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University of Vienna
Faculty of Mathematics

Srni, January 2015

1supported by project P27072–N25 of the Austrian Science Fund (FWF)
Andreas Čap



Kostant’s theorem
The relative version

Absolute vs. relative homology

This talk reports on joint work with Vladimir Souček (Prague).

We first review the statement Kostant’s theorem as well as
the algebraic structures used for its proof and their role in the
construction of Bernstein–Gelfand–Gelfand sequences for
parabolic geometries.

The main part of the talk will be the description of relative
versions of these tools (associated to two nested parabolic
subalgebras rather than one parabolic subalgebra) and of
Kostant’s theorem.

Apart from providing the appropriate setup for a relative
Version of the BGG–machinery (not discussed in detail), this
also gives new insight into the absolute case. One obtains a
new description of the Hasse–diagram of a non–maximal
parabolic and (in regular infinitesimal character) a relation
between absolute and relative Lie algebra (co)homology.
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Let g be a semi–simple Lie algebra. Then the choice of a parabolic
subalgebra q ⊂ g can be viewed as a “coarser version” of the
Cartan–decomposition of g into a Cartan subalgebra and root
spaces.

The subalgebra q is equivalent to a |k |–grading of g, i.e. a
decomposition

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

such that [gi , gj ] ⊂ gi+j and such that the positive part
g1 ⊕ · · · ⊕ gk is generated by g1. The subalgebra q is the
non–negative part of this grading.

Writing the grading as g = q− ⊕ q0 ⊕ q+, it follows from the
grading property that q± are nilpotent subalgebras of g, which are
graded modules over q0 under the restriction of the adjoint action.
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Kostant’s theorem

Any representation V of g is a representation of q0 and of q− by
restriction. Hence the standard complex (C ∗(q−,V), ∂) computing
the Lie algebra cohomology H∗(q−,V) is a complex of q0–modules
and q0–equivariant maps, so the cohomologies are q0–modules.

For complex g and irreducible V, Kostant’s theorem describes
H∗(q−,V) as a representation of q0 in terms of orbits of weights
under an action of a subset W q of the Weyl group of g.

This may sound like a strange result, but there are important
consequences:

Even the version for the Borel subalgebra leads in a few lines
to a proof of the Weyl character formula.

Using the Peter–Weyl theorem, Kostant’s result gives an
alternative proof of the Bott–Borel–Weil theorem.
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The relation to parabolic geometries

Viewing an irreducible representation W of q0 as a representation
of q, one obtains the generalized Verma module U(g)⊗U(q) W∗.
These are infinite dimensional g–modules admitting a central
character, which is a basic invariant. Combining Harish–Chandra’s
theorem on central character with Kostant’s theorem, one gets

Theorem

H∗(q−,V) is a direct sum of different irreducible representations of
q0. The representations in this sum are exactly those, which lead to
generalized Verma modules with the same central character as V.

Hence the bundles induced by the representations in H∗(q−,V) are
natural candidates for existence of invariant differential operators
on the parabolic geometry determined by (g, q).
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The proof of Kostant’s theorem relies on the observation that the
Killing form of g restricts to a duality between q− and q+. Hence
C k(q−,V) ∼= ⊗kq+ ⊗ V, and in addition to the Lie algebra
cohomology differential ∂, there also is a Lie algebra homology
differential ∂∗ : C k(q−,V)→ C k−1(q−,V).

Kostant proved that ∂∗ and ∂ are adjoint with respect to a certain
inner product. For � = ∂∂∗ + ∂∗∂ acting on C k one then obtains

ker(�) ∼= Hk(q−,V) ∼= Hk(q+,V),

and this subspace can be analyzed using representation theory.

In applications to parabolic geometries, one focuses on the
homology interpretation, which naturally consists of q–modules
and q–equivariant maps. The full algebraic Hodge theory can be
brought into the game by passing to the associated graded with
respect to a natural q–invariant filtration.
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To obtain the relative version, we first need a second parabolic
subalgebra p sitting between q and g, with p = g corresponding to
the absolute case. Then p+ is the annihilator of p under the Killing
form, whence p+ ⊂ q+. One obtains a decomposition of g as

g = p− ⊕ (p0 ∩ q−)⊕ q0 ⊕ (p0 ∩ q+)⊕ p+

in a way compatible with the Killing form.

From the purely
algebraic point of view, the relative version of Kostant’s theorem
studies the decomposition of the reductive algebra p0 given by the
three middle summands.

For the use in geometry, a q–invariant formulation is more
convenient: We have p+ ⊂ q+ and since p+ is an ideal in p, we
can form the quotient q+/p+. The Killing form induces a duality
between this and the q–submodule p/q ⊂ g/q.
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Now let V be a completely reducible representation of p. Then this
is a representation of q+ by restriction and by complete reducibility,
p+ acts trivially. Hence there is the standard complex for Lie
algebra homology of q+/p+ with coefficients in V, consisting of

Ck(q+/p+,V) = ⊗k(q+/p+)⊗ V

∂∗ρ : Ck(q+/p+,V)→ Ck−1(q+/p+,V) defined by

∂∗ρ(Z1 ∧ · · · ∧ Zk ⊗ v) :=
∑

i (−1)iZ1 ∧ · · · Ẑi · · · ∧ Zk ⊗ Zi · v

+
∑

i<j(−1)i+j [Zi ,Zj ] ∧ Z1 ∧ · · · Ẑi · · · Ẑj · · · ∧ Zk ⊗ v ,

These are q–equivariant maps between q–modules, so the
homology groups Hk(p+/q+,V) are naturally representations of q.
It turns out that they are completely reducible, so q+ acts trivially,
and it suffices to understand the q0–module structure.
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i (−1)iZ1 ∧ · · · Ẑi · · · ∧ Zk ⊗ Zi · v

+
∑

i<j(−1)i+j [Zi ,Zj ] ∧ Z1 ∧ · · · Ẑi · · · Ẑj · · · ∧ Zk ⊗ v ,
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We have already mentioned that the Killing form of g induces a
duality between q+/p+ and p/q. The associated graded of p/q can
be identified with the nilpotent Lie subalgebra p0 ∩ q− of p0, which
also acts on V by restriction. This leads to

Ck(q+/p+,V) ∼= L(Λk(p0 ∩ q−)∗,V)

∂ρ : Ck(q+/p+,V)→ Ck+1(q+/p+,V), defined by

∂ρϕ(X0, . . . ,Xk) :=
∑k

i=0(−1)iX i · ϕ(X0, . . . , X̂i , . . . ,Xk)

+
∑

i<j(−1)i+jϕ([Xi ,Xj ],X0, . . . , X̂i , . . . , X̂j , . . . ,Xk),

Similarly to the classical case, one proves that ∂∗ρ and ∂ρ are
adjoint, so one introduces �ρ = ∂∗ρ∂ρ + ∂ρ∂

∗
ρ and obtains a

Hodge–decomposition.
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Similarly to the classical case, one proves that ∂∗ρ and ∂ρ are
adjoint, so one introduces �ρ = ∂∗ρ∂ρ + ∂ρ∂

∗
ρ and obtains a

Hodge–decomposition.
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Kostant’s theorem
The relative version

Absolute vs. relative homology

As in the absolute case, this implies that ker(�) is isomorphic to
the homology as a q0–module. The action of � on C∗(q+/p+,V)
can be described in representation theory terms. In in the complex
case, this can then be analyzed in terms of weights.

Denoting by δp half the sum of those positive roots whose root
spaces are contained in p0, this implies

Proposition

If −λ is the lowest weight of V, then ker(�) is the direct sum of
those isotypical components of C∗(q+/p+,V) whose lowest weight
−ν has the property that ‖ν + δp‖ = ‖λ+ δp‖, where the norm is
induced by the Killing form of g.

Let W be the Weyl group of g and for w ∈W define
Φw := {α ∈ ∆+ : w−1(α) ∈ −∆+}. According to the
decomposition of g, we can also decompose ∆+, and then define
several subsets of W via properties of the sets Φw .
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Kostant’s theorem
The relative version

Absolute vs. relative homology

As in the absolute case, this implies that ker(�) is isomorphic to
the homology as a q0–module. The action of � on C∗(q+/p+,V)
can be described in representation theory terms. In in the complex
case, this can then be analyzed in terms of weights.
Denoting by δp half the sum of those positive roots whose root
spaces are contained in p0, this implies

Proposition

If −λ is the lowest weight of V, then ker(�) is the direct sum of
those isotypical components of C∗(q+/p+,V) whose lowest weight
−ν has the property that ‖ν + δp‖ = ‖λ+ δp‖, where the norm is
induced by the Killing form of g.

Let W be the Weyl group of g and for w ∈W define
Φw := {α ∈ ∆+ : w−1(α) ∈ −∆+}. According to the
decomposition of g, we can also decompose ∆+, and then define
several subsets of W via properties of the sets Φw .

Andreas Čap
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The Hasse-diagram of q (which occurs in the absolute version of
Kostant’s theorem) is W q := {w : Φw ⊂ ∆+(q+)}, and likewise
one defines W p. On the other hand, Wp := {w : Φw ⊂ ∆+(p0)} is
the Weyl group of (the semisimple part of) p0, and likewise for Wq.

Definition

The relative Hasse diagram associated to q ⊂ p ⊂ g is
W q

p = W q ∩Wp = {w ∈W : Φw ⊂ ∆+(p0 ∩ q+)}.

These have similar properties as the usual Hasse–diagrams. In
particular

W q
p can be determined by computing the orbit of an

appropriate weight under Wp.

If λ is a p–dominant weight and w ∈W q
p , then w(λ) is

q–dominant.
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Theorem

If V has lowest weight −λ, then H∗(q+/p+,V) is the direct sum of
one copy of each of the irreducible representations of q0 with
lowest weight −(w(λ+ δ)− δ) with w ∈W q

p , and such a
component occurs in degree `(w).

Example: For p =× ◦ ◦, q =× × ◦, one gets
W q

p = {e, σ2, σ2σ3} with elements of length 0, 1, and 2.

For a weight λ =× ◦ ◦
a b c

with a, b, c ∈ Z, to be p–dominant,
we need b, c > 0. The cohomology in degree zero then

corresponds to× × ◦
a b c

, while in degree one and two, we obtain

× × ◦a + b + 1 −b − 2 b + c + 1 × × ◦a + b + c + 2 −b − c − 3 b
.

For a = −1, a = −b− 2 and a = −b− c − 3 one obtains a pattern
of representations for which the corresponding generalized Verma
modules have the same singular infinitesimal character.
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In the case of regular infinitesimal character, the representations
H∗(q+/p+,V) also occur in H∗(q+, Ṽ) for some representation Ṽ
of g. Now one proves:

Theorem

(1) The multiplication in W induces a bijection W q
p ×W p →W q

such that `(w1w2) = `(w1) + `(w2).
(2) For an irreducible representation Ṽ of g, one has
Hk(q+, Ṽ) = ⊕i+j=kHi (q+/p+,Hj(p+, Ṽ)).

Part (1) exhibits a product structure of W q which was not known
before. Moreover, to determine the affine Weyl orbit of a weight
under W q, one can first determine the affine orbit under W p and
then the orbits of each of the resulting weights under W q

p .

For (2) one has to observe that H∗(p+, Ṽ) is completely reducible.
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For the algebraic considerations one is only interest in the
q0–module structures, and the isomorphism
Hk(q+, Ṽ) = ⊕i+j=kHi (q+/p+,Hj(p+, Ṽ)) is proved by
coincidence of irreducible components. For applications to
geometry, additional considerations are necessary:

For any irreducible representation V of p, a q–invariant
version of the full Hodge theory is available on the associated
graded of C∗(q+/p+,V).

For a g–irreducible representation Ṽ, there is a q–invariant
filtration F ` of C∗(q+, Ṽ) such that the restriction of the
projection to homology to F ` ∩ ker(∂∗) induces an
isomorphism of q–modules

F`∩ker(∂∗)
F`+1∩ker(∂∗)+F`∩im(∂∗)

→ H∗(q+/p+,H`(p+, Ṽ)).
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Hk(q+, Ṽ) = ⊕i+j=kHi (q+/p+,Hj(p+, Ṽ)) is proved by
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