# Algebraic Structures Arising in String Topology 

Kai Cieliebak, joint work with Kenji Fukaya, Janko Latschev and Evgeny Volkov

Srni, 22-23 January 2015

String topology

1．String topology
$M$ closed oriented surface of genus $g \geq 2$.

$$
\begin{aligned}
\Sigma & :=\{\text { unparametrized noncontractible loops on } M\} \\
& =: \text { string space of } M \\
H_{0}(\Sigma) & :=\mathbb{R}\{\text { connected components of } \Sigma\} \\
& \cong \mathbb{R}\{\text { isotopy classes of unparametrized } \\
& \text { noncontractible loops on } M\} \\
& \cong \mathbb{R}\{\text { unparametrized closed geodesics on } M\} \\
& \ni a, b
\end{aligned}
$$

The Goldman bracket $(1986) \mu(a, b)$


The Turaev cobracket (1991) $\delta(a)$


## Involutive Lie bialgebras

Proposition. $H_{0}(\Sigma)$ with the operations

$$
\mu=[,]: H_{0}(\Sigma) \otimes H_{0}(\Sigma) \rightarrow H_{0}(\Sigma)
$$

and

$$
\delta: H_{0}(\Sigma) \rightarrow H_{0}(\Sigma) \otimes H_{0}(\Sigma)
$$

is an involutive Lie bialgebra.

Definition. A Lie bracket on a vector space $V$ is a linear map

$$
\mu=[,]: V \otimes V \rightarrow V
$$

satisfying the following two properties:
(skew-symmetry) $\mu(\mathbb{1}+\sigma)=0: V^{\otimes 2} \rightarrow V$;
(Jacobi identity) $\mu(\mathbb{1} \otimes \mu)\left(\mathbb{1}+\tau+\tau^{2}\right)=0: V^{\otimes 3} \rightarrow V$,
with the permutations

$$
\begin{aligned}
\sigma: V \otimes V \rightarrow V \otimes V, & a \otimes b \mapsto b \otimes a, \\
\tau: V \otimes V \otimes V \rightarrow V \otimes V \otimes V, & a \otimes b \otimes c \mapsto c \otimes a \otimes b .
\end{aligned}
$$

## Involutive Lie bialgebras

Dually, a Lie cobracket on $V$ is a linear map

$$
\delta: V \rightarrow V \otimes V
$$

satisfying the following two properties:
(skew-symmetry) $(\mathbb{1}+\sigma) \delta=0: V \rightarrow V^{\otimes 2}$;
(co-Jacobi identity) $\left(\mathbb{1}+\tau+\tau^{2}\right)(\mathbb{1} \otimes \delta) \delta=0: V \rightarrow V^{\otimes 3}$.

A Lie bialgebra structure on $V$ is a pair $(\mu, \delta)$ of a Lie bracket and a Lie cobracket (both of degree 0) satisfying
(compatibility)

$$
\delta \mu=(\mathbb{1} \otimes \mu)\left(\mathbb{1}+\tau^{2}\right)(\delta \otimes \mathbb{1})+(\mu \otimes \mathbb{1})(\mathbb{1}+\tau)(\mathbb{1} \otimes \delta): V^{\otimes 2} \rightarrow V^{\otimes 2} .
$$

An involutive Lie bialgebra (IBL) structure $(\mu, \delta)$ is a Lie bialgebra structure which in addition satisfies
(involutivity) $\mu \delta=0: V \rightarrow V$.

## Proof of co-Jacobi

Cyclic permutations give 12 terms that cancel pairwise: (black $=1$ st, blue $=2$ nd, green $=3$ rd)





Proof of involutivity


## The Chas-Sullivan operations (1999)

Generalization to families of strings in higher dimensional manifolds.
$M$ closed oriented manifold of arbitrary dimension $n$.

$$
\begin{aligned}
\Sigma:= & \{\text { unparametrized loops on } M\} \\
:= & \text { piecewise smooth maps } \left.S^{1} \rightarrow M\right\} / S^{1} \\
= & : \text { string space of } M \\
H_{i}(\Sigma)= & i \text {-th homology of } \Sigma \text { with } \mathbb{R} \text {-coefficients, } \\
& \text { modulo the constant strings }
\end{aligned}
$$

Consider two smooth chains

$$
a: K_{a} \rightarrow \Sigma, \quad b: K_{b} \rightarrow \Sigma
$$

$K_{a}, K_{b}$ manifolds with corners of dimensions $i, j$. If the evaluation map
ev : $S^{1} \times S^{1} \times K_{a} \times K_{b} \rightarrow M \times M, \quad(s, t, x, y) \mapsto(a(x)(s), b(y)(t))$
is transverse to the diagonal $\Delta \subset M \times M$, then

$$
K_{\mu(a, b)}:=\mathrm{ev}^{-1}(\Delta)
$$

is a manifold with corners of dimension $i+j+2-n$.
Concatenation of strings yields a new smooth chain

$$
\mu(a, b): K_{\mu(a, b)} \rightarrow \Sigma, \quad(s, t, x, y) \mapsto a(x)_{s} \#_{t} b(y)
$$

The (partially defined) operations on chains

$$
\begin{aligned}
& \mu: C_{i}(\Sigma) \otimes C_{j}(\Sigma) \rightarrow C_{i+j+2-n}(\Sigma) \\
& \delta: C_{k}(\Sigma) \rightarrow C_{k+2-n}(\Sigma \times \Sigma)
\end{aligned}
$$

induce operations on homology

$$
\begin{aligned}
& \mu: H_{i}(\Sigma) \otimes H_{j}(\Sigma) \rightarrow H_{i+j+2-n}(\Sigma), \\
& \delta: H_{k}(\Sigma) \rightarrow H_{k+2-n}(\Sigma \times \Sigma) \stackrel{\text { Künneth }}{\cong} \bigoplus_{i+j=k+2-n} H_{i}(\Sigma) \otimes H_{j}(\Sigma)
\end{aligned}
$$

Theorem (Chas-Sullivan). The string homology

$$
\mathbf{H}:=\bigoplus_{i=2-n}^{\infty} \mathbf{H}_{i}, \quad \mathbf{H}_{i}:=H_{i+n-2}(\Sigma, \text { const })
$$

with the operations

$$
\begin{aligned}
& \mu: \mathbf{H}_{i} \otimes \mathbf{H}_{j} \rightarrow \mathbf{H}_{i+j} \\
& \delta: \mathbf{H}_{k} \rightarrow \bigoplus_{i+j=k} \mathbf{H}_{i} \otimes \mathbf{H}_{j} .
\end{aligned}
$$

is an involutive Lie bialgebra.

The same pictures prove the identities on the transverse chain level up to
－reparametrization of strings，
－diffeomorphism of domains．
This induces the identities on homology．
What is the expected structure on the chain level？
2. $I B L_{\infty}$-structures

- $T^{*} M$ cotangent bundle of a manifold $M$;
- $\omega=\sum_{i} d p_{i} \wedge d q_{i}$ canonical symplectic form;
- $S^{*} M \subset T^{*} M$ unit cotangent bundle (with respect to some Riemannian metric on $M$ );
- $T^{*} M \backslash M \cong \mathbb{R} \times S^{*} M$ "symplectization of $S^{*} M^{\prime \prime}$;
- $J$ suitable almost complex structure on $\mathbb{R} \times S^{*} M$;
- $(\dot{S}, j)$ closed Riemann surface with finitely many points removed ("punctures");
- $f: \dot{S} \rightarrow \mathbb{R} \times S^{*} M$ holomorphic: $d f \circ j=J \circ d f$.
- $f$ asymptotic to $\pm$ cylinders over closed geodesics at punctures.


Operations from punctured holomorphic curves


Codimension 1 degenerations of holomorphic curves

$0=\partial(\partial a)$


$$
0=\mu(\partial a, b)+\mu(a, 2 b)-\partial \mu(a, b)
$$

Codimension 1 degenerations of holomorphic curves

$0=\mu(\mu(a, b), c)+\mu\left(a, \mu(b, d)-\mu(\mu(a, c), b)+\left[\hat{a}, p_{3,1,0}\right](a, b, c)\right.$


## Algebraic relations

$$
\begin{aligned}
& 0=\partial \circ \partial=\mathfrak{p}_{1,1,0} \circ \mathfrak{p}_{1,1,0} \\
& 0=[\widehat{\partial}, \mu]=\left[\widehat{\mathfrak{p}}_{1,1,0}, \mathfrak{p}_{2,1,0}\right] \\
& 0=\mu \circ \widehat{\mu}+\left[\widehat{\partial}, \mathfrak{p}_{3,1,0}\right]=\mathfrak{p}_{2,1,0} \circ \widehat{\mathfrak{p}}_{2,1,0}+\left[\widehat{\mathfrak{p}}_{1,1,0}, \mathfrak{p}_{3,1,0}\right] \\
& 0=\delta \circ \mu+\left[\partial, \mathfrak{p}_{1,1,1}\right]=\mathfrak{p}_{1,2,0} \circ \mathfrak{p}_{2,1,0}+\left[\mathfrak{p}_{1,1,0}, \mathfrak{p}_{1,1,1}\right]
\end{aligned}
$$

where operations are extended to higher tensor products by

$$
\widehat{\partial}(a \otimes b):=\partial a \otimes b+(1)^{|a|} a \otimes \partial b
$$

etc.

## Definition of $\mathrm{IBL}_{\infty}$-structure

- $R$ commutative ring with unit that contains $\mathbb{Q}$;
- $C=\bigoplus_{k \in \mathbb{Z}} C^{k}$ free graded $R$-module;
- degree shift $C[1]^{d}:=C^{d+1}$, so the degrees $\operatorname{deg} c$ in $C$ and $|c|$ in $C[1]$ are related by $|c|=\operatorname{deg} c-1$;
- $k$-fold symmetric product

$$
E_{k} C:=\left(C[1] \otimes_{R} \cdots \otimes_{R} C[1]\right) / \sim ;
$$

- reduced symmetric algebra

$$
E C:=\bigoplus_{k \geq 1} E_{k} C
$$

- We extend any linear map $\phi: E_{k} C \rightarrow E_{\ell} C$ to $\hat{\phi}: E C \rightarrow E C$ by $\hat{\phi}:=0$ on $E_{m} C$ for $m<k$, and for $m \geq k$ :

$$
\hat{\phi}\left(c_{1} \cdots c_{m}\right):=\sum_{\rho \in S_{m}} \frac{\varepsilon(\rho)}{k!(m-k)!} \phi\left(c_{\rho(1)} \cdots c_{\rho(k)}\right) c_{\rho(k+1)} \cdots c_{\rho(m)}
$$

Definition. An $\mathrm{IBL}_{\infty}$-structure of degree $d$ on $C$ is a series of $R$-module homomorphisms

$$
\mathfrak{p}_{k, \ell, g}: E_{k} C \rightarrow E_{\ell} C, \quad k, \ell \geq 1, g \geq 0
$$

of degree

$$
\left|\mathfrak{p}_{k, \ell, g}\right|=-2 d(k+g-1)-1
$$

satisfying for all $k, \ell \geq 1$ and $g \geq 0$ the relations

$$
\begin{equation*}
\left.\sum_{s=1}^{g+1} \sum_{\substack{k_{1}+k_{2}=k+s \\ \ell_{1}+\ell_{2}=\ell+s \\ g_{1}+g_{2}=g+1-s}}\left(\hat{\mathfrak{p}}_{k_{2}, \ell_{2}, g_{2}} \circ_{s} \hat{\mathfrak{p}}_{k_{1}, \ell_{1}, g_{1}}\right)\right|_{E_{k}} C=0 \tag{1}
\end{equation*}
$$

This encodes general gluings of connected surfaces

$$
\begin{aligned}
& k_{1}+k_{2}-s=k \\
& l_{1}+l_{2}-s=l \\
& g_{1}+g_{2}+s-1=g
\end{aligned}
$$

Define the operator

$$
\hat{\mathfrak{p}}:=\sum_{k, \ell=1}^{\infty} \sum_{g=0}^{\infty} \hat{\mathfrak{p}}_{k, \ell, g} \hbar^{k+g-1} \tau^{k+\ell+2 g-2}: E C\{\hbar, \tau\} \rightarrow E C\{\hbar, \tau\}
$$

where $\hbar$ and $\tau$ are formal variables of degree

$$
|\hbar|:=2 d, \quad|\tau|=0
$$

and $E C\{\hbar, \tau\}$ denotes formal power series in these variables with coefficients in $E C$. Then equation (1) is equivalent to

$$
\begin{equation*}
\hat{\mathfrak{p}} \circ \hat{\mathfrak{p}}=0 . \tag{2}
\end{equation*}
$$

This encodes general gluings of disconnected surfaces with trivial cylinders


- $\partial=\mathfrak{p}_{1,1,0}$ is a boundary operator with homology $H(C):=\operatorname{ker} \partial / \mathrm{im} \partial$.
- $\mu=\mathfrak{p}_{2,1,0}$ and $\delta=\mathfrak{p}_{1,2,0}$ induce the structure of an involutive Lie bialgebra on $H(C)$.
- There are natural notions of $\mathrm{IBL}_{\infty}$-morphism $\left(e^{\mathfrak{f}} \widehat{\mathfrak{p}}-\widehat{\mathfrak{q}} e^{\mathfrak{f}}=0\right)$ and $\mathrm{IBL}_{\infty}$-homotopy equivalence.
- An $\mathrm{IBL}_{\infty}$-morphism which induces an isomorphism on homology is an $\mathrm{IBL}_{\infty}$-homotopy equivalence.
- Every $\mathrm{IBL}_{\infty}$-structure is homotopy equivalent to an $\mathrm{IBL}_{\infty}$-structure on its homology.

All these properties have natural analogues for $A_{\infty^{-}}$and $L_{\infty}$-structures.

## Chain level string topology

3．Chain level string topology

## Chen's iterated integrals

Idea: Find chain model for string topology of $M$ using the de Rham complex $(A, \wedge, d)$.

- $L:=\operatorname{Map}\left(S^{1}, M\right\}$ free loop space;
- $\Sigma=L M / S^{1}$ string space;
- $A=\{$ differential forms on M$\}$;
- $B^{c y c} A$ reduced tensor algebra of $A$ modulo cyclic permutations;
- $B^{c y c *} A=\operatorname{Hom}\left(B^{c y c} A, \mathbb{R}\right)$ cyclic bar complex.


## Chen's iterated integrals

Define a linear map

$$
I: C_{*}(\Sigma) \rightarrow B^{c y c *} A
$$

by

$$
\left\langle I f, a_{1} \cdots a_{k}\right\rangle:=\int_{P \times C_{k}} \operatorname{ev}_{f}^{*}\left(a_{1} \times \cdots \times a_{k}\right),
$$

where

- $f: P \rightarrow L$ lift to $L$ of a chain in $C_{*}(\Sigma)$;
- $a_{1}, \ldots, a_{k} \in A$;
- $C_{k}:=\left\{\left(t_{1}, \ldots, t_{k}\right) \in\left(S^{1}\right)^{k} \mid t_{1} \leq \cdots \leq t_{k} \leq t_{1}\right\}$;


## Chen's iterated integrals

$$
\begin{aligned}
\mathrm{ev}: L \times C_{k} & \rightarrow M^{k}, \\
\left(\gamma, t_{1}, \ldots, t_{k}\right) & \mapsto\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{k}\right)\right), \\
\mathrm{ev}_{f}=\mathrm{ev} \circ(f \times \mathbb{1}): P \times C_{k} & \rightarrow M^{k}, \\
\left(p, t_{1}, \ldots, t_{k}\right) & \mapsto\left(f(p)\left(t_{1}\right), \ldots, f(p)\left(t_{k}\right)\right), \\
& \longrightarrow a_{3}
\end{aligned}
$$

## Independence of lift $f$ from $\Sigma$ to $L$

For reparametrization $\tilde{f}(p)(t)=f(p)(t+\sigma(p))$ with $\sigma: P \rightarrow S^{1}$ :
$\Longrightarrow \operatorname{ev}_{\tilde{f}}=\mathrm{ev}_{f} \circ \rho$ with the orientation preserving diffeomorphism

$$
\begin{aligned}
\rho: P \times C_{k} & \rightarrow P \times C_{k}, \\
\left(p, t_{1}, \ldots, t_{k}\right) & \mapsto\left(p, t_{1}+\sigma(p), \ldots, t_{k}+\sigma(p)\right) .
\end{aligned}
$$

$$
\Longrightarrow I \widetilde{f}=I f .
$$

## Cyclic invariance

The cyclic permutations

$$
\begin{aligned}
& \tau_{C}: C_{k} \rightarrow C_{k}, \\
& \tau_{M}: M^{k} \rightarrow M^{k}, \\
&\left(t_{1}, \ldots, t_{k}\right) \mapsto\left(t_{2}, \ldots, t_{k}, t_{1}\right), \\
&\left., x_{k}\right) \mapsto\left(x_{2}, \ldots, x_{k}, x_{1}\right)
\end{aligned}
$$

satisfy

$$
\operatorname{ev} \circ\left(\mathbb{1}_{L} \times \tau_{C}\right)=\tau_{M} \circ \mathrm{ev}: L \times C_{k} \rightarrow M^{k}
$$

$\left(\mathbb{1}_{L} \times \tau_{C}\right) \circ\left(f \times \mathbb{1}_{C}\right)=\left(f \times \mathbb{1}_{C}\right) \circ\left(\mathbb{1}_{P} \times \tau_{C}\right): P \times C_{k} \rightarrow L \times C_{k}$
and

$$
\begin{aligned}
\tau_{M}^{*}\left(a_{1} \times \cdots \times a_{k}\right) & =(-1)^{\eta} a_{2} \times \cdots \times a_{k} \times a_{1} \\
\eta & =\operatorname{deg} a_{1}\left(\operatorname{deg} a_{2}+\cdots+\operatorname{deg} a_{k}\right)
\end{aligned}
$$

## Cyclic invariance

Then

$$
\begin{aligned}
\left\langle I f, a_{2} \cdots a_{k} a_{1}\right\rangle & =(-1)^{\eta} \int_{P \times c_{k}} \operatorname{ev}_{f}^{*} \tau_{M}^{*}\left(a_{1} \times \cdots \times a_{k}\right) \\
& =(-1)^{\eta} \int_{P \times C_{k}}\left(f \times \mathbb{1}_{C}\right)^{*}\left(\mathbb{1}_{L} \times \tau_{C}\right)^{*} \operatorname{ev}^{*}\left(a_{1} \times \cdots \times a_{k}\right) \\
& =(-1)^{\eta+k-1}\left\langle I f, a_{1} \cdots a_{k}\right\rangle .
\end{aligned}
$$

## Chain map

Note that

$$
\partial C_{k}=\bigcup_{i=1} \partial_{i} C_{k}, \quad \partial_{i} C_{k}=\left\{\left(t_{1}, \ldots, t_{k}\right) \mid t_{i}=t_{i+1}\right\} \cong C_{k-1}
$$

Then

$$
\left\langle I \partial f, a_{1} \cdots a_{k}\right\rangle=\int_{\partial P \times C_{k}} \operatorname{ev}_{f}^{*}\left(a_{1} \times \cdots \times a_{k}\right)=I_{1}-I_{2}
$$

with

$$
\begin{aligned}
I_{1} & =\int_{\partial\left(P \times C_{k}\right)} \operatorname{ev}_{f}^{*}\left(a_{1} \times \cdots \times a_{k}\right) \\
& =\int_{P \times C_{k}} d\left(\operatorname{ev}_{f}^{*}\left(a_{1} \times \cdots \times a_{k}\right)\right) \\
& =\int_{P \times C_{k}} \operatorname{ev}_{f}^{*}\left(\sum_{i=1}^{k} \pm\left(a_{1} \times \cdots \times d a_{i} \times \cdots \times a_{k}\right)\right)
\end{aligned}
$$

## Chain map

and

$$
\begin{aligned}
I_{2} & =\int_{P \times \partial C_{k}} \operatorname{ev}_{f}^{*}\left(a_{1} \times \cdots \times a_{k}\right) \\
& =\sum_{i=1}^{k} \int_{P \times \partial_{i} C_{k}} \operatorname{ev}_{f}^{*}\left(a_{1} \times \cdots \times a_{k}\right) \\
& =\int_{P \times C_{k-1}} \operatorname{ev}_{f}^{*}\left(\sum_{i=1}^{k} \pm\left(a_{1} \times \cdots \times\left(a_{i} a_{i+1}\right) \times \cdots \times a_{k}\right)\right.
\end{aligned}
$$

Thus

$$
\left\langle I \partial f, a_{1} \cdots a_{k}\right\rangle=\left\langle I f, d_{H}\left(a_{1}, \cdots a_{k}\right)\right\rangle
$$

## Chen's theorem

with the Hochschild differential

$$
\begin{aligned}
d_{H}\left(a_{1} \cdots a_{k}\right):= & \sum_{i=1}^{k} \pm\left(a_{1} \times \cdots \times d a_{i} \times \cdots \times a_{k}\right) \\
& +\sum_{i=1}^{k} \pm\left(a_{1} \times \cdots \times\left(a_{i} a_{i+1}\right) \times \cdots \times a_{k}\right) .
\end{aligned}
$$

So $I$ is a chain map $\left(C_{*}(\Sigma), \partial\right) \rightarrow\left(B^{\text {cyc* }} A, d_{H}\right)$.
Theorem (Chen). If $M$ is simply connected, then $I$ induces an isomorphism to the cyclic cohomology of $A$

$$
I_{*}: H_{*}(\Sigma) \rightarrow H_{*}\left(B^{c y c *} A, d_{H}\right)
$$

Let $(A, \wedge, d,\langle\rangle$,$) be any cyclic DGA, i.e.,$

$$
\begin{aligned}
& \langle d a, b\rangle+(-1)^{|a|}\langle a, d b\rangle=0 \\
& \langle a, b\rangle+(-1)^{|a||b|}\langle b, a\rangle=0 .
\end{aligned}
$$

Suppose first that $A$ is finite dimensional. Let $e_{i}$ be a basis with dual basis $e^{i}$ and set $g^{i j}:=\left\langle e^{i}, e^{j}\right\rangle$.

Proposition. $\quad B^{c y c *} A$ carries a canonical dIBL-structure, i.e. an $\mathrm{IBL}_{\infty}$-structure with only 3 operations $\mathfrak{p}_{1,1,0}, \mathfrak{p}_{2,1,0}$ and $\mathfrak{p}_{1,2,0}$, defined as follows:

$$
\begin{aligned}
& \mathfrak{p}_{1,1,0}(\varphi)\left(a_{1}, \ldots, a_{k}\right):=\sum_{i=1}^{k} \pm \varphi\left(a_{1}, \ldots, d a_{i}, \ldots, a_{k}\right), \\
& \mathfrak{p}_{2,1,0}(\varphi, \psi)\left(a_{1}, \ldots, a_{k_{1}+k_{2}}\right) \\
& :=\sum_{i, j} \sum_{c=1}^{k_{1}+k_{2}} \pm g^{i j} \varphi\left(e_{i}, a_{c}, \ldots, a_{c+k_{1}-1}\right) \psi\left(e_{j}, a_{c+k_{1}}, \ldots, a_{c-1}\right), \\
& \mathfrak{p}_{1,2,0}(\varphi)\left(a_{1} \cdots a_{k_{1}} \otimes b_{1} \cdots b_{k_{2}}\right) \\
& :=\sum_{i, j} \sum_{c=1}^{k_{1}} \sum_{c^{\prime}=1}^{k_{2}} \pm g^{i j} \varphi\left(e_{i}, a_{c}, \ldots, a_{c-1}, e_{j}, b_{c^{\prime}}, \ldots, b_{c^{\prime}-1}\right) .
\end{aligned}
$$



Moreover, $\mathfrak{m}_{1,0} \in B_{3}^{c y c *}$ defined by the triple intersection product

$$
\mathfrak{m}_{1,0}\left(a_{1}, a_{2}, a_{3}\right):=\left\langle a_{1} \wedge a_{2}, a_{3}\right\rangle .
$$

satisfies the Maurer-Cartan equation $\widehat{\mathfrak{p}}\left(e^{\mathfrak{m}}\right)=0$, or equivalently,

$$
\begin{gathered}
\mathfrak{p}_{1,1,0}\left(\mathfrak{m}_{1,0}\right)+\frac{1}{2} \mathfrak{p}_{2,1,0}\left(\mathfrak{m}_{1,0}, \mathfrak{m}_{1,0}\right)=0 \\
\mathfrak{p}_{1,2,0}\left(\mathfrak{m}_{1,0}\right)=0
\end{gathered}
$$

It induces a twisted differential which agrees with the Hochschild differential:

$$
\mathfrak{p}_{1,1,0}^{\mathfrak{m}}:=\mathfrak{p}_{1,1,0}+\mathfrak{p}_{2,1,0}\left(\mathfrak{m}_{1,0}, \cdot\right)=d_{H} .
$$

Consider an inclusion of a subcomplex $\iota:\left(H,\left.d\right|_{H}=0\right) \hookrightarrow(A, d)$ inducing an isomorphism on cohomology.
(In the de Rham case, $H$ are the harmonic forms.) $B^{c y c *} H$ carries the canonical dIBL structure $\mathfrak{q}_{1,1,0}=0, \mathfrak{q}_{2,1,0}$, $\mathfrak{q}_{1,2,0}$.

Theorem. There exists an $\mathrm{IBL}_{\infty}$-homotopy equivalence

$$
\mathfrak{f}=\left\{\mathfrak{f}_{k, \ell, g}\right\}: B^{c y c *} A \rightarrow B^{c y c *} H
$$

with $\mathfrak{f}_{1,1,0}=\iota^{*}$.

## Construction of the homotopy equivalence $f$

We define

$$
\mathfrak{f}_{k, \ell, g}:=\sum_{\Gamma \in R_{k, \ell, g}} f_{\Gamma},
$$

$\Gamma$ ribbon graph satisfying:

- the thickened surface $\Sigma_{\Gamma}$ has $k$ (interior) vertices, $\ell$ boundary components, and genus $g$;
- each boundary component meets at least one exterior edge.

To define $f_{\Gamma}$, we pick a projection $\Pi: A \rightarrow A$ onto $B$ and a Green's operator (propagator) $G: A \rightarrow A$ satisfying

$$
\begin{aligned}
\Pi d=d \Pi, & \langle\Pi a, b\rangle=\langle a, \Pi b\rangle \\
d G+G d=\mathbb{1}-\Pi, & \langle G a, b\rangle=(-1)^{|a|}\langle a, G b\rangle .
\end{aligned}
$$

Let $G^{i j}:=\left\langle G e^{i}, e^{j}\right\rangle$.

## Construction of the homotopy equivalence $f$

Suppose we are given $\Gamma \in R_{k, \ell, g}$ as well as

- $\phi_{1}, \ldots, \phi_{k} \in B^{c y c *} A$;
- $a_{j}^{b} \in H$ for $b=1, \ldots, \ell$ and $j=1, \ldots, s_{b}$, where $s_{b}$ is the number of exterior edges meeting the $b$-th boundary component.

Then

$$
\mathfrak{f}_{\Gamma}\left(\phi_{1}, \ldots, \phi_{k}\right)\left(a_{1}^{1} \cdots a_{s_{1}}^{1}, \ldots, a_{1}^{\ell} \cdots a_{s_{\ell}}^{\ell}\right)
$$

is the sum over all basis elements of the following numbers:

Construction of the homotopy equivalence $f$


$$
\eta \in R_{2,1,0}
$$



$$
\Gamma \in R_{z, z, 0}
$$

## The twisted $\mathrm{IBL}_{\infty}$-structure on cohomology

The terms $\left(\mathfrak{f}_{*} \mathfrak{m}\right)_{\ell, g}$ of the push-forward $\mathfrak{f}_{*} \mathfrak{m}$ of the canonical Maurer-Cartan element to $B^{c y c *} H$ is given by the same expressions, where the graphs $\Gamma$ are trivalent and the operation to each vertex is the triple intersection product $\mathfrak{m}_{1,0}\left(a_{1}, a_{2}, a_{3}\right):=\left\langle a_{1} \wedge a_{2}, a_{3}\right\rangle$.


Theorem. $\quad B^{c y c *} H$ with the twisted $\mathrm{IBL}_{\infty}$-structure $\mathfrak{q}^{\mathrm{f}^{\mathrm{f} m}}$ is $\mathrm{IBL}_{\infty}$-homotopy equivalent to $B^{c y c *} A$ with its canonical dIBL-structure $\mathfrak{p}$. In particular, the homology of $\left(B^{c y c *} H, \mathfrak{q}^{\mathfrak{f} * \mathfrak{m}}\right)$ equals the cyclic homology of $\left(B^{c y c *} A, \mathfrak{p}\right)$.

## Application to the de Rham complex

Now we apply this to the de Rham complex $(A, \wedge)$ on $M$ with the intersection product

$$
\langle a, b\rangle:=\int_{M} a \wedge b .
$$

Let $H$ be the space of harmonic forms on $M$.
Theorem (in progress). Suppose that $M$ is odd-dimensional, simply connected, and its tangent bundle $T M$ is trivializable. Then there exists a twisted $\mathrm{IBL}_{\infty}$-structure $\mathfrak{q}^{\mathfrak{f} * \mathfrak{m}}$ on $B^{c y c *} H$ such that

- the homology of $\left(B^{c y c *} H, q^{\mathfrak{f} \mathfrak{m}}\right)$ equals the homology of $H_{*}(\Sigma)$ of the string space of $M$;
- the involutive Lie bialgebra structure on the homology of $\left(B^{c y c *} H, \mathfrak{q}^{\mathfrak{f} * \mathfrak{m}}\right.$ ) agrees with the the structure arising from string topology.

The Maurer-Cartan element $\mathfrak{f}_{*} \mathfrak{m}$ is constructed by sums over trivalent ribbon graphs, where to each graph $\Gamma$ we associate an integral of the type

$$
\int_{M^{3 k}} \prod G(x, y) \prod a(x),
$$

where we assign

- to each interior vertex an integration variable $x$;
- to each interior edge the Green kernel $G(x, y)$;
- to each exterior edge a harmonic form $\alpha(x)$.
(1) The Green kernel $G(x, y)$ is singular at $x=y$.

Solution: Blow up the edge diagonals in the configuration space $M^{3 k}$ to obtain a (singular) manifold $M^{3 k}$ with boundary.
(2) The boundary of $\widetilde{M^{3 k}}$ has hidden faces, which may lead to extra terms in Stokes' theorem and destroy the $\mathrm{IBL}_{\infty}$-relations. Solution: Construct a specific $G$, by pulling back a standard form from $\mathbb{R}^{n}$ via the trivialization, to ensure that the integrals over hidden faces vanish.

## Blow-up of configuration space with hidden faces



The Chern-Simons action of a $G$-connection $A \in \Omega^{1}(M, \gg)$ on a 3 -manifold $M$ is

$$
S(A)=\frac{1}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Perturbative expansion of the partition function

$$
Z_{k}=\int_{\{A\}} D A e^{i k S(A)}
$$

around the trivial flat connection leads in the case $G=U(1)$ to the same kind of integrals over configuration spaces associated to trivalent graphs.
Literature: Witten, Bar-Natan, Bott and Taubes, ...

## Open questions

(1) How exactly is the $\mathrm{IBL}_{\infty}$-structure related to perturbative Chern-Simons theory? What is the relation between anomalies in both theories?
(2) Is there a variant of the $\mathrm{IBL}_{\infty}$-structure $U(1)$ replaced by for $U(N)$ ?
(3) Can one incorporate knots and links into the $\mathrm{IBL}_{\infty}$-structure (as in perturbative Chern-Simons theory)?
(9) Does the $\mathrm{IBL}_{\infty}$-structure yield interesting invariants of manifolds (and possibly knots and links)?
(6) Can one drop the assumptions of the theorem (odd dimension, TM trivializable)?

Thank you!

