$\begin{array}{c} \mbox{String topology}\\ IBL_{\infty}\mbox{-structures}\\ \mbox{Chain level string topology} \end{array}$

Algebraic Structures Arising in String Topology

Kai Cieliebak, joint work with Kenji Fukaya, Janko Latschev and Evgeny Volkov

Srni, 22-23 January 2015

Kai Cieliebak, joint work with Kenji Fukaya, Janko Latschev and Algebraic Structures Arising in String Topology

1. String topology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

M closed oriented surface of genus $g \ge 2$.

$$\begin{split} \Sigma &:= \{ \text{unparametrized noncontractible loops on } M \} \\ &=: \text{string space of } M \\ H_0(\Sigma) &:= \mathbb{R} \{ \text{connected components of } \Sigma \} \\ &\cong \mathbb{R} \{ \text{isotopy classes of unparametrized} \\ &\quad \text{noncontractible loops on } M \} \\ &\cong \mathbb{R} \{ \text{unparametrized closed geodesics on } M \} \\ &\ni a, b \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Goldman bracket (1986) $\mu(a, b)$

The Turaev cobracket (1991) $\delta(a)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● のへの

Proposition. $H_0(\Sigma)$ with the operations

$$\mu = [\ ,\]: H_0(\Sigma) \otimes H_0(\Sigma) o H_0(\Sigma)$$

and

$$\delta: H_0(\Sigma) \to H_0(\Sigma) \otimes H_0(\Sigma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

is an involutive Lie bialgebra.

Definition. A Lie bracket on a vector space V is a linear map

$$\mu = [,]: V \otimes V \to V$$

satisfying the following two properties:

(skew-symmetry)
$$\mu(\mathbb{1} + \sigma) = 0 : V^{\otimes 2} \to V;$$

(Jacobi identity) $\mu(\mathbb{1} \otimes \mu)(\mathbb{1} + \tau + \tau^2) = 0 : V^{\otimes 3} \to V,$

with the permutations

$$\sigma: V \otimes V \to V \otimes V, \qquad \mathbf{a} \otimes \mathbf{b} \mapsto \mathbf{b} \otimes \mathbf{a},$$
$$\tau: V \otimes V \otimes V \to V \otimes V \otimes V, \qquad \mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c} \mapsto \mathbf{c} \otimes \mathbf{a} \otimes \mathbf{b}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dually, a Lie cobracket on V is a linear map

$$\delta: V \to V \otimes V$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

satisfying the following two properties:

(skew-symmetry)
$$(1 + \sigma)\delta = 0 : V \to V^{\otimes 2}$$
;
(co-Jacobi identity) $(1 + \tau + \tau^2)(1 \otimes \delta)\delta = 0 : V \to V^{\otimes 3}$.

A Lie bialgebra structure on V is a pair (μ, δ) of a Lie bracket and a Lie cobracket (both of degree 0) satisfying

(compatibility) $\delta\mu = (\mathbb{1} \otimes \mu)(\mathbb{1} + \tau^2)(\delta \otimes \mathbb{1}) + (\mu \otimes \mathbb{1})(\mathbb{1} + \tau)(\mathbb{1} \otimes \delta) : V^{\otimes 2} \to V^{\otimes 2}.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

An **involutive Lie bialgebra (IBL)** structure (μ, δ) is a Lie bialgebra structure which in addition satisfies

(involutivity) $\mu \delta = 0 : V \to V$.

Proof of co-Jacobi

Cyclic permutations give 12 terms that cancel pairwise: (black = 1st, blue = 2nd, green = 3rd)

Proof of involutivity

<ロト <四ト <注入 <注下 <注下 <

Generalization to families of strings in higher dimensional manifolds.

M closed oriented manifold of arbitrary dimension n.

$$\Sigma := \{ \text{unparametrized loops on } M \}$$

$$:= \{ \text{piecewise smooth maps } S^1 \to M \} / S^1$$

$$=: \text{string space of } M$$

 $H_i(\Sigma) = i$ -th homology of Σ with \mathbb{R} -coefficients, modulo the constant strings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Chas-Sullivan operations (1999)

Consider two smooth chains

$$a: K_a \to \Sigma, \quad b: K_b \to \Sigma,$$

 K_a, K_b manifolds with corners of dimensions i, j. If the evaluation map

$$\operatorname{ev}: S^1 \times S^1 \times K_a \times K_b \to M \times M, \quad (s, t, x, y) \mapsto (a(x)(s), b(y)(t))$$

is transverse to the diagonal $\Delta \subset M imes M$, then

$$K_{\mu(a,b)} := \mathrm{ev}^{-1}(\Delta)$$

is a manifold with corners of dimension i + j + 2 - n. Concatenation of strings yields a new smooth chain

$$\mu(a,b): \mathcal{K}_{\mu(a,b)} o \Sigma, \quad (s,t,x,y) \mapsto a(x)_s \#_t b(y)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The (partially defined) operations on chains

$$\mu: C_i(\Sigma) \otimes C_j(\Sigma) \to C_{i+j+2-n}(\Sigma),$$

 $\delta: C_k(\Sigma) \to C_{k+2-n}(\Sigma \times \Sigma)$

induce operations on homology

$$\mu: H_i(\Sigma) \otimes H_j(\Sigma) \to H_{i+j+2-n}(\Sigma),$$

$$\delta: H_k(\Sigma) \to H_{k+2-n}(\Sigma \times \Sigma) \stackrel{\text{Künneth}}{\cong} \bigoplus_{i+j=k+2-n} H_i(\Sigma) \otimes H_j(\Sigma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Chas-Sullivan operations (1999)

Theorem (Chas-Sullivan). The string homology

$$\mathbf{H} := \bigoplus_{i=2-n}^{\infty} \mathbf{H}_i, \qquad \mathbf{H}_i := H_{i+n-2}(\Sigma, \mathrm{const})$$

with the operations

$$\mu: \mathbf{H}_i \otimes \mathbf{H}_j \to \mathbf{H}_{i+j},$$

$$\delta: \mathbf{H}_k \to \bigoplus_{i+j=k} \mathbf{H}_i \otimes \mathbf{H}_j.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

is an involutive Lie bialgebra.

The same pictures prove the identities on the transverse chain level up to

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- reparametrization of strings,
- diffeomorphism of domains.

This induces the identities on homology.

What is the expected structure on the chain level?

2. IBL_{∞} -structures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Symplectic field theory

- *T***M* cotangent bundle of a manifold *M*;
- $\omega = \sum_{i} dp_i \wedge dq_i$ canonical symplectic form;
- S^{*}M ⊂ T^{*}M unit cotangent bundle (with respect to some Riemannian metric on M);
- $T^*M \setminus M \cong \mathbb{R} \times S^*M$ "symplectization of S^*M ";
- J suitable almost complex structure on $\mathbb{R} \times S^*M$;
- (S, j) closed Riemann surface with finitely many points removed ("punctures");
- $f : \dot{S} \to \mathbb{R} \times S^*M$ holomorphic: $df \circ j = J \circ df$.
- f asymptotic to \pm cylinders over closed geodesics at punctures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A punctured holomorphic curve

Operations from punctured holomorphic curves

input $2 = P_{1,1,0}$ P3,1,0 $M = P_{2,1,0}$ Рл,л,Л $S = P_{1,2,0}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 めんゆ

Codimension 1 degenerations of holomorphic curves

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Codimension 1 degenerations of holomorphic curves

Algebraic relations

$$\begin{aligned} 0 &= \partial \circ \partial = \mathfrak{p}_{1,1,0} \circ \mathfrak{p}_{1,1,0}, \\ 0 &= [\widehat{\partial}, \mu] = [\widehat{\mathfrak{p}}_{1,1,0}, \mathfrak{p}_{2,1,0}], \\ 0 &= \mu \circ \widehat{\mu} + [\widehat{\partial}, \mathfrak{p}_{3,1,0}] = \mathfrak{p}_{2,1,0} \circ \widehat{\mathfrak{p}}_{2,1,0} + [\widehat{\mathfrak{p}}_{1,1,0}, \mathfrak{p}_{3,1,0}], \\ 0 &= \delta \circ \mu + [\partial, \mathfrak{p}_{1,1,1}] = \mathfrak{p}_{1,2,0} \circ \mathfrak{p}_{2,1,0} + [\mathfrak{p}_{1,1,0}, \mathfrak{p}_{1,1,1}], \end{aligned}$$

where operations are extended to higher tensor products by

$$\widehat{\partial}(\mathsf{a}\otimes \mathsf{b}):=\partial\mathsf{a}\otimes\mathsf{b}+(1)^{|\mathsf{a}|}\mathsf{a}\otimes\partial\mathsf{b}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

etc.

Definition of IBL_{∞} -structure

- *R* commutative ring with unit that contains \mathbb{Q} ;
- $C = \bigoplus_{k \in \mathbb{Z}} C^k$ free graded *R*-module;
- degree shift C[1]^d := C^{d+1}, so the degrees deg c in C and |c| in C[1] are related by |c| = deg c − 1;
- *k*-fold symmetric product

$$E_kC := (C[1] \otimes_R \cdots \otimes_R C[1]) / \sim;$$

reduced symmetric algebra

$$EC := \bigoplus_{k\geq 1} E_k C.$$

We extend any linear map φ : E_kC → E_ℓC to φ̂ : EC → EC by φ̂ := 0 on E_mC for m < k, and for m ≥ k:

$$\hat{\phi}(c_1\cdots c_m):=\sum_{\rho\in S_m}\frac{\varepsilon(\rho)}{k!(m-k)!}\phi(c_{\rho(1)}\cdots c_{\rho(k)})c_{\rho(k+1)}\cdots c_{\rho(m)}.$$

Definition. An IBL_{∞} -structure of degree d on C is a series of R-module homomorphisms

$$\mathfrak{p}_{k,\ell,g}: E_k C \to E_\ell C, \qquad k,\ell \ge 1, \ g \ge 0$$

of degree

$$|\mathfrak{p}_{k,\ell,g}| = -2d(k+g-1)-1$$

satisfying for all $k, \ell \geq 1$ and $g \geq 0$ the relations

$$\sum_{s=1}^{g+1} \sum_{\substack{k_1+k_2=k+s\\\ell_1+\ell_2=\ell+s\\g_1+g_2=g+1-s}} (\hat{\mathfrak{p}}_{k_2,\ell_2,g_2} \circ_s \hat{\mathfrak{p}}_{k_1,\ell_1,g_1})|_{E_kC} = 0.$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This encodes general gluings of *connected* surfaces

3)) ...) s (gluings g $k_1 + k_2 - s = k$ $l_1 + l_2 - s = l$ $g_1 + g_2 + s - l = g$

Define the operator

$$\hat{\mathfrak{p}} := \sum_{k,\ell=1}^{\infty} \sum_{g=0}^{\infty} \hat{\mathfrak{p}}_{k,\ell,g} \hbar^{k+g-1} \tau^{k+\ell+2g-2} : EC\{\hbar,\tau\} \to EC\{\hbar,\tau\},$$

where \hbar and τ are formal variables of degree

$$|\hbar|:=2d, \quad |\tau|=0,$$

and $EC{\{\hbar, \tau\}}$ denotes formal power series in these variables with coefficients in *EC*. Then equation (1) is equivalent to

$$\hat{\mathfrak{p}} \circ \hat{\mathfrak{p}} = 0.$$
 (2)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This encodes general gluings of *disconnected* surfaces with trivial cylinders

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\partial = \mathfrak{p}_{1,1,0}$ is a boundary operator with homology $H(C) := \ker \partial / \operatorname{im} \partial$.
- μ = p_{2,1,0} and δ = p_{1,2,0} induce the structure of an involutive Lie bialgebra on H(C).
- There are natural notions of $\operatorname{IBL}_{\infty}$ -morphism $(e^{\mathfrak{f}}\widehat{\mathfrak{p}} \widehat{\mathfrak{q}}e^{\mathfrak{f}} = 0)$ and $\operatorname{IBL}_{\infty}$ -homotopy equivalence.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- An $IBL_\infty\text{-morphism}$ which induces an isomorphism on homology is an $IBL_\infty\text{-homotopy}$ equivalence.
- Every $IBL_\infty\text{-structure}$ is homotopy equivalent to an $IBL_\infty\text{-structure}$ on its homology.

All these properties have natural analogues for A_{∞} - and L_{∞} -structures.

3. Chain level string topology

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Idea: Find chain model for string topology of M using the de Rham complex (A, \land, d) .

- $L := Map(S^1, M)$ free loop space;
- $\Sigma = LM/S^1$ string space;
- $A = \{ \text{differential forms on M} \};$
- B^{cyc}A reduced tensor algebra of A modulo cyclic permutations;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• *B^{cyc}***A* = Hom(*B^{cyc}A*, ℝ) cyclic bar complex.

Define a linear map

 $I: C_*(\Sigma) \to B^{cyc*}A$

by

$$\langle \mathit{If}, a_1 \cdots a_k \rangle := \int_{P \times C_k} \mathrm{ev}_f^*(a_1 \times \cdots \times a_k),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where

f: P → L lift to L of a chain in C_{*}(Σ);
a₁,..., a_k ∈ A;
C_k := {(t₁,..., t_k) ∈ (S¹)^k | t₁ ≤ ··· ≤ t_k ≤ t₁};

Chen's iterated integrals

$$\begin{aligned} & \text{ev}: L \times C_k \to M^k, \\ & (\gamma, t_1, \dots, t_k) \mapsto \Big(\gamma(t_1), \dots, \gamma(t_k)\Big), \\ & \text{ev}_f = \text{ev} \circ (f \times \mathbb{1}): P \times C_k \to M^k, \\ & (p, t_1, \dots, t_k) \mapsto \Big(f(p)(t_1), \dots, f(p)(t_k)\Big), \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

For reparametrization $\tilde{f}(p)(t) = f(p)(t + \sigma(p))$ with $\sigma : P \to S^1$: $\Longrightarrow \operatorname{ev}_{\tilde{f}} = \operatorname{ev}_f \circ \rho$ with the orientation preserving diffeomorphism

$$\rho: P \times C_k \to P \times C_k,$$
$$(p, t_1, \dots, t_k) \mapsto \Big(p, t_1 + \sigma(p), \dots, t_k + \sigma(p)\Big).$$
$$\Rightarrow I\widetilde{f} = If.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Cyclic invariance

The cyclic permutations

$$egin{aligned} & au_{\mathcal{C}}:\mathcal{C}_k
ightarrow\mathcal{C}_k, & (t_1,\ldots,t_k)\mapsto(t_2,\ldots,t_k,t_1), \ & au_{\mathcal{M}}:\mathcal{M}^k
ightarrow\mathcal{M}^k, & (x_1,\ldots,x_k)\mapsto(x_2,\ldots,x_k,x_1) \end{aligned}$$

satisfy

$$ev \circ (\mathbb{1}_{L} \times \tau_{C}) = \tau_{M} \circ ev : L \times C_{k} \to M^{k}, \\ (\mathbb{1}_{L} \times \tau_{C}) \circ (f \times \mathbb{1}_{C}) = (f \times \mathbb{1}_{C}) \circ (\mathbb{1}_{P} \times \tau_{C}) : P \times C_{k} \to L \times C_{k}$$

and

$$au_{\mathcal{M}}^*(a_1 imes \cdots imes a_k) = (-1)^\eta a_2 imes \cdots imes a_k imes a_1, \ \eta = \deg a_1(\deg a_2 + \cdots + \deg a_k).$$

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Then

$$egin{aligned} \langle If, a_2 \cdots a_k a_1
angle &= (-1)^\eta \int_{P imes C_k} \mathrm{ev}_f^* au_M^* (a_1 imes \cdots imes a_k) \ &= (-1)^\eta \int_{P imes C_k} (f imes 1_C)^* (1_L imes au_C)^* \mathrm{ev}^* (a_1 imes \cdots imes a_k) \ &= (-1)^{\eta + k - 1} \langle If, a_1 \cdots a_k
angle. \end{aligned}$$

(中) (문) (문) (문) (문)

Chain map

Note that

$$\partial C_k = \bigcup_{i=1}^k \partial_i C_k, \qquad \partial_i C_k = \{(t_1, \ldots, t_k) \mid t_i = t_{i+1}\} \cong C_{k-1}.$$

Then

$$\langle I\partial f, a_1\cdots a_k\rangle = \int_{\partial P\times C_k} \mathrm{ev}_f^*(a_1\times\cdots\times a_k) = l_1-l_2$$

with

$$\begin{split} I_1 &= \int_{\partial (P \times C_k)} \operatorname{ev}_f^* (a_1 \times \cdots \times a_k) \\ &= \int_{P \times C_k} d \left(\operatorname{ev}_f^* (a_1 \times \cdots \times a_k) \right) \\ &= \int_{P \times C_k} \operatorname{ev}_f^* \left(\sum_{i=1}^k \pm (a_1 \times \cdots \times da_i \times \cdots \times a_k) \right) \end{split}$$

<□> <@> < E> < E> E のQC

Chain map

 and

$$\begin{split} I_2 &= \int_{P \times \partial C_k} \operatorname{ev}_f^*(a_1 \times \cdots \times a_k) \\ &= \sum_{i=1}^k \int_{P \times \partial_i C_k} \operatorname{ev}_f^*(a_1 \times \cdots \times a_k) \\ &= \int_{P \times C_{k-1}} \operatorname{ev}_f^*\left(\sum_{i=1}^k \pm (a_1 \times \cdots \times (a_i a_{i+1}) \times \cdots \times a_k)\right) \end{split}$$

Thus

$$\langle I\partial f, a_1\cdots a_k\rangle = \langle If, d_H(a_1,\cdots a_k)\rangle$$

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Chen's theorem

with the Hochschild differential

$$egin{aligned} d_{H}(a_{1}\cdots a_{k}) &:= \sum_{i=1}^{k} \pm (a_{1} imes \cdots imes da_{i} imes \cdots imes a_{k}) \ &+ \sum_{i=1}^{k} \pm (a_{1} imes \cdots imes (a_{i}a_{i+1}) imes \cdots imes a_{k}). \end{aligned}$$

So I is a chain map $(C_*(\Sigma), \partial) \to (B^{cyc*}A, d_H).$

Theorem (Chen). If M is simply connected, then I induces an isomorphism to the cyclic cohomology of A

$$I_*: H_*(\Sigma) \rightarrow H_*(B^{cyc*}A, d_H).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $(A, \land, d, \langle , \rangle)$ be any **cyclic DGA**, i.e.,

$$egin{aligned} &\langle da,b
angle+(-1)^{|a|}\langle a,db
angle=0,\ &\langle a,b
angle+(-1)^{|a||b|}\langle b,a
angle=0. \end{aligned}$$

Suppose first that A is finite dimensional. Let e_i be a basis with dual basis e^i and set $g^{ij} := \langle e^i, e^j \rangle$.

Proposition. $B^{cyc*}A$ carries a canonical dIBL-structure, i.e. an IBL_{∞} -structure with only 3 operations $\mathfrak{p}_{1,1,0}$, $\mathfrak{p}_{2,1,0}$ and $\mathfrak{p}_{1,2,0}$, defined as follows:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

dIBL-structure on the cyclic bar complex

$$\begin{split} \mathfrak{p}_{1,1,0}(\varphi)(a_1,\ldots,a_k) &:= \sum_{i=1}^k \pm \varphi(a_1,\ldots,da_i,\ldots,a_k), \\ \mathfrak{p}_{2,1,0}(\varphi,\psi)(a_1,\ldots,a_{k_1+k_2}) \\ &:= \sum_{i,j} \sum_{c=1}^{k_1+k_2} \pm g^{ij}\varphi(e_i,a_c,\ldots,a_{c+k_1-1})\psi(e_j,a_{c+k_1},\ldots,a_{c-1}), \\ \mathfrak{p}_{1,2,0}(\varphi)(a_1\cdots a_{k_1}\otimes b_1\cdots b_{k_2}) \\ &:= \sum_{i,j} \sum_{c=1}^{k_1} \sum_{c'=1}^{k_2} \pm g^{ij}\varphi(e_i,a_c,\ldots,a_{c-1},e_j,b_{c'},\ldots,b_{c'-1}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

dIBL-structure on the cyclic bar complex

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Moreover, $\mathfrak{m}_{1,0}\in B_3^{\text{cyc*}}$ defined by the triple intersection product

$$\mathfrak{m}_{1,0}(a_1, a_2, a_3) := \langle a_1 \wedge a_2, a_3 \rangle.$$

satisfies the Maurer-Cartan equation $\widehat{\mathfrak{p}}(e^{\mathfrak{m}}) = 0$, or equivalently,

$$\mathfrak{p}_{1,1,0}(\mathfrak{m}_{1,0}) + \frac{1}{2}\mathfrak{p}_{2,1,0}(\mathfrak{m}_{1,0},\mathfrak{m}_{1,0}) = 0, \\ \mathfrak{p}_{1,2,0}(\mathfrak{m}_{1,0}) = 0.$$

It induces a twisted differential which agrees with the Hochschild differential:

$$\mathfrak{p}_{1,1,0}^{\mathfrak{m}} := \mathfrak{p}_{1,1,0} + \mathfrak{p}_{2,1,0}(\mathfrak{m}_{1,0}, \cdot) = d_{H}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider an inclusion of a subcomplex $\iota : (H, d|_H = 0) \hookrightarrow (A, d)$ inducing an isomorphism on cohomology. (In the de Rham case, H are the harmonic forms.) $B^{cyc*}H$ carries the canonical dIBL structure $q_{1,1,0} = 0$, $q_{2,1,0}$, $q_{1,2,0}$.

Theorem. There exists an ${\rm IBL}_\infty\text{-}homotopy$ equivalence

$$\mathfrak{f} = \{\mathfrak{f}_{k,\ell,g}\} : B^{cyc*}A \to B^{cyc*}H$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

with $\mathfrak{f}_{1,1,0} = \iota^*$.

Construction of the homotopy equivalence f

We define

$$\mathfrak{f}_{k,\ell,g} := \sum_{\Gamma \in \mathcal{R}_{k,\ell,g}} \mathfrak{f}_{\Gamma},$$

- Γ ribbon graph satisfying:
 - the thickened surface Σ_Γ has k (interior) vertices, ℓ boundary components, and genus g;
 - each boundary component meets at least one exterior edge.

To define \mathfrak{f}_{Γ} , we pick a projection $\Pi : A \to A$ onto B and a Green's operator (propagator) $G : A \to A$ satisfying

$$\Pi d = d\Pi, \qquad \langle \Pi a, b \rangle = \langle a, \Pi b \rangle,$$

$$dG + Gd = \mathbb{1} - \Pi, \qquad \langle Ga, b \rangle = (-1)^{|a|} \langle a, Gb \rangle.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $G^{ij} := \langle Ge^i, e^j \rangle$.

Suppose we are given $\Gamma \in R_{k,\ell,g}$ as well as

•
$$\phi_1,\ldots,\phi_k\in B^{cyc*}A;$$

a^b_j ∈ H for b = 1,..., ℓ and j = 1,..., s_b, where s_b is the number of exterior edges meeting the b-th boundary component.

Then

$$\mathfrak{f}_{\Gamma}(\phi_1,\ldots,\phi_k)(a_1^1\cdots a_{s_1}^1,\ldots,a_1^\ell\cdots a_{s_\ell}^\ell)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

is the sum over all basis elements of the following numbers:

Construction of the homotopy equivalence f

TE R2,1,0

PERZZIO

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

The twisted IBL_{∞} -structure on cohomology

The terms $(\mathfrak{f}_*\mathfrak{m})_{\ell,g}$ of the push-forward $\mathfrak{f}_*\mathfrak{m}$ of the canonical Maurer-Cartan element to $B^{cyc*}H$ is given by the same expressions, where the graphs Γ are **trivalent** and the operation to each vertex is the triple intersection product $\mathfrak{m}_{1,0}(a_1, a_2, a_3) := \langle a_1 \wedge a_2, a_3 \rangle$.

Theorem. $B^{cyc*}H$ with the twisted IBL_{∞} -structure $\mathfrak{q}^{\mathfrak{f}*\mathfrak{m}}$ is IBL_{∞} -homotopy equivalent to $B^{cyc*}A$ with its canonical dIBL-structure \mathfrak{p} . In particular, the homology of $(B^{cyc*}H, \mathfrak{q}^{\mathfrak{f}*\mathfrak{m}})$ equals the cyclic homology of $(B^{cyc*}A, \mathfrak{p})$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Application to the de Rham complex

Now we apply this to the de Rham complex (A, \wedge) on M with the intersection product

$$\langle a,b
angle := \int_M a\wedge b.$$

Let H be the space of harmonic forms on M.

Theorem (in progress). Suppose that M is odd-dimensional, simply connected, and its tangent bundle TM is trivializable. Then there exists a twisted IBL_{∞} -structure $q^{\mathfrak{f}*\mathfrak{m}}$ on $B^{cyc*}H$ such that

- the homology of (B^{cyc*}H, q^{f*m}) equals the homology of H_{*}(Σ) of the string space of M;
- the involutive Lie bialgebra structure on the homology of (B^{cyc*}H, q^{f*m}) agrees with the the structure arising from string topology.

The Maurer-Cartan element $\mathfrak{f}_*\mathfrak{m}$ is constructed by sums over trivalent ribbon graphs, where to each graph Γ we associate an integral of the type

$$\int_{M^{3k}} \prod G(x, y) \prod a(x),$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where we assign

- to each interior vertex an integration variable x;
- to each interior edge the Green kernel G(x, y);
- to each exterior edge a harmonic form $\alpha(x)$.

(1) The Green kernel G(x, y) is singular at x = y. **Solution:** Blow up the edge diagonals in the configuration space M^{3k} to obtain a (singular) manifold $\widetilde{M^{3k}}$ with boundary. (2) The boundary of $\widetilde{M^{3k}}$ has **hidden faces**, which may lead to extra terms in Stokes' theorem and destroy the IBL_{∞}-relations. **Solution:** Construct a specific *G*, by pulling back a standard form from \mathbb{R}^n via the trivialization, to ensure that the integrals over hidden faces vanish.

Blow-up of configuration space with hidden faces

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ●

The Chern-Simons action of a *G*-connection $A \in \Omega^1(M, \gg)$ on a 3-manifold *M* is

$$S(A) = rac{1}{4\pi} \int_M \operatorname{Tr} \Big(A \wedge dA + rac{2}{3} A \wedge A \wedge A \Big).$$

Perturbative expansion of the partition function

$$Z_k = \int_{\{A\}} DA \, e^{ikS(A)}$$

around the trivial flat connection leads in the case G = U(1) to the same kind of integrals over configuration spaces associated to trivalent graphs.

Literature: Witten, Bar-Natan, Bott and Taubes, ...

Open questions

- How exactly is the IBL_{∞} -structure related to perturbative Chern-Simons theory? What is the relation between anomalies in both theories?
- ② Is there a variant of the IBL_∞-structure U(1) replaced by for U(N)?
- Solution Can one incorporate knots and links into the IBL_{∞} -structure (as in perturbative Chern-Simons theory)?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Does the IBL_{∞} -structure yield interesting invariants of manifolds (and possibly knots and links)?
- S Can one drop the assumptions of the theorem (odd dimension, TM trivializable)?

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで