Towards New Formulation of Quantum field theory: Geometric Picture for Scattering Amplitudes

Part 1

Jaroslav Trnka

Winter School Srní 2014, 19-25/01/2014

Work with Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander Postnikov, arxiv: 1212.5605

Work with Nima Arkani-Hamed, arxiv: 1312.2007
Motivation

- One of the most important challenges of theoretical physics: Quantum gravity.
- Method 1: Solve the problem. Most promising candidate: String theory.
- Method 2: Detour - take the inspiration from history of physics. Reformulate Quantum field theory.
- Standard formulation of Quantum field theory: space-time, path integral, Lagrangian, locality, unitarity.
- Perturbative expansion using Feynman diagrams.
- Ultimate goal: Find the reformulation of Quantum field theory where these words emerge as derived concepts from other principle.
Motivation

- This is an extremely hard problem with no guarantee of success. To have any chance we should be able to do it in the simplest set-up.
- We consider the simplest Quantum field theory: $\mathcal{N} = 4$ Super-Yang Mills theory in planar limit.
- We choose one set of objects: on-shell scattering amplitudes.
- In the process of reformulation we make a connection with active area of research in combinatorics and algebraic geometry: Positive Grassmannian $G_+(k,n)$.
- The final result is formulated using a new mathematical object – Amplituhedron which is a significant generalization of the Positive Grassmannian.
Plan of lectures

Lecture 1: Introduction to scattering amplitudes

Lecture 2: Positive Grassmannian

Lecture 3: The Amplituhedron
Very brief introduction to Scattering Amplitudes
On-shell scattering amplitudes

- Fundamental objects in any quantum field theory that describe interactions of particles.

\[M \sim \langle \text{in} | \text{out} \rangle \]

- Each particle is characterized by the four-momentum \(p_\mu \) and also by spin information.

- The relevant fields have spin \(\leq 2 \), non-gravitational theories have spin \(0, \frac{1}{2}, 1 \). The information is captured for spin \(\frac{1}{2} \) by spinor while for spin 1 by a vector. Quantum numbers: \(s, m = (-s, \ldots, s) \).

- On-shell: \(p_i^2 = m_i^2 \), in many cases we consider \(m_i = 0 \).

- For massless amplitudes \(p_\mu \) has three degrees of freedom and \(m \) is replaced by helicity \(h = (-s, +s) \).
Kinematics

- Massless momentum p_α can be written in 2x2 matrix as

$$p_{\dot{a}a} = \sigma_{\dot{a}a}^\alpha p_\alpha$$

- The fact that $p^2 = 0$ is reflected in $\det p_{\dot{a}a} = 0$. Therefore $p_{\dot{a}a}$ can be written as a product of two spinors λ_a and $\tilde{\lambda}_{\dot{a}}$.

$$p_{\dot{a}a} = \lambda_a \tilde{\lambda}_{\dot{a}}$$

where in (2,2) signature λ, $\tilde{\lambda}$ are real and independent while in (3,1) signature they are complex and conjugate.

- Scalar products

$$\langle 12 \rangle = \epsilon^{ab} \lambda_{1a} \lambda_{2b}, \quad [12] = \epsilon^{\dot{a}\dot{b}} \tilde{\lambda}_{\dot{1}a} \tilde{\lambda}_{\dot{2}b}$$

are related to the original scalar product $p_1 \cdot p_2$ as

$$(p_1 + p_2)^2 = 2(p_1 \cdot p_2) = \langle 12 \rangle [12]$$
Scattering amplitudes

- The amplitude \mathcal{M} is a function of p_μ and spin information and is directly related to the probabilities in scattering experiment given by cross sections,

$$\sigma \sim \int d\Omega |\mathcal{M}|^2$$

- Despite the physical observable is σ, the amplitude \mathcal{M} itself satisfies many non-trivial properties from QFT.

- Studying scattering amplitudes was crucial for developing QFT in hands of Dirac, Feynman, Schwinger, Dyson and others.

- Two main approaches:
 - Analytic S-matrix program: the amplitude as a function can be fixed using symmetries and consistency constraints.
 - Feynman diagrams: expansion of the amplitude using pieces that represent physical processes with virtual particles.

- In history of physics the second approach was the clear winner, demonstrated most manifestly in development of QCD.
Feynman diagrams

- Theory is characterized by the Lagrangian \mathcal{L}, for example
 \[
 \mathcal{L}_{\phi^4} = \frac{1}{2} (\partial_\mu \phi)(\partial^\mu \phi) + \lambda \phi^4
 \]
- Standard QFT approach: generating functional \rightarrow correlation function \rightarrow on-shell scattering amplitude.
- Diagrammatic interpretation: draw all graphs using fundamental vertices derived from Lagrangian, and evaluate them using certain rules.
- Perturbative expansion: tree-level (classical) amplitudes and loop corrections.
Feynman diagrams

- At tree-level the amplitude is a rational function with simple poles of external momenta and spin structure,

\[M_0 = \frac{N(p_i, s_i)}{p_1^2 p_2^2 p_3^2 \cdots p_k^2} \]

where the poles are of the form \(p_j^2 = (\sum_k p_k)^2 \).

- At loop level the amplitude is an integral over the rational function,

\[M_L = \int d^4 \ell_1 \cdots d^4 \ell_L \frac{N(p_i, s_i, \ell_j)}{p_1^2 \cdots p_k^2} \]

where the poles now also depend on \(\ell_i \).

- The class of functions we get for \(M_L \) is not known in general.
Simple amplitudes

- Amplitudes are much simpler than could be predicted from Feynman diagram approach.
 - Original calculation: \(2 \rightarrow 4\) tree-level scattering
 - Most complicated process calculated by that time.
 - Result written on 16 pages using small font.
 - Final result simplifies to one-line expression.

\[
M = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}
\]

- The simplicity generalizes to all ”MHV” amplitudes, invisible in Feynman diagrams.
- This started a new field of research in particle physics, many new methods and approaches have been developed. The progress rapidly accelerated in last few years.
Simple amplitudes

- Feynman diagrams work in general for any theory with Lagrangian, however, the results for amplitudes are artificially complicated.

- Moreover, in many cases there are hidden symmetries for amplitudes which are invisible in Feynman diagrams and are only restored in the sum.

- Advantages from both approaches: perturbative QFT and analytic theory for S-matrix.
 - We use perturbative definition of the amplitude using Feynman diagrams and it also serves like a reference result.
 - On the other hand we can use properties of the S-matrix to constrain the result: locality, unitarity, analyticity and global symmetries.

- In our discussion we focus on the tree-level amplitudes and integrand of loop amplitudes.
Other aspects

- Integrated amplitudes: there is a recent activity in classifying functions one can get for amplitudes.
- In certain theories we have a good notion of transcendentality related to the loop order of the amplitude: symbol of the amplitude.
- Relation to multiple zeta values and motivic structures.
- In many theories there are also important non-perturbative effects not seen in the standard expansion.
- This is completely absent in the theory I am going to discuss now – $\mathcal{N} = 4$ SYM in planar limit.
- Despite it is a simple model, it is still an interesting 4-dimensional interacting theory, closed cousin of Quantum Chromodynamics (QCD).
Toy model for gauge theories

$\mathcal{N} = 4$ Super Yang-Mills theory in planar limit.

- Maximal supersymmetric version of $SU(N)$ Yang-Mills theory, definitely not realized in nature.
- Particle content: gauge fields ”gluons”, fermions and scalars. At tree-level: amplitudes of gluons and fermions identical to pure Yang-Mills theory. Superfield Φ,

\[
\Phi = G_+ + \eta^A \Gamma_A + \frac{1}{2} \eta^A \eta^B S_{AB} + \frac{1}{6} \epsilon_{ABCD} \eta^A \eta^B \eta^C \Gamma^D + \frac{1}{24} \epsilon_{ABCD} \eta^A \eta^B \eta^C \eta^D G_-
\]

- The theory is conformal, UV finite. In planar limit (large N) hidden infinite dimensional (Yangian) symmetry which is completely invisible in any standard QFT approach.
- The theory is integrable: should have an exact solution. In AdS/CFT dual to type IIB string theory on $AdS_5 \times S_5$.

Properties of amplitudes in toy model

- The theory has \(SU(N) \) symmetry group, in Feynman diagrams we get different group structures. In planar limit only single trace survives

\[
\mathcal{M}_{123...n} = \sum_{\sigma/\pi} \text{Tr} (T^{a_1} T^{a_2} \ldots T^{a_n}) M_{a_1 a_2 \ldots a_n}
\]

We consider the ”color-stripped” amplitude \(M \) which is cyclic.

- New kinematical variables: \(n \) twistors \(Z_i \), points in \(\mathbb{P}^3 \), and a set of Grassmann variables \(\eta_i \). Natural \(SL(4) \) invariants

\[
\langle Z_1 Z_2 Z_3 Z_4 \rangle.
\]

- The loop momentum is off-shell and has 4 degrees of freedom, represented by a line \(Z_A Z_B \) in twistor space.

- The amplitude is then a rational function of \(\langle \cdots \rangle \) with homogeneity 0 in all \(Zs \) with single poles. The pole structure is dictated by locality of the amplitude:

\[
\langle Z_i Z_{i+1} Z_j Z_{j+1} \rangle \text{ or } \langle Z_A Z_B Z_i Z_{i+1} \rangle \text{ or } \langle Z_A Z_B Z_C Z_D \rangle
\]
Properties of amplitudes in toy model

- All amplitudes are labeled by three numbers \(n, k, L \) where \(k \) is a \(k \)-charge of \(SU(4) \) symmetry of the amplitude. It has physical interpretation in terms of helicities of component gluonic amplitudes (number of \(-\) helicity gluons). In fact we better use the label \(k \equiv k' = k - 2 \).

- Feynman diagram approach is extremely inefficient. For example, \(n = 4, k = 0 \):

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics{feynman_diagram}\end{array}
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>940</td>
<td>47.380</td>
<td>(4 \times 10^6)</td>
<td>(6 \times 10^8)</td>
<td>(10^{11})</td>
<td>(10^{13})</td>
<td>(10^{15})</td>
</tr>
</tbody>
</table>
Overview of the program

- Our ultimate goal: to find a geometric formulation of the scattering amplitude as a single object.
- This formulation should make all properties of the amplitude manifest.
- It better does not use any physical concepts which should emerge as derived properties from the geometry.
- We will proceed in two steps:
 - Step 1: We find a new basis of objects which serve as building blocks for the amplitude. It will be an alternative to Feynman diagrams with very different properties. They will have a direct connection to Positive Grassmannian.
 - Step 2: Inspired by that we find a unique object which represents the full scattering amplitude - Amplituhedron - a natural generalization of Positive Grassmannian. The problem of calculating amplitudes is then reduced to the triangulation.
- The final picture involves new mathematical structures which should be understood more rigorously.
Scattering Amplitudes and Positive Grassmannian
Permutations

- Standard permutation: \((1, 2, \ldots n) \rightarrow (\sigma(1), \sigma(2), \ldots \sigma(n))\).

- Scattering process in \(1 + 1\) dimensions.

- Most trivial example: \((1, 2, 3) \rightarrow (3, 2, 1)\).
Permutations

- The picture is not unique: Yang-Baxter move

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\bullet & \bullet & \bullet \\
1 & 2 & 3
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
\bullet & \bullet & \bullet \\
1 & 2 & 3
\end{array}
\]

- Unfortunately, this can not be applied to $3 + 1$ dimensions
 - No particle creation/destruction.
 - Fundamental 4pt interactions.

- We need fundamental 3pt vertices. Is there a way how to represent a permutation with a diagram which has only 3pt vertices?

- It is not possible to do it with a single 3pt vertex.
Permutations

- Fundamental 3pt vertices:

 ![Diagrams showing permutations](image)

 represent permutations \((1, 2, 3) \rightarrow (2, 3, 1)\) and \((1, 2, 3) \rightarrow (3, 2, 1)\).

- Left-Right paths in the graph: left on white vertex, right on black vertex.
Permutations

- Build a 4pt diagram:

- Permutations: $(1, 2, 3, 4) \rightarrow (4, 3, 1, 2)$, resp.
 $(1, 2, 3, 4) \rightarrow (3, 4, 1, 2)$.

- In case $k \rightarrow k$ we draw the lollipop, for
 $(1, 2, 3, 4) \rightarrow (2, 3, 1, 4)$
We can build a diagram and find a permutation.

The permutation is $(1, 2, 3, 4, 5, 6) \rightarrow (5, 4, 6, 1, 2, 3)$. Every permutation can be represented like this!
Permutations

- We can build a diagram and find a permutation.

- The permutation is $(1, 2, 3, 4, 5, 6) \rightarrow (5, 4, 6, 1, 2, 3)$.
- Every permutation can be represented like this!
Permutations

- There exists a different diagram that gives the same permutation

The map diagrams \leftrightarrow permutations is not unique!

- Reduced graphs: minimal number of faces (loops) - they represent permutations.
Permutations

- There exists a different diagram that gives the same permutation

- The map diagrams \leftrightarrow permutations is not unique!

- Reduced graphs: minimal number of faces (loops) - they represent permutations.
Permutations

- There are two identity moves:
 - merge-expand of black (or white) vertices

- square move

![Diagram of permutation moves](image)
Permutations

- There are two identity moves:
 - merge-expand of black (or white) vertices
 - square move
Permutations

- There are two identity moves:
 - merge-expand of black (or white) vertices
 - square move
Permutations

- Go back to the Yang-Baxter move. We expand

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 1:} \\
\text{Diagram 2:}
\end{array}
\end{array} \]

- We could also use the substitution

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 1:} \\
\text{Diagram 2:}
\end{array}
\end{array} \]

and prove the same identity.
Permutations

Then we get

Old diagrams are included as a subset of new diagrams.
We will use affine permutation:

\[k \rightarrow \sigma(k) \]

where

\[k + n \geq \sigma(k) \geq k \]

and \(\sigma(k) \mod k \) is a permutation.

1 → 3
2 → 4
3 → 1 + 4 = 5
4 → 2 + 4 = 6
Positive Grassmannian
Configuration of vectors

- Permutations \leftrightarrow Configuration of vectors with consecutive linear dependencies.
- Configuration of n pt in \mathbb{P}^{k-1}

$k \rightarrow \sigma(k)$ means that $k \subset \text{span}(k+1, \ldots \sigma(k))$

$1 \subset (2, 34, 5, 6) \rightarrow \sigma(1) = 6, \quad 2 \subset (34, 5) \rightarrow \sigma(2) = 5,$

$3 \subset (4) \rightarrow \sigma(3) = 4, \quad 4 \subset (5, 6, 1, 2) \rightarrow \sigma(4) = 2,$

$5 \subset (6, 1) \rightarrow \sigma(5) = 1, \quad 6 \subset (1, 2, 3) \rightarrow \sigma(6) = 3.$

The permutation is $(1, 2, 3, 4, 5, 6) \rightarrow (6, 5, 4, 8, 7, 9).$
The Positive Grassmannian

- Grassmannian $G(k,n)$: space of k-dimensional planes in n dimensions, represented by $k \times n$ matrix modulo $GL(k)$,

$$C = \begin{pmatrix}
* & * & * & \ldots & * & * \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
* & * & * & \ldots & * & * \\
\end{pmatrix}
= \begin{pmatrix}
v_1 \\
\vdots \\
v_k \\
\end{pmatrix}
= \begin{pmatrix}
c_1 & c_2 & \ldots & c_n \\
\end{pmatrix}$$

- We can think about it as collection of k vectors v_1, \ldots, v_k in n dimensions which specify the plane.

- We consider a positive part of $G(k,n)$ which is a space with boundaries.
The Positive Grassmannian

- Positive part:

\[C = [c_1 \ c_2 \ \ldots \ c_n] \]

All minors

\[(c_{i_1} \ldots c_{i_k}) > 0 \quad \text{for} \quad i_1 < i_2 < \ldots < i_k.\]

- Cyclic structure: \(c_1 \rightarrow c_2, \ c_2 \rightarrow c_3, \ldots, \ c_n \rightarrow (-1)^{k+1}c_1.\)
We can think about C as collection n points in \mathbb{P}^{k-1}.

Back to 6pt example:

$$C = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & c_{16} \\
0 & 1 & 0 & 0 & c_{25} & a \cdot c_{25} \\
0 & 0 & 1 & c_{34} & c_{35} & a \cdot c_{35}
\end{pmatrix}$$

Five-dimensional configuration in $G(3, 6)$.
The Positive Grassmannian

- Positive part of $G(k, n)$: convex configurations of points.
- Top cell in the Grassmannian (no constraint imposed) \rightarrow configuration of n generic points in \mathbb{P}^{k-1}.
- Stratification of the space is nicely provided by imposing linear dependencies between consecutive points.

This corresponds to sending minors of $G_+(k, n)$ to zero.
- Boundaries preserve convexity: all minors of $G_+(k, n)$ stay positive (except the ones sent to zero).
Equivalence

Reduced graphs (mod identity moves)

\[\iff \]

Permutations

\[\iff \]

Configurations of vectors with linear dependencies

\[\iff \]

Cells of Positive Grassmannian
Plabic graphs and Positive Grassmannian
Plabic graphs

- These diagrams are known in the literature as "plabic graphs" and were extensively studied by Alexander Postnikov (math/0609764).
- He established the connection to the positive Grassmannian and showed how to construct explicitly a matrix for each reduced diagram.
- There is a precise definition what the "reduced" means but in practice it means that the diagram does not have any bubbles.
- Bubble reduction:

\[
\begin{align*}
\text{bubble} & \Rightarrow \text{reduced diagram}
\end{align*}
\]
Plabic graphs

Example:

1 2

4

3

Postnikov proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).

In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.

- Edge variables.
- Face variables.

Orientation: choose an arrow for each edge.
Plabic graphs

Example:

Postnikov proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).

In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.

- Edge variables.
- Face variables.

Orientation: choose an arrow for each edge.
Plabic graphs

- Example:

- Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).

- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
 - Edge variables.
 - Face variables.

- Orientation: choose an arrow for each edge.
Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).

In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.

- Edge variables.
- Face variables.

Orientation: choose an arrow for each edge.
Plabic graphs

Example:

- Postnikov proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
 - Edge variables.
 - Face variables.
- Orientation: choose an arrow for each edge.
Once we have given a perfect orientation, the system of equations $C \cdot \tilde{\lambda}$ becomes trivial to construct: each vertex can be viewed as giving an equation which expands the $\tilde{\lambda}$'s of the vertex's sources in terms of those of its sinks. Combining all such equations then gives us an expansion of the external sources' $\tilde{\lambda}$'s in terms of those of the external sinks. Notice that when identifying two legs, $(I_{\text{in}}, I_{\text{out}})$ during amalgamation the degree of freedom lost in the process is accounted for via the replacement of the pair $(\alpha_{I_{\text{in}}}, \alpha_{I_{\text{out}}})$ with the single variable $\alpha_{I} \equiv \alpha_{I_{\text{in}}}\alpha_{I_{\text{out}}}$.

If we denote the external sources of a graph by \{a_1, ..., a_k\} ≡ A, then the final linear relations imposed on the $\tilde{\lambda}$'s can easily be seen to be given by,

$$\tilde{\lambda}_A + \sum_{\Gamma \in \{A \rightarrow a\}} \prod_{e \in \Gamma} \alpha_e = 0,$$

(4.56)

with

$$\sum_{\Gamma \in \{A \rightarrow a\}} \prod_{e \in \Gamma} \alpha_e = -\sum_{\Gamma \in \{A \rightarrow a\}} \prod_{e \in \Gamma} \alpha_e,$$

(4.57)

and where $\Gamma \in \{A \rightarrow a\}$ is any (directed) path from A to a in the graph. (If there is a closed, directed loop, then the geometric series should be summed—we will see an example of this in (4.64).) The entries of the matrix C_Aa are called the "boundary measurements" of the on-shell graph. The on-shell form on $C(\alpha) \in G(k,n)$ can then be written in terms of the variables C_Aa according to:

$$\prod_{\text{vertices}} \text{vol}(\text{GL}(1)_v) \prod_{\text{edges}} d\alpha e \alpha_e \delta_k \times 4 (C \cdot \tilde{\eta}) \delta_k \times 2 (C \cdot \tilde{\lambda}) \delta_2 \times (n - k) (\lambda \cdot C_{\perp}).$$

(4.58)

Let us consider a simple example to see how this works. Consider the following perfectly oriented graph:

(4.59)

Using the equations for each directed 3-particle vertex, we can easily expand the $\tilde{\lambda}$ of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

$$\tilde{\lambda}_2 = \alpha_2 \alpha_6 (\alpha_3 \tilde{\lambda}_3 + \alpha_7 (\alpha_4 \tilde{\lambda}_4)).$$

(4.60)

Such expansions obviously result in (4.57): the coefficient C_Aa of $\tilde{\lambda}$ in the expansion of $\tilde{\lambda}_A$ is simply (minus) the product of all edge-variables α_e along any path $\Gamma \in \{A \rightarrow a\}$. Doing this for all the C_Aa of our example above, we find,

$$C_{13} = \alpha_1 \alpha_5 \alpha_6 \alpha_3$$

$$C_{14} = \alpha_1 \alpha_5 \alpha_6 \alpha_7 \alpha_4 + \alpha_1 \alpha_8 \alpha_4$$

$$C_{23} = \alpha_2 \alpha_6 \alpha_3$$

$$C_{24} = \alpha_2 \alpha_6 \alpha_7 \alpha_4 - \alpha_1 \alpha_4 \alpha_6 \alpha_7.$$

For this example (positive matrix for fixed signs of α_i):

$$C = \begin{pmatrix}
1 & 0 & -\alpha_1 \alpha_3 \alpha_5 \alpha_6 & -\alpha_1 \alpha_4 \alpha_5 \alpha_6 \alpha_7 - \alpha_1 \alpha_4 \alpha_8 \\
0 & 1 & -\alpha_2 \alpha_3 \alpha_6 & -\alpha_2 \alpha_4 \alpha_6 \alpha_7
\end{pmatrix}$$
Face variables

- Variables associated with faces.

- "Gauge invariant" (fluxes) associated with faces of the graph. Only one condition $\prod f_i = -1$.

- The rule for entries of the C matrix,

$$C_{iJ} = - \sum_{\text{paths } i \to J} \prod (-f_j) \quad \text{faces left to the path}$$

- For this example:

$$C = \begin{pmatrix} 1 & 0 & \frac{f_0}{f_3}f_4 & -f_0f_4 + f_4 \\ 0 & 1 & -f_0f_1f_3f_4 & -f_0f_1f_4 \end{pmatrix}$$
Face variables

▶ Moves and face variables

▶ Reduction: eliminate irrelevant variable

▶ Face (or edge) variables are cluster variables and these are cluster transformations.