dominant \Rightarrow up to $\operatorname{Stab}_{W_{\mathfrak{g}}}(\wedge)$,

$$
\begin{aligned}
w \in W_{\wedge} & =\left\{w \in W^{1} \mid\right. \\
& \left.w \leftrightarrow \epsilon_{1} \ldots \epsilon_{n-k+1}(+-) \ldots(+-)(+)\right\},
\end{aligned}
$$

where the last + appears only when k is even.

For each such w, \exists ! matching σ and d_{1}, \ldots, d_{k} :

$$
\begin{gathered}
\sigma=--\cdots-\epsilon_{1} \epsilon_{2} \ldots \epsilon_{n-k} \\
d_{1}=\cdots=d_{k}=\# \text { pluses among } \epsilon_{1}, \ldots, \epsilon_{n-k+1}
\end{gathered}
$$

Hence

$$
H_{D}\left(V_{k}\right)=\bigoplus_{w \in W_{\wedge}} w \wedge-\rho_{\mathfrak{k}}
$$

Ongoing work with Barbasch:

1. many computations of H_{D} for unipotent reps of complex groups, some for real
2. e.g. for $G L(n, \mathbb{C})$, a unip. rep has $H_{D} \neq 0$ iff the corresponding Young diagram has only two columns, of opposite parity. H_{D} is a single K-type with multiplicity. We can write it down explicitly.
3. we also have some more general (but still special) results of the following type: suppose \mathfrak{m} is a Levi factor of a parabolic and suppose π is induced from $\pi_{\mathfrak{m}}$. Then π has $H_{D} \neq 0$ iff $\pi_{\mathfrak{m}}$ has $H_{D} \neq 0$.
