G-structures and their remarkable spinor fields

Prof. Dr. habil. Ilka Agricola

Philipps-Universität Marburg

Srní, January 2015

- joint work with Simon Chiossi, Thomas Friedrich, and Jos Höll -

Observation:

- \exists multitude of different spinorial field equations, related to different geometric structures and geometric questions

Goal:

- Uniform description of different types of spinor fields
- applications

The Riemannian Dirac operator

$\left(M^{n}, g\right)$: compact Riemannian spin mnfd, Σ : spin bdle
Classical Riemannian Dirac operator D^{g} :
Dfn: $\quad D^{g}: \Gamma(\Sigma) \longrightarrow \Gamma(\Sigma), \quad D^{g} \psi:=\sum_{i=1}^{n} e_{i} \cdot \nabla_{e_{i}}^{g} \psi$
Properties:

- D^{g} is elliptic differential operator of first order, essentially self-adjoint on $L^{2}(\Sigma)$, pure point spectrum
- Of equal fundamental importance than the Laplacian
- In dimension 4: index $\left(D^{g}\right)=\sigma\left(M^{4}\right) / 8$
[Atiyah-Singer, ~1963]
- S_chrödinger (1932), Lichnerowicz (1962):

$$
\left(D^{g}\right)^{2}=\Delta+\frac{1}{4} \mathrm{Scal}^{g}
$$

\sim "'root of the Laplacian"' for $\mathrm{Scal}^{g}=0$

Spinors and Riemannian eigenvalue estimates

SL formula $\Rightarrow \mathrm{EV}$ of $\left(D^{g}\right)^{2}: \quad \lambda \geq \frac{1}{4} \mathrm{Scal}_{\text {min }}^{g}$

- optimal only for spinors with $\langle\Delta \psi, \psi\rangle=\left\|\nabla^{g} \psi\right\|^{2}=0$, i. e. parallel spinors

Thm. (M, g) has parallel spinors iff $\operatorname{Hol}_{0}(M)=\operatorname{SU}(n), \operatorname{Sp}(n), G_{2}, \operatorname{Spin}(7)$, and then $\mathrm{Ric}^{g}=0$.
[Wang, 1989]
Thm. Optimal EV estimate: $\quad \lambda \geq \frac{n}{4(n-1)} \mathrm{Scal}_{\text {min }}^{g}$

- " $=$ " if there exists a Killing spinor $(\mathrm{KS}) \psi: \nabla_{X}^{g} \psi=\mathrm{const} \cdot X \cdot \psi \quad \forall X$

Link to special geometries:
Thm. $\exists \mathrm{KS} \Leftrightarrow n=5:(M, g)$ is Sasaki-Einstein mnfd [\in contact str.]

$$
\begin{aligned}
& \Leftrightarrow n=6:(M, g) \text { nearly Kähler mnfd } \\
& \Leftrightarrow n=7:(M, g) \text { nearly parallel } G_{2} \mathrm{mnfd}
\end{aligned}
$$

Killing spinors and submanifolds

Thm. Suppose (M, g) is Sasaki-Einstein $(n=5)$, nearly Kähler $(n=6)$, or nearly parallel $G_{2}(\mathrm{n}=7)$. Then the metric cone

$$
(\bar{M}, \bar{g}):=\left(M \times \mathbb{R}^{+}, \frac{1}{4} r^{2} g^{2}+d r^{2}\right)
$$

has a ∇^{g}-parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy $\operatorname{SU}(3), G_{2}$, resp. $\operatorname{Spin}(7)$. [Bryant 1987, B-Salamon 1989, Bär 1993 (+ Wang 1989)]

Observe: Construction relies on existence of a Killing spinor
Thm. Let (M, g) be a spin manifold with a ∇^{g}-parallel spinor $\psi, N \subset M$ a codimension one hypersurface. Then $\varphi:=\left.\psi\right|_{N}$ is a generalized Killing spinor on N, i.e. $\quad \nabla_{X}^{g} \varphi=A(X) \cdot \varphi$ for a symmetric endomorphism A (Weingarten map). [Friedrich 1998, Bär-Gauduchon-Moroianu 2005]

Observe: Generalizes the Weierstraß representation of minimal surfaces, based on ideas of Eisenhardt (1909)

Parallel spinors and G-structures

Observe: Sasaki-Einstein, nearly Kähler, or nearly parallel G_{2}-manifolds are not the most general $\mathrm{SU}(2)-$, $\mathrm{SU}(3)$ - or G_{2}-manifolds.

Q: What can be said for more general G-manifolds?
Given a mnfd M^{n} with G-structure $(G \subset \mathrm{SO}(n))$, replace ∇^{g} by a metric connection ∇ with torsion that preserves the geometric structure!

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \Lambda^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow \quad g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

- If existent, such a connection is unique and called the 'characteristic connection'
[Fr-Ivanov 2002, A-Fr-Höll 2013]
- If G is contained in the stabilizer of a generic spinor field, then there exists
a ∇-parallel spinor, $\nabla \psi=0(n=5: \quad \mathrm{SU}(2), n=6: \quad \mathrm{SU}(3), n=7$: $\left.G_{2}, n=8: \operatorname{Spin}(7)\right)$.

Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dim. real vector bundle over a n-dimensional manifold $(n=6,7)$ admits a section of length one
\Rightarrow a 6-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from $\operatorname{Spin}(6) \cong \mathrm{SU}(4)$ to $\mathrm{SU}(3)$
\Rightarrow a 7-dim. oriented Riemannian manifold admits a spin structure iff it admits a reduction from $\operatorname{Spin}(7)$ to G_{2}

Use this to give a uniform spinor description of $\mathrm{SU}(3)$-manifolds and G_{2}-manifolds!

Spin linear algebra in dimension 6 and 7

- In $n=6,7$, the spin representations are real and $2^{3}=8$-dimensional, they coincide as vector spaces, call it $\Delta:=\mathbb{R}^{8}$.

$$
\underline{n=6}
$$

- Δ admits a $\operatorname{Spin}(6)$-invariant cplx structure j (because $\operatorname{Spin}(6) \cong \operatorname{SU}(4)$)
- any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into three pieces,

$$
\begin{equation*}
\Delta=\mathbb{R} \cdot \phi \oplus \mathbb{R} \cdot j(\phi) \oplus \underbrace{\left\{X \cdot \phi: X \in \mathbb{R}^{6}\right\}}_{\cong \mathbb{R}^{6}, \text { the base space }} \tag{*}
\end{equation*}
$$

- the following formula defines an orthogonal cplx str. on the last piece,

$$
J_{\phi}(X) \cdot \phi:=j(X \cdot \phi)
$$

- the spinor defines a 3 -form by $\psi_{\phi}(X, Y, Z):=-(X \cdot Y \cdot Z \cdot \phi, \phi)$.

Exa. Consider $\phi=(0,0,0,0,0,0,0,1) \in \Delta=\mathbb{R}^{8}$. Then:

$$
J_{\phi}=-e_{12}+e_{34}+e_{56}, \quad \psi_{\phi}=e_{135}-e_{146}+e_{236}+e_{245}
$$

Spin linear algebra in dimension 6 and 7

Thm. The following is a 1-1 correspondence:

- $\mathrm{SU}(3)$-structures on $\mathbb{R}^{6} \longleftrightarrow$ real spinors of length one $\left(\bmod \mathbb{Z}_{2}\right)$,

$$
\mathrm{SO}(6) / \mathrm{SU}(3)=\left\{\mathrm{SU}(3) \text {-structures on } \mathbb{R}^{6}\right\}=\mathbb{P}(\Delta)=\mathbb{R}^{7}
$$

$\underline{n=7}$

- any real spinor $0 \neq \phi \in \Delta$ decomposes Δ into two pieces,

$$
\begin{equation*}
\Delta=\mathbb{R} \cdot \phi \oplus \underbrace{\left\{X \cdot \phi: X \in \mathbb{R}^{7}\right\}}_{\cong \mathbb{R}^{7}, \text { the base space }} \tag{**}
\end{equation*}
$$

- the spinor defines again a 3-form ψ_{ϕ}, which turns out to be stable (i.e. open GL-orbit); but no analogue of neither j nor J_{ϕ}

Thm. The following is a $1-1$ correspondence:
stable 3 -forms ψ of fixed length, with isotropy $\subset \mathrm{SO}(7) \longleftrightarrow \ldots$ (as above),

$$
\mathrm{SO}(7) / G_{2}=\mathbb{P}(\Delta)=\mathbb{R} \mathbb{P}^{7}
$$

Special almost Hermitian geometry

- $\mathrm{SU}(3)$ manifold $\left(M^{6}, g, \phi\right)$: Riemannian spin manifold $\left(M^{6}, g\right)$ equipped with a global spinor ϕ of length one, j as before, J induced almost cplx str., ω its kähler form, ψ_{ϕ} induced 3 -form, $\psi_{\phi}^{J}:=J \circ \psi_{\phi}$.

Decomposition $(*) \Rightarrow \exists_{1}$ 1-form η and endomorphism S s.t.

$$
\nabla_{X}^{g} \phi=\eta(X) j(\phi)+S(X) \cdot \phi
$$

η : "intrinsic 1-form", S : "intr. endomorphism" (indeed: $\Gamma=S\lrcorner \psi_{\phi}-\frac{2}{3} \eta \otimes \omega$)

This equation summarizes all spinor eqs. previously known in dim.6!

Thm. $\quad\left(\nabla_{X}^{g} \omega\right)(Y, Z)=2 \psi_{\phi}^{J}(S(X), Y, Z), \quad 8 \eta(X)=-\left(\nabla_{X}^{g} \psi_{\phi}^{J}\right)\left(\psi_{\phi}\right)$.
This generalizes the classical nK condition $\nabla_{X}^{g} \omega(X, Y)=0 \forall X, Y$.

There are 7 basic classes of $\mathrm{SU}(3)$-structures, called $\chi_{1}, \chi_{\overline{1}}, \chi_{2}, \chi_{\overline{2}}, \chi_{3}, \chi_{4}, \chi_{5}$.
[Chiossi-Salamon, 2002]
They are a refinement of the classical Gray-Hervella classification of $\mathrm{U}(3)$ structures. Write $\chi_{1 \overline{2} 4}$ for $\chi_{1}^{+} \oplus \chi_{2}^{-} \oplus \chi_{4}$ etc.

Examples.

- nearly Kähler mnfds: class $\chi_{\overline{1}}$
- half-flat $\mathrm{SU}(3)$-mnfds: class $\chi_{\overline{1} \overline{2} 3}$

Next: express Niejenhuis tensor, $d \omega, \delta \omega$ through ψ_{ϕ}^{j}, η, S
\rightarrow don't state the formulas

Thm. The classes of $\operatorname{SU}(3)$ str. are determined as follows:

class	description	dimension
χ_{1}	$S=\lambda \cdot J_{\phi}, \eta=0$	1
$\chi_{\overline{1}}$	$S=\mu \cdot \mathrm{Id}, \eta=0$	1
χ_{2}	$S \in \mathfrak{s u}(3), \eta=0$	8
$\chi_{\overline{2}}$	$S \in\left\{A \in S_{0}^{2}\left(\mathbb{R}^{6}\right) \mid A J_{\phi}=J_{\phi} A\right\}, \eta=0$	8
χ_{3}	$S \in\left\{A \in S_{0}^{2}\left(\mathbb{R}^{6}\right) \mid A J_{\phi}=-J_{\phi} A\right\}, \eta=0$	12
χ_{4}	$S \in\left\{A \in \Lambda^{2}\left(\mathbb{R}^{6}\right) \mid A J_{\phi}=-J_{\phi} A\right\}, \eta=0$	6
χ_{5}	$S=0, \eta \neq 0$	6

where $\lambda, \mu \in \mathbb{R}$. In particular S is symmetric and $\eta=0$ if and only if the class is $\chi_{\overline{1} \overline{2} 3}$.

The symmetries of S translate into a differential eq. for ϕ :

$$
\begin{aligned}
S J_{\phi}= \pm J_{\phi} S & \Longleftrightarrow\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=\mp\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right), \\
S \text { is } \pm \text {-symmetric } & \Longleftrightarrow\left(X \nabla_{Y}^{g} \phi, \phi\right)= \pm\left(Y \nabla_{X}^{g} \phi, \phi\right) .
\end{aligned}
$$

Thm. The classification of $\operatorname{SU}(3)$ str. in terms of ϕ is given by $\left(\lambda:=\frac{1}{6}\left(D^{g} \phi, j(\phi)\right), \mu:=-\frac{1}{6}\left(D^{g} \phi, \phi\right)\right): \quad(\ldots$ and similarly for mixed classes $)$

class	spinorial equation
χ_{1}	$\nabla_{X}^{g} \phi=\lambda X j(\phi)$ for $\lambda \in \mathbb{R}$
$\chi_{\overline{1}}$	$\nabla_{X}^{g} \phi=\mu X \phi$ for $\mu \in \mathbb{R} \quad$ (Killing sp.)
χ_{2}	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=-\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$,
	$\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=\left(X \nabla_{Y}^{g} \phi, j(\phi)\right), \lambda=\eta=0$
$\chi_{\overline{2}}$	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$,
	$\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=-\left(X \nabla_{Y}^{g} \phi, j(\phi)\right), \mu=\eta=0$
χ_{3}	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$,
	$\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=\left(X \nabla_{Y}^{g} \phi, j(\phi)\right)$, and $\eta=0$
χ_{4}	$\left(J_{\phi} Y \nabla_{X}^{g} \phi, \phi\right)=-\left(Y \nabla_{J_{\phi} X}^{g} \phi, \phi\right)$,
	$\left(Y \nabla_{X}^{g} \phi, j(\phi)\right)=-\left(X \nabla_{Y}^{g} \phi, j(\phi)\right)$ and $\eta=0$
χ_{5}	$\nabla_{X}^{g} \phi=\left(\nabla_{X}^{g} \phi, j(\phi)\right) j(\phi)$

Corollary. On a 6 -dim spin mnfd, \exists spinor of constant length s.t. $D^{g} \phi=0$ iff admits a $\mathrm{SU}(3)$ structure of class $\chi_{2 \overline{2} 345}$ with $\delta \omega=-2 \eta$.

Example: twistor spaces as $\mathrm{SU}(3)$-manifolds

- $M^{6}=\mathbb{C P}^{3}, \mathrm{U}(3) / \mathrm{U}(1)^{3}$: twistor spaces of S^{4} and $\mathbb{C P}^{2}$. Both carry metrics $g_{t}(t>0)$ and two almost complex structures $\Omega^{\mathrm{K}}, \Omega^{\mathrm{nK}}$ such that
- $\left(M^{6}, g_{1 / 2}, \Omega^{\mathrm{nK}}\right)$ is a nearly Kähler manifold
- $\left(M^{6}, g_{1}, \Omega^{\mathrm{K}}\right)$ is a Kähler manifold
- \exists two real linearly indep. global spinors ϕ_{ε} in $\Delta_{6}(\varepsilon= \pm 1)$. Both spinors induce the same almost cplx structure $J_{\phi}\left(\Leftrightarrow \Omega^{\mathrm{nK}}\right)$!
- For $t=1 / 2, \phi_{\varepsilon}$ are Riemannian Killing spinors. For general t, define $S_{\varepsilon}: T M^{6} \rightarrow T M^{6}$ by $S_{\varepsilon}=\varepsilon \sqrt{c} \cdot \operatorname{diag}\left(\frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{1-t}{2 \sqrt{t}}, \frac{1-t}{2 \sqrt{t}}\right)$.
Verify: $\nabla_{X}^{g} \phi_{\varepsilon}=S_{\varepsilon}(X) \phi_{\varepsilon}$, hence S_{ε} is the intr. endom. and $\eta=0$.
- Class: $\chi_{\overline{1} \overline{2}}$ for $t \neq 1 / 2, \chi_{\overline{1}}$ for $t=1 / 2$.
- For $t=1, \phi_{\varepsilon}$ are Kählerian Killing spinors, but they do not induce the Kählerian cplx str. Ω^{K} ! Thus, the Kählerian structure cannot be recovered from the pair of Kählerian Killing spinors (only a $U(3)$-reduction).

Characteristic connections

Thm. A spin manifold $\left(M^{6}, g, \phi\right)$ admits a characteristic connection ∇ iff it is of class $\chi_{1 \overline{1} 345}$ and $\eta=\frac{1}{4} \delta \omega$. It satisfies $\nabla \phi=0$.

For all other classes, an adapted connection ∇ can be defined as well.
Corollary. Whenever ∇ exists,

$$
\phi \in \operatorname{ker} D^{g} \Longleftrightarrow T \phi=0 \Longleftrightarrow \text { the } \mathrm{SU}(3) \text {-class is } \chi_{3} .
$$

G_{2} geometry

- G_{2} manifold $\left(M^{7}, g, \phi\right)$: Riemannian spin manifold $\left(M^{7}, g\right)$ equipped with a global spinor ϕ of length one, ψ_{ϕ} induced 3 -form.

Decomposition $(* *) \Rightarrow \exists_{1}$ endomorphism S s.t.

$$
\nabla_{X}^{g} \phi=S(X) \cdot \phi
$$

S : "intrinsic endomorphism" (indeed: $\left.\Gamma=-\frac{2}{3} S\right\lrcorner \psi_{\phi}$)
Thm. $\quad\left(\nabla_{V}^{g} \psi_{\phi}\right)(X, Y, Z)=2 * \psi_{\phi}(S(V), X, Y, Z)$.
This generalizes the nearly parallel G_{2} condition $\nabla \psi_{\phi}=d \psi_{\phi}=c * \psi_{\phi}$!
There are 4 basic classes of G_{2}-structures, called $\mathcal{W}_{1}, \ldots, \mathcal{W}_{4}$.
[Fernandez-Gray, 1982]

Thm. The classes of G_{2} structures are determined as follows:

class	description	dimension
\mathcal{W}_{1}	$S=\lambda \mathrm{Id}$	1
\mathcal{W}_{2}	$S \in \mathfrak{g}_{2}$	14
\mathcal{W}_{3}	$S \in S_{0}^{2} \mathbb{R}^{7}$	27
\mathcal{W}_{4}	$\left.S \in\{V\lrcorner \Psi_{\phi} \mid V \in \mathbb{R}^{7}\right\}$	7

In particular, S is symmetric if and only if $S \in \mathcal{W}_{13}$ and skew iff it belongs in \mathcal{W}_{24}.

Corollary. Let $\left(M^{7}, g, \phi\right)$ be a Riemannian spin manifold with unit spinor ϕ. Then ϕ is harmonic

$$
D^{g} \phi=0
$$

iff the underlying G_{2}-structure is of class \mathcal{W}_{23}.

Thm. The basic classes of G_{2}-manifolds described in terms of ϕ : $\left(\lambda:=-\frac{1}{7}\left(D^{g} \phi, \phi\right): M \rightarrow \mathbb{R}\right.$ is a real function and \times the cross product relative to Ψ_{ϕ})

class	spinorial equation
\mathcal{W}_{1}	$\nabla_{X}^{g} \phi=\lambda X \phi \quad$ (Killing spinor)
\mathcal{W}_{2}	$\nabla_{X \times Y}^{g} \phi=Y \nabla_{X}^{g} \phi-X \nabla_{Y}^{g} \phi+2 g(Y, S(X)) \phi$
\mathcal{W}_{3}	$\left(X \nabla_{Y}^{g} \phi, \phi\right)=\left(Y \nabla_{X}^{g} \phi, \phi\right)$ and $\lambda=0$
\mathcal{W}_{4}	$\nabla_{X}^{g} \phi=X V \phi+g(V, X) \phi \quad$ for some $V \in T M^{7}$
\mathcal{W}_{12}	$\nabla_{X \times Y}^{g} \phi=-14 \lambda\left[Y \nabla_{X}^{g} \phi-X \nabla_{Y}^{g} \phi+g(Y, S(X)) \phi-g(X, S(Y)) \phi\right]$
\mathcal{W}_{13}	$\left(X \nabla_{Y}^{g} \phi, \phi\right)=\left(Y \nabla_{X}^{g} \phi, \phi\right)$
\mathcal{W}_{14}	$\exists V, W \in T M^{7}: \nabla_{X}^{g} \phi=X V W \phi-(X V W \phi, \phi)$
\mathcal{W}_{23}	$S \phi=0$ and $\lambda=0$, or $D^{g} \phi=0$
\mathcal{W}_{24}	$\left(X \nabla_{Y}^{g} \phi, \phi\right)=-\left(Y \nabla_{X}^{g} \phi, \phi\right)$

Example: 7-dim. 3-Sasaki mnfds

$M^{7}: 3$-Sasaki mnfd, corresponds to $\mathrm{SU}(2) \subset G_{2} \subset \mathrm{SO}(7)$.

- 3 orth. Sasaki structures $\eta_{i} \in T^{*} M^{7},\left[\eta_{1}, \eta_{2}\right]=2 \eta_{3}, \quad\left[\eta_{2}, \eta_{3}\right]=$ $2 \eta_{1},\left[\eta_{3}, \eta_{1}\right]=2 \eta_{2}$ and $\varphi_{3} \circ \varphi_{2}=-\varphi_{1}$ etc. on $\left\langle\eta_{2}, \eta_{3}\right\rangle^{\perp}$
- Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing spinors, define $T^{v}:=\left\langle\xi_{1}, \xi_{2} \xi_{3}\right\rangle, T^{h}=\left(T^{v}\right)^{\perp}$
- each Sasaki structures η_{i} induces a characteristic connection ∇^{i}, but $\nabla^{1} \neq \nabla^{2} \neq \nabla^{3} ?!? \Rightarrow$ Ansatz: $\quad T=\sum_{i, j=1}^{3} \alpha_{i j} \eta_{i} \wedge d \eta_{j}+\gamma \eta_{1} \wedge \eta_{2} \wedge \eta_{3}$

Thm. There exists a cocalibrated G_{2}-structure with char. connection ∇ with parallel spinor ψ on M^{7} with the properties:

- ∇ preserves T^{v} and T^{h}, and $\nabla T=0$
- $\xi_{i} \cdot \psi$ are the 3 Riemannian Killing spinors on M^{7} (each defines a nearly par. G_{2}-str.)

Q: What happens if the three structures define only an almost metric 3-contact structure?

Example: Quaternionic Heisenberg group

$N^{7}=\mathbb{R}^{7}$ with basis elements z_{1}, z_{2}, z_{3}, and $\tau_{1}, \ldots, \tau_{4}$, metric depending on $\lambda>0$ s.t. $\xi_{i}:=\frac{z_{i}}{\lambda}, \tau_{l}$ are orthonormal, commutator relations

$$
\begin{array}{lll}
{\left[\tau_{r}, \tau_{1+r}\right]=\lambda \xi_{1}} & {\left[\tau_{r}, \tau_{2+r}\right]=\lambda \xi_{2}} & {\left[\tau_{r}, \tau_{3+r}\right]=\lambda \xi_{3}} \\
{\left[\tau_{2+r}, \tau_{3+r}\right]=\lambda \xi_{1}} & {\left[\tau_{3+r}, \tau_{1+r}\right]=\lambda \xi_{2}} & {\left[\tau_{1+r}, \tau_{2+r}\right]=\lambda \xi_{3}}
\end{array}
$$

- $\xi_{1}, \xi_{2}, \xi_{3}$ are Killing vector fields; metric is never Einstein ($\Rightarrow \nexists$ Killing sp.) η_{i} : dual form of ξ_{i}, θ_{l} : dual form of τ_{l}
- carries, in standard way, an almost 3-contact metric structure

Thm. The connection ∇ with skew torsion T satisfies

$$
T=\eta_{1} \wedge d \eta_{1}+\eta_{2} \wedge d \eta_{2}+\eta_{3} \wedge d \eta_{3}-4 \lambda \eta_{123}
$$

- $\nabla T=\nabla \mathcal{R}=0$, hence it's naturally reductive
- Its holonomy algebra is isomorphic to $\mathfrak{s u}(2)$, acting irreducibly on $T^{v}=$ $\operatorname{span}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and on T^{h}.
- ∇ is the characteristic connection of the cocalibrated G_{2} structure

$$
\omega=-\eta_{1} \wedge\left(\theta_{12}+\theta_{34}\right)-\eta_{2} \wedge\left(\theta_{13}+\theta_{42}\right)-\eta_{3} \wedge\left(\theta_{14}+\theta_{23}\right)+\eta_{123}
$$

As such, it admits a parallel spinor field $\psi_{0}, \nabla \psi_{0}=0$. What about $\xi_{i} \cdot \psi_{0}$?
Thm. The spinor fields $\psi_{i}:=\xi_{i} \cdot \psi_{0}, i=1,2,3$, are generalised Killing spinors satisfying the differential equation

$$
\nabla_{\xi_{i}}^{g} \psi_{i}=\frac{\lambda}{2} \xi_{i} \cdot \psi_{i}, \quad \nabla_{\xi_{j}}^{g} \psi_{i}=-\frac{\lambda}{2} \xi_{j} \cdot \psi_{i}(i \neq j), \quad \nabla_{X}^{g} \psi_{i}=\frac{5 \lambda}{4} X \cdot \psi_{i} \quad \text { for } X \in T^{h}
$$

[A-Ferreira-Storm, 12/2014]
(intrinsic endom. S is diagonal, but not multiple of identity, class \mathcal{W}_{13})
Observe: Only known example where S has three different eigenvalues

Application: cone constructions

- How to construct G_{2}-str. of any class on cones over $\mathrm{SU}(3)$-manifolds?

Start with $\left(M^{6}, g, \phi\right)$ with intrinsic torsion (S, η). Choose a function $h=h_{1}+i h_{2}: I \rightarrow S^{1}$ and define by

$$
\phi_{t}:=h(t) \phi:=h_{1}(t) \phi+h_{2}(t) j(\phi)
$$

a new family of $\mathrm{SU}(3)$-structures on M^{6} depending on $t \in I$.
Conformally rescale the metric by some function $f: I \rightarrow \mathbb{R}_{+}$and consider $M_{t}^{6}:=\left(M^{6}, f(t)^{2} g, \phi_{t}\right)$. Intrinsic torsion of $M_{t}^{6}:\left(\frac{h^{2}}{f} S, \eta\right)$.
Dfn. spin cone over $M^{6}:\left(\bar{M}^{7}, \bar{g}\right)=\left(M^{6} \times I, f^{2}(t) g+d t^{2}\right)$ with spinor ϕ_{t}.
Exa. Suppose we want \bar{M}^{7} to be a nearly parallel G_{2}-manifold: need h^{\prime} / h constant, so $h(t)=\exp (i(c t+d)), \quad c, d \in \mathbb{R}$. Easiest: sine cone $\left(M^{6} \times(0, \pi), \sin (t)^{2} g+d t^{2}, e^{i t / 2} \phi\right) \quad$ [Fernández-Ivanov-Muñoz-Ugarte, 2008; Stock, 2009]

- Similarly, we can construct G_{2}-manifolds of any desired pure class (construction really uses the spinor!).

To conclude:

Obtained a uniform description of all possible defining spinorial differential eqs. on 6 -dim. $\mathrm{SU}(3)$-manifolds and G_{2}-manifolds, generalizing Killing spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim, 2000]. . .

So far, all spinors encountered are generalized Killing spinor with torsion ($g K S T$), i.e.

$$
\nabla \phi=A(X) \cdot \phi
$$

for some endomorphism $A: T M^{6} \rightarrow T M^{6}$; but the same eq. can be expressed in different ways.

- Not the differential eq. is the basic object, but rather the G-structure!

Outlook: $n=8$ and $\operatorname{Spin}(7)$-structures
[work in progress - Konstantis]

References

Ilka Agricola, Simon G. Chiossi, Thomas Friedrich, Jos Höll, Spinorial description of SU(3)and G_{2}-manifolds, arXiv:/1411.5663[math.DG]

Ilka Agricola, Jos Höll, Cones of G-manifolds and Killing spinors with skew torsion, arXiv:1303.3601 [math.DG], to appear in Annali di Matematica Pura ed Applicata.

Ilka Agricola, Thomas Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G_{2}-Structures, J. Geom. Phys. 60, 326-332 (2010).

Ilka Agricola, Ana Ferreira, Reinier Storm, Quaternionic Heisenberg groups as naturally reductive homogeneous spaces, submitted.

Another application:

Ilka Agricola, Julia Becker-Bender, Hwajeong Kim, Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243 (2013), 296-329.

$$
* * *
$$

Ilka Agricola, The Srní lectures on non-integrable geometries with torsion with an appendix by Mario Kassuba [pdf-file], Arch. Math. 42 (2006), 5-84.

Application II: eigenvalue estimates with skew torsion

$(M, g):$ mnfd with G-structure and charact. connection ∇^{c}, torsion T, assume $\nabla^{c} T=0$ (for exa., naturally reductive)
$\not D$: Dirac operator of connection with torsion $T / 3$ (generalizes Dolbeault op. of Hermitian manifolds)

Generalized SL formula:
[A-Friedrich, 2003]

$$
\not D^{2}=\Delta_{T}+\frac{1}{4} \mathrm{Scal}^{g}+\frac{1}{8}\|T\|^{2}-\frac{1}{4} T^{2}
$$

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), A (2002)]
Split spin bundle into eigenspaces of T, estimate action of T on each subbundle \Rightarrow

Corollary (universal estimate). The first EV λ of $\not D^{2}$ satisfies

$$
\lambda \geq \frac{1}{4} \operatorname{Scal}_{\min }^{g}+\frac{1}{8}\|T\|^{2}-\frac{1}{4} \max \left(\mu_{1}^{2}, \ldots, \mu_{k}^{2}\right),
$$

where μ_{1}, \ldots, μ_{k} are the eigenvalues of T.

Universal estimate:

- follows from generalized SL formula
- does not yield Friedrich's inequality for $T \rightarrow 0$
- optimal iff \exists a ∇^{c}-parallel spinor:

This sometimes happens on mnfds with $\mathrm{Scal}_{\text {min }}^{g}>0!$
\rightarrow Results:
[• deformation techniques: yield often estimates quadratic in Scal ${ }^{9}$, require subtle case by case discussion, often restriced curvature range]
[A-Friedrich-Kassuba, 2008]

- twistor techniques: estimates always linear in Scal ${ }^{g}$, no curvature restriction, rather universal, leads to a twistor eq. with torsion and sometimes to a Killing eq. with torsion
[A-(Becker-Bender)-Kim, 2013]

Twistors with torsion

$m: T M \otimes \Sigma M \rightarrow \Sigma M:$ Clifford multiplication
$p=$ projection on ker $m: p(X \otimes \psi)=X \otimes \psi+\frac{1}{n} \sum_{i=1}^{n} e_{i} \otimes e_{i} X \psi$

$$
\nabla^{s}: \nabla_{X}^{s} Y:=\nabla_{X}^{g} Y+2 s T(X, Y,-)
$$

($s=1 / 4$ is the "standard" normalisation, $\nabla^{1 / 4}=$ char. conn.)
twistor operator: $P^{s}=p \circ \nabla^{s}$
Fundamental relation: $\left\|P^{s} \psi\right\|^{2}+\frac{1}{n}\left\|D^{s} \psi\right\|^{2}=\left\|\nabla^{s} \psi\right\|^{2}$
ψ is called s-twistor spinor $\Leftrightarrow \psi \in \operatorname{ker} P^{s} \Leftrightarrow \nabla_{X}^{s} \psi+\frac{1}{n} X D^{s} \psi=0$.
A priori, not clear what the right value of s might be:
different scaling in $\nabla\left[s=\frac{1}{4}\right]$ and $D D\left[s=\frac{1}{4 \cdot 3}\right]$!
Idea: Use possible improvements of an eigenvalue estimate as a guide to the 'right' twistor spinor

Thm (twistor integral formula). Any spinor φ satisfies

$$
\begin{aligned}
\int_{M}\left\langle\not D^{2} \varphi, \varphi\right\rangle d M & =\frac{n}{n-1} \int_{M}\left\|P^{s} \varphi\right\|^{2} d M+\frac{n}{4(n-1)} \int_{M} \operatorname{Scal}^{g}\|\varphi\|^{2} d M \\
& +\frac{n(n-5)}{8(n-3)^{2}}\|T\|^{2} \int\|\varphi\|^{2} d M-\frac{n(n-4)}{4(n-3)^{2}} \int_{M}\left\langle T^{2} \varphi, \varphi\right\rangle d M
\end{aligned}
$$

where $s=\frac{n-1}{4(n-3)}$.
Thm (twistor estimate). The first EV λ of $\not D^{2}$ satisfies $(n>3)$

$$
\lambda \geq \frac{n}{4(n-1)} \mathrm{Scal}_{\min }^{g}+\frac{n(n-5)}{8(n-3)^{2}}\|T\|^{2}-\frac{n(n-4)}{4(n-3)^{2}} \max \left(\mu_{1}^{2}, \ldots, \mu_{k}^{2}\right)
$$

where μ_{1}, \ldots, μ_{k} are the eigenvalues of T, and " $=$ " iff

- Scal g is constant,
- ψ is a twistor spinor for $s_{n}=\frac{n-1}{4(n-3)}$,
- ψ lies in Σ_{μ} corresponding to the largest eigenvalue of T^{2}.
- reduces to Friedrich's estimate for $T \rightarrow 0$
- estimate is good for Scal ${ }_{\text {min }}^{g}$ dominant (compared to $\|T\|^{2}$)

Ex. $\left(M^{6}, g\right) \mathrm{U}(3)$-mnfd of class \mathcal{W}_{3} ("balanced"), $\operatorname{Stab}(T)$ abelian Known: $\mu=0, \pm \sqrt{2}\|T\|$, no ∇^{c}-parallel spinors

$$
\begin{aligned}
& \text { twistor estimate: } \quad \lambda \geq \frac{3}{10} \operatorname{Scal}_{\min }^{g}-\frac{7}{12}\|T\|^{2} \\
& \text { universal estimate: } \quad \lambda \geq \frac{1}{4} \operatorname{Scal}_{\min }^{g}-\frac{3}{8}\|T\|^{2}
\end{aligned}
$$

- better than anything obtained by deformation

On the other hand:
Ex. $\left(M^{5}, g\right)$ Sasaki: deformation technique yielded better estimates.

Twistor and Killing spinors with torsion

Thm (twistor eq). ψ is an s_{n}-twistor spinor $\left(P^{s_{n}} \psi=0\right)$ iff

$$
\nabla_{X}^{c} \psi+\frac{1}{n} X \cdot \not D \psi+\frac{1}{2(n-3)}(X \wedge T) \cdot \psi=0
$$

Dfn. ψ is a Killing spinor with torsion if $\nabla_{X}^{s_{n}} \psi=\kappa X \cdot \psi$ for $s_{n}=\frac{n-1}{4(n-3)}$.

$$
\Leftrightarrow \nabla^{c} \psi-\left[\kappa+\frac{\mu}{2(n-3)}\right] X \cdot \psi+\frac{1}{2(n-3)}(X \wedge T) \psi=0
$$

In particular:

- ψ is a twistor spinor with torsion for the same value s_{n}
- κ satisfies a quadratic eq. linking it to curvature (but, in general, not Einstein)
- Scal $^{g}=$ constant.

In general, this twistor equation cannot be reduced to a Killing equation.
... with one exception: $n=6$
Thm. Assume ψ is a s_{6}-twistor spinor for some $\mu \neq 0$. Then:

- ψ is a $\not D$ eigenspinor with eigenvalue $\not D \psi=\frac{1}{3}\left[\mu-4 \frac{\|T\|^{2}}{\mu}\right] \psi$
- the twistor equation for s_{6} is equivalent to the Killing equation $\nabla^{s} \psi=$ $\lambda X \cdot \psi$ for the same value of s.

Ex. Manifolds with Killing spinors with torsion:

- Odd-dim. Heisenberg groups (naturally reductive!)
- Tanno deformations of arbitrary Einstein-Sasaki manifolds, for example $\mathrm{SO}(n+2) / \mathrm{SO}(n)$ (again naturally reductive!)

