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LECTURE I



Goal

To a complex semisimple Lie algebra g, one can attach its flag
variety B.

B is a smooth projective algebraic variety.

To study g-modules, one can instead study certain related
D-modules on B.

D-modules are sheaves of modules over the sheaves of differential
operators.
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Advantages of sheaves:

I Can study them in local coordinates;

I Can use geometric constructions like inverse and direct
images;

I Have geometric invariants like support or characteristic variety.
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I to introduce and study D-modules;
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References for most of what we will do can be found on
Dragan Miličić’s homepage

http://www.math.utah.edu/̃ milicic
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The Weyl algebra

Let D(n) be the Weyl algebra of differential operators on Cn with
polynomial coefficients.

The algebra D(n) is generated by the partial derivatives ∂1, . . . , ∂n
and by the multiplication operators x1, . . . , xn.

These generators satisfy the commutation relations

xixj = xjxi ; ∂i∂j = ∂j∂i ; ∂ixj − xj∂i = δij .

The nontrivial relations come from the Leibniz rule:

∂i (xjP) = ∂i (xj)P + xj∂i (P).
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Examples: D(1)

The algebra D(1) is generated by x and ∂, with relation [∂, x ] = 1.

A crucial remark is that D(1) cannot have any finite-dimensional
modules.

Namely, if M were a finite-dimensional D(1)-module, then the
operator [∂, x ] on M would have trace 0, while the operator 1
would have trace dim M, a contradiction.
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Examples: D(1)-modules

An obvious example of a D(1)-module is the space of polynomials
C[x ], where elements of D(1) act by definition.

This module is “smaller” and more interesting than D(1) with left
multiplication.

Another “small” example: truncated Laurent polynomials
C[x , x−1]/C[x ]. (These can be moved to any c ∈ C.)

Another way to describe an isomorphic module is as C[∂], with

∂ · ∂ i = ∂ i+1; x · ∂i = −i∂ i−1.

(“Fourier transform” of C[x ].)
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Example: D(2)-modules

Since D(2) = D(1)⊗ D(1), one can consider modules of the form
M1 ⊗M2, where Mi are D(1)-modules.

For example, consider C[x1]⊗ C[x2] = C[x1, x2], the regular
functions on C2. We will see no module can be “smaller” than this
one.

Another example is C[x1]⊗ C[∂2]; this module can be viewed as
functions on the x1-axis tensored by the normal derivatives to the
x1-axis.

One can generalize this by replacing the x1-axis by any curve
Y ⊂ C2, and consider the D-module consisting of regular functions
on Y tensored by the “normal derivatives” to Y . Such a module is
typically not of the form M1 ⊗M2 as above. We will define such
modules more precisely later.
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Filtrations of D(n)

We now want to make sense of “size” of modules, i.e., develop a
dimension theory for D(n)-modules.

The algebra D = D(n) has two interesting filtrations.

The first filtration is by degree of differential operators:

Dp = span{x I∂J
∣∣ |J| ≤ p}.

The second is the Bernstein filtration:

Dp = span{x I∂J
∣∣ |I + J| ≤ p}.
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The Bernstein filtration takes into account the degree of the
derivative and also of coefficients. Note that D0 = C for the
Bernstein filtration.

This will make dimension theory easier, but on the other hand
Bernstein filtration has no analogue on more general varieties,
where there is no notion of degree for a regular function.
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Properties of both filtrations

I Dm = 0 for m < 0; ∪mDm = D; 1 ∈ D0;

I DmDk ⊆ Dm+k ;

I [Dm,Dk ] ⊆ Dm+k−1 (for Bernstein filtration, ⊆ Dm+k−2);

I Gr D = C[x1, . . . , xn, ξ1, . . . , ξn] (symbols);

I Gr D is Noetherian, and it is generated by Gr1 D as a
D0 = Gr0 D-algebra.

Note that while Gr D is the same for both filtrations, its grading is
different, and individual Grn D are different.
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Good filtrations of finitely generated D(n)-modules

A good filtration of M is an increasing family of finitely generated
D0-submodules FpM of M indexed by p ∈ Z, such that:

I DpFqM ⊆ Fp+qM;

I FpM = 0 for p << 0;

I
⋃

p FpM = M;

I ∃p0 ∈ Z such that for p ≥ p0 and for any n,

DnFpM = Fn+pM.



Good filtrations of finitely generated D(n)-modules

A good filtration of M is an increasing family of finitely generated
D0-submodules FpM of M indexed by p ∈ Z, such that:

I DpFqM ⊆ Fp+qM;

I FpM = 0 for p << 0;

I
⋃

p FpM = M;

I ∃p0 ∈ Z such that for p ≥ p0 and for any n,

DnFpM = Fn+pM.



Good filtrations of finitely generated D(n)-modules

A good filtration of M is an increasing family of finitely generated
D0-submodules FpM of M indexed by p ∈ Z, such that:

I DpFqM ⊆ Fp+qM;

I FpM = 0 for p << 0;

I
⋃

p FpM = M;

I ∃p0 ∈ Z such that for p ≥ p0 and for any n,

DnFpM = Fn+pM.



Good filtrations of finitely generated D(n)-modules

A good filtration of M is an increasing family of finitely generated
D0-submodules FpM of M indexed by p ∈ Z, such that:

I DpFqM ⊆ Fp+qM;

I FpM = 0 for p << 0;

I
⋃

p FpM = M;

I ∃p0 ∈ Z such that for p ≥ p0 and for any n,

DnFpM = Fn+pM.



Good filtrations of finitely generated D(n)-modules

A good filtration of M is an increasing family of finitely generated
D0-submodules FpM of M indexed by p ∈ Z, such that:

I DpFqM ⊆ Fp+qM;

I FpM = 0 for p << 0;

I
⋃

p FpM = M;

I ∃p0 ∈ Z such that for p ≥ p0 and for any n,

DnFpM = Fn+pM.



Good filtrations of finitely generated D(n)-modules

A good filtration of M is an increasing family of finitely generated
D0-submodules FpM of M indexed by p ∈ Z, such that:

I DpFqM ⊆ Fp+qM;

I FpM = 0 for p << 0;

I
⋃

p FpM = M;

I ∃p0 ∈ Z such that for p ≥ p0 and for any n,

DnFpM = Fn+pM.



Existence of good filtrations

If m1, . . . ,mk are generators of M, set

FpM =
∑
i

Dpmi .

Good filtrations are not unique, but any two, FpM and F ′pM, are

equivalent:

There is k such that for any p,

FpM ⊆ F ′p+kM ⊆ Fp+2kM.
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Dimension of modules

If Dp is the Bernstein filtration, then D0 = C and FpM are
finite-dimensional vector spaces.

The function p 7→ dim FpM turns out to be a polynomial:

Proposition. For M 6= 0, there are d , e ∈ Z+, independent of the
choice of FM, such that for large p,

dim FpM =
e

d!
pd + lower order terms.

d = d(M) is called the Bernstein degree of M, and e = e(M) is
called the Bernstein multiplicity of M.

The proposition is proved by passing to the graded setting and
using the analogous fact for modules over polynomial rings. The
proof of the last fact involves studying Poincaré series and Hilbert
polynomials.
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Holonomic modules

A D(n)-module M is holonomic if d(M) = n (or M = 0).

For example, C[x1, . . . , xn] is holonomic.

To see this, first note that the filtration of C[x1, . . . , xn] by degree
is a good filtration.

Now
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n!
pn + lower order terms.
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Proof of Bernstein’s Theorem (Joseph)

1. [Dp,Dq] ⊂ Dp+q−2 – obvious since in relations [∂i , xj ] = δij
the degree drops by 2.

2. The center of D(n) is C – a straightforward calculation.

3. Let FM be a good filtration; can assume FpM = 0 for p < 0
and F0M 6= 0.
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Proof – continued

Consider the action map

ap : Dp → HomC(FpM,F2pM).

If we show ap is injective, then dim Dp ≤ dim FpM · dim F2pM
gives

p2n

(2n)!
≤
(

e(M)

d(M)!
pd(M) + lower

)(
e(M)

d(M)!
(2p)d(M) + lower

)
.

So 2n ≤ 2d(M) and we are done.
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Proof – continued

(4) To show ap is injective, use induction on p.

a0 : D0 = C→ HomC(F0M,F0M) is injective since F0M 6= 0.
Assume ap−1 is injective.

Let T ∈ Ker ap. So T ∈ Dp and T
∣∣
FpM

= 0.

For v ∈ Fp−1M, xiv and ∂iv are in FpM. It follows
[xi ,T ]v = 0 = [∂i ,T ]v .

By (1), [xi ,T ] and [∂i ,T ] are in Dp−1, so they are 0 by
inductive assumption. So T is in the center of D(n), hence
(2) implies T = λ ∈ C.

Now T (m) = λm = 0 for any m ∈ FpM 6= 0, so λ = 0, so
T = 0 and the theorem follows.
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Category of holonomic modules

Lemma. If
0→ M ′ → M → M ′′ → 0

is a short exact sequence of D-modules, then
d(M) = max{d(M ′), d(M ′′)}.

If d(M) = d(M ′) = d(M ′′), then e(M) = e(M ′) + e(M ′′).

This is proved by choosing compatible good filtrations for M, M ′

and M ′′. Then

dim FpM = dim FpM ′ + dim FpM ′′

and the lemma follows easily.
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Category of holonomic modules

Corollary. For a short exact sequence as above, M is holonomic if
and only if M ′ and M ′′ are both holonomic.

Corollary. If M is holonomic, then M has finite length.

Namely, if M is not irreducible, then it fits into a nontrivial short
exact sequence, with M ′ and M ′′ holonomic with strictly smaller
multiplicity.



Category of holonomic modules

Corollary. For a short exact sequence as above, M is holonomic if
and only if M ′ and M ′′ are both holonomic.

Corollary. If M is holonomic, then M has finite length.

Namely, if M is not irreducible, then it fits into a nontrivial short
exact sequence, with M ′ and M ′′ holonomic with strictly smaller
multiplicity.



Category of holonomic modules

Corollary. For a short exact sequence as above, M is holonomic if
and only if M ′ and M ′′ are both holonomic.

Corollary. If M is holonomic, then M has finite length.

Namely, if M is not irreducible, then it fits into a nontrivial short
exact sequence, with M ′ and M ′′ holonomic with strictly smaller
multiplicity.



Category of holonomic modules

So submodules, quotients and extensions of holonomic modules are
holonomic.

One can also show that the localization of a holonomic module
with respect to powers of a nonconstant polynomial is holonomic.

For example, the D(1)-module C[x ]x = C[x , x−1] is holonomic,
and hence so is the module C[x ]x/C[x ] of truncated Laurent
polynomials. Thus also C[∂] is holonomic.

More generally,
C[x1, . . . , xk , ∂k+1, . . . , ∂n]

is a holonomic D[n]-module.

Finally, one easily sees that d(D(n)) = 2n, so D(n) is not a
holonomic module over itself.
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Characteristic variety

Let now Dp be the filtration of D = D(n) by degree of differential
operators.

Then D0 = C[x1, . . . , xn], so for each good filtration of a
D-module M, all FpM are finitely generated modules over
C[x1, . . . , xn]. They are however typically infinite-dimensional.

Since Gr M is finitely generated over
Gr D = C[x1, . . . , xn, ξ1, . . . , ξn], we can consider the ideal

I = AnnGr D Gr M

in Gr D.

The characteristic variety of M is the zero set of I in C2n:

Ch(M) = V (I ).



Characteristic variety

Let now Dp be the filtration of D = D(n) by degree of differential
operators.

Then D0 = C[x1, . . . , xn], so for each good filtration of a
D-module M, all FpM are finitely generated modules over
C[x1, . . . , xn]. They are however typically infinite-dimensional.

Since Gr M is finitely generated over
Gr D = C[x1, . . . , xn, ξ1, . . . , ξn], we can consider the ideal

I = AnnGr D Gr M

in Gr D.

The characteristic variety of M is the zero set of I in C2n:

Ch(M) = V (I ).



Characteristic variety

Let now Dp be the filtration of D = D(n) by degree of differential
operators.

Then D0 = C[x1, . . . , xn], so for each good filtration of a
D-module M, all FpM are finitely generated modules over
C[x1, . . . , xn]. They are however typically infinite-dimensional.

Since Gr M is finitely generated over
Gr D = C[x1, . . . , xn, ξ1, . . . , ξn], we can consider the ideal

I = AnnGr D Gr M

in Gr D.

The characteristic variety of M is the zero set of I in C2n:

Ch(M) = V (I ).



Characteristic variety

Let now Dp be the filtration of D = D(n) by degree of differential
operators.

Then D0 = C[x1, . . . , xn], so for each good filtration of a
D-module M, all FpM are finitely generated modules over
C[x1, . . . , xn]. They are however typically infinite-dimensional.

Since Gr M is finitely generated over
Gr D = C[x1, . . . , xn, ξ1, . . . , ξn], we can consider the ideal

I = AnnGr D Gr M

in Gr D.

The characteristic variety of M is the zero set of I in C2n:

Ch(M) = V (I ).



Characteristic variety

Let now Dp be the filtration of D = D(n) by degree of differential
operators.

Then D0 = C[x1, . . . , xn], so for each good filtration of a
D-module M, all FpM are finitely generated modules over
C[x1, . . . , xn]. They are however typically infinite-dimensional.

Since Gr M is finitely generated over
Gr D = C[x1, . . . , xn, ξ1, . . . , ξn], we can consider the ideal

I = AnnGr D Gr M

in Gr D.

The characteristic variety of M is the zero set of I in C2n:

Ch(M) = V (I ).



Characteristic variety

I Ch(M) is independent of the choice of a good filtration of M.

I Ch(M) is a conical variety: (x , ξ) ∈ Ch(M) implies
(x , λξ) ∈ Ch(M), ∀λ ∈ C.

I If 0→ M ′ → M → M ′′ → 0 is a short exact sequence of
D-modules, then Ch(M) = Ch(M ′) ∪ Ch(M ′′).

I If π : C2n = Cn × Cn → Cn is the projection to the first
factor, then

π(Ch(M)) = Ch(M) ∩ (Cn × {0}) = Supp M × {0}.

Here Supp M is the support of M as a C[x1, . . . , xn]-module:

Supp M = AnnC[x1,...,xn] M = {x ∈ Cn
∣∣Mx 6= 0}.
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Theorem (Bernstein)

dim Ch(M) = d(M).

One way to prove this theorem is to show that both dim Ch(M)
and d(M) are equal to 2n − j(M), where

j(M) = min{ j
∣∣ ExtjD(M,D) 6= 0 }.

The proof of this last fact involves passing to graded versions,
studying homological algebra of modules over polynomial rings and
their localizations, spectral sequences...

Bernstein’s original proof used a sequence of (weighted) filtrations
interpolating between the Bernstein filtration and the filtration by
degree of differential operators, and is also quite involved.
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Examples for n = 1

I ChC[x ] = C× {0}.

I ChC[∂] = {0} × C.

I ChC[x ]x = (C× {0}) ∪ ({0} × C).

I If α ∈ C \Z, then the module M = C[x ]xxα is irreducible, but
Ch M is still (C× {0}) ∪ ({0} × C).



Examples for n = 1

I ChC[x ] = C× {0}.

I ChC[∂] = {0} × C.

I ChC[x ]x = (C× {0}) ∪ ({0} × C).

I If α ∈ C \Z, then the module M = C[x ]xxα is irreducible, but
Ch M is still (C× {0}) ∪ ({0} × C).



Examples for n = 1

I ChC[x ] = C× {0}.

I ChC[∂] = {0} × C.

I ChC[x ]x = (C× {0}) ∪ ({0} × C).

I If α ∈ C \Z, then the module M = C[x ]xxα is irreducible, but
Ch M is still (C× {0}) ∪ ({0} × C).



Examples for n = 1

I ChC[x ] = C× {0}.

I ChC[∂] = {0} × C.

I ChC[x ]x = (C× {0}) ∪ ({0} × C).

I If α ∈ C \Z, then the module M = C[x ]xxα is irreducible, but
Ch M is still (C× {0}) ∪ ({0} × C).



Examples for n = 1

I ChC[x ] = C× {0}.

I ChC[∂] = {0} × C.

I ChC[x ]x = (C× {0}) ∪ ({0} × C).

I If α ∈ C \Z, then the module M = C[x ]xxα is irreducible, but
Ch M is still (C× {0}) ∪ ({0} × C).



D-modules on smooth varieties

In algebraic geometry, there are no “charts” isomorphic to Cn, so
one can not pass from Cn to an arbitrary variety directly.

We will first define global differential operators on an affine variety
X . This construction is then sheafified to obtain the sheaf DX of
differential operators on X .

A general X can be covered by affine varieties Xi , and we obtain
DX by glueing the sheaves DXi

together.

All our varieties will be smooth. This is to ensure that the algebras
of differential operators have good properties (like the noetherian
property).
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Differential operators on affine varieties

Let A be a commutative algebra with 1. (We are interested in
A = O(X ), the regular functions on an affine variety X .)

Recall that a linear operator D : A→ A is called a derivation of A
if it satisfies the Leibniz rule:

D(ab) = (Da)b + a(Db).

If we identify A with the subalgebra of EndC A of multiplication
operators, then the Leibniz rule is equivalent to [D, a] = D(a).

In particular, [D, a] ∈ A, so

[[D, a], b] = 0, a, b ∈ A.
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Differential operators on affine varieties

Conversely, if [[D, a], b] = 0, a, b ∈ A, then D is in A⊕ Der(A).
(Note that [D, a] = 0, a ∈ A means D ∈ HomA(A,A) = A.)

Definition. D ∈ EndC A is a differential operator of order ≤ p, if

[. . . [[D, a0], a1], . . . , ap] = 0, a0, . . . , ap ∈ A.

We denote by Diffp A the space of all such D. Then
Diff A = ∪p Diffp A is a filtered algebra.

Definition. For an affine variety X , the algebra of differential
operators on X is D(X ) = Diff O(X ).
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Presheaves

Let X be a topological space. A presheaf of abelian groups on X is
a map (functor) F

open U ⊆ X 7−→ F(U), an abelian group

such that for any U ⊆ V open, there is a map
rV ,U : F(V )→ F(U), and U ⊆ V ⊆W implies rV ,U rW ,V = rW ,U .

(Think of F(U) as functions on U and of rV ,U as the restriction.
Notation: rV ,U(f ) = f

∣∣
U

.)
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Sheaves

A presheaf F is a sheaf if U = ∪Ui implies f ∈ F(U) is 0 iff
f
∣∣
Ui

= 0 for all i , and if for any family fi ∈ F(Ui ) agreeing on

intersections, there is f ∈ F(U) with f
∣∣
Ui

= fi .

There is a way to turn a presheaf into a sheaf; basically, one
throws away sections that are 0 locally, and introduces the ones
supposed to be obtained by glueing.

One can analogously define presheaves and sheaves of vector
spaces, rings, algebras, modules, etc.
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In differential geometry one does not use sheaves so much, because
any function on U ⊂ X is locally equal to the restriction of a
global function.

For holomorphic functions, this does not work. In fact, it is quite
possible in complex or algebraic geometry that there are very few
global functions, so the use of sheaves can not be avoided.

For example, there are no nonconstant holomorphic functions on
the Riemann sphere (Liouville’s theorem).
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LECTURE II



Some remarks

I The notion of dimension of certain filtered algebras, including
enveloping algebras and also D(n), is due to Gel’fand-Kirillov.

I There are other algebras with dimension theory similar to
D(n), i.e., satisfying an analogue of Bernstein’s theorem
d(M) ≥ n. These include certain quotients of U(g) for a
semisimple Lie algebra. The situation was systematically
studied by Bavula.
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Recall: Global differential operators on affine varieties

Let X be an affine variety, i.e., a closed subvariety of an affine
space. Let O(X ) be the algebra of regular functions on X .

D ∈ EndC O(X ) is a differential operator on X of order ≤ p, if

[. . . [[D, f0], f1], . . . , fp] = 0, f0, . . . , fp ∈ O(X ).

We denote by Dp(X ) the space of all such D, and we set
D(X ) = ∪pDp(X ). D(X ) is the algebra of differential operators on
X .

D(X ) is a filtered algebra with respect to the filtration Dp(X ). It
is also clearly an O(X )-module.
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Sheaves of differential operators on affine varieties

Any O(X )-module M on an affine variety X can be localized to a
sheaf M of OX -modules on X , where OX is the sheaf of (local)
regular functions on X . (The construction of OX itself follows the
same scheme, which we describe below.)

This is done by first defining M(U) for U = Xf , the principal
(affine) open subset defined as the complement of the zero set of a
function f ∈ O(X ).

(Xf is affine, because if X ↪→ CN , then Xf can be identified with
the graph of 1/f which is a closed subset of CN+1.)

On Xf , one simply defines M(Xf ) = Mf , the localization of M
with respect to powers of f . Since (Mf )g = Mfg , one can define
restriction maps in a compatible way.
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Sheaves of differential operators on affine varieties

General open sets U can be expressed as unions of principal open
sets, and one can put

M(U) = lim
←−
Xf ⊆U

M(Xf ).

OX -modules obtained in this way are called quasicoherent, or
coherent if M is a finitely generated O(X )-module.

Following the above procedure, we can localize the O(X )-module
D(X ) and obtain a quasicoherent OX -module DX .

It remains to see that DX is a sheaf of algebras. This follows from
the fact D(X )f = D(Xf ) for any principal open set Xf , and the
fact that an inverse limit of algebras is an algebra.
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Sheaves of differential operators on general varieties

If X is any variety, and if U ⊆ V ⊆ X are open affine subvarieties,
then by what we said about affine varieties, there is a restriction
map D(V )→ D(U).

So for any open U ⊆ X , we can define

DX (U) = lim
←−

V⊆U, V affine

D(V ).

Then DX is a sheaf of algebras on X , and an OX -module.

Moreover, DX is a quasicoherent OX -module, i.e., for an affine
cover Ui of X , DX (Ui ) is obtained from the O(Ui )-module D(Ui )
by localization.
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Differential operators on general varieties

A differential operator T ∈ DX (U) has order ≤ p if the image of
T on each open affine V ⊆ U has order ≤ p.

This defines a filtration on DX . The corresponding GrDX is
isomorphic to π∗(OT∗(X )), where π : T ∗(X )→ X is the cotangent
bundle, and π∗ denotes the O-module direct image functor.
(π∗(OT∗(X ))(U) = OT∗(X )(π−1(U)); more details later.)

This can be used to prove D(Cn) ∼= D(n).

The proofs use symbol calculus: for T ∈ Dp(U),
Symbp(T ) ∈ OT∗(X )(π−1(U)) is given by

Symbp(T )(x , df ) =
1

p!
[. . . [[T , f ], f ], . . . , f ]︸ ︷︷ ︸

p

(x).



Differential operators on general varieties

A differential operator T ∈ DX (U) has order ≤ p if the image of
T on each open affine V ⊆ U has order ≤ p.

This defines a filtration on DX . The corresponding GrDX is
isomorphic to π∗(OT∗(X )), where π : T ∗(X )→ X is the cotangent
bundle, and π∗ denotes the O-module direct image functor.
(π∗(OT∗(X ))(U) = OT∗(X )(π−1(U)); more details later.)

This can be used to prove D(Cn) ∼= D(n).

The proofs use symbol calculus: for T ∈ Dp(U),
Symbp(T ) ∈ OT∗(X )(π−1(U)) is given by

Symbp(T )(x , df ) =
1

p!
[. . . [[T , f ], f ], . . . , f ]︸ ︷︷ ︸

p

(x).



Differential operators on general varieties

A differential operator T ∈ DX (U) has order ≤ p if the image of
T on each open affine V ⊆ U has order ≤ p.

This defines a filtration on DX . The corresponding GrDX is
isomorphic to π∗(OT∗(X )), where π : T ∗(X )→ X is the cotangent
bundle, and π∗ denotes the O-module direct image functor.
(π∗(OT∗(X ))(U) = OT∗(X )(π−1(U)); more details later.)

This can be used to prove D(Cn) ∼= D(n).

The proofs use symbol calculus: for T ∈ Dp(U),
Symbp(T ) ∈ OT∗(X )(π−1(U)) is given by

Symbp(T )(x , df ) =
1

p!
[. . . [[T , f ], f ], . . . , f ]︸ ︷︷ ︸

p

(x).



Differential operators on general varieties

A differential operator T ∈ DX (U) has order ≤ p if the image of
T on each open affine V ⊆ U has order ≤ p.

This defines a filtration on DX . The corresponding GrDX is
isomorphic to π∗(OT∗(X )), where π : T ∗(X )→ X is the cotangent
bundle, and π∗ denotes the O-module direct image functor.
(π∗(OT∗(X ))(U) = OT∗(X )(π−1(U)); more details later.)

This can be used to prove D(Cn) ∼= D(n).

The proofs use symbol calculus: for T ∈ Dp(U),
Symbp(T ) ∈ OT∗(X )(π−1(U)) is given by

Symbp(T )(x , df ) =
1

p!
[. . . [[T , f ], f ], . . . , f ]︸ ︷︷ ︸

p

(x).



DX -modules

Let V be a sheaf of modules over DX .

The DX -module V is quasicoherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a D(Ui )-module.

This is the same as saying that V is quasicoherent as an
OX -module.

The DX -module V is coherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a finitely generated
D(Ui )-module.

This is NOT the same as saying that V is coherent as an
OX -module. (Finite generation over D(Ui ) does not imply finite
generation over O(Ui ).)



DX -modules

Let V be a sheaf of modules over DX .

The DX -module V is quasicoherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a D(Ui )-module.

This is the same as saying that V is quasicoherent as an
OX -module.

The DX -module V is coherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a finitely generated
D(Ui )-module.

This is NOT the same as saying that V is coherent as an
OX -module. (Finite generation over D(Ui ) does not imply finite
generation over O(Ui ).)



DX -modules

Let V be a sheaf of modules over DX .

The DX -module V is quasicoherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a D(Ui )-module.

This is the same as saying that V is quasicoherent as an
OX -module.

The DX -module V is coherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a finitely generated
D(Ui )-module.

This is NOT the same as saying that V is coherent as an
OX -module. (Finite generation over D(Ui ) does not imply finite
generation over O(Ui ).)



DX -modules

Let V be a sheaf of modules over DX .

The DX -module V is quasicoherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a D(Ui )-module.

This is the same as saying that V is quasicoherent as an
OX -module.

The DX -module V is coherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a finitely generated
D(Ui )-module.

This is NOT the same as saying that V is coherent as an
OX -module. (Finite generation over D(Ui ) does not imply finite
generation over O(Ui ).)



DX -modules

Let V be a sheaf of modules over DX .

The DX -module V is quasicoherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a D(Ui )-module.

This is the same as saying that V is quasicoherent as an
OX -module.

The DX -module V is coherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a finitely generated
D(Ui )-module.

This is NOT the same as saying that V is coherent as an
OX -module. (Finite generation over D(Ui ) does not imply finite
generation over O(Ui ).)



DX -modules

Let V be a sheaf of modules over DX .

The DX -module V is quasicoherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a D(Ui )-module.

This is the same as saying that V is quasicoherent as an
OX -module.

The DX -module V is coherent, if on each of the affine sets Ui

covering X , V(Ui ) is obtained by localizing a finitely generated
D(Ui )-module.

This is NOT the same as saying that V is coherent as an
OX -module. (Finite generation over D(Ui ) does not imply finite
generation over O(Ui ).)



Characteristic variety of a DX -module

If V ∈ Mcoh(DX ), one can define its characteristic variety Ch(V).

Local definition: on affine cover, as for Cn.

(Global definition: ∃ a global good filtration; Ch(V) = Supp GrV.)

I Ch(V) is a closed conical subvariety of T ∗(X ).

I π : T ∗(X )→ X maps Ch(V) onto SuppV.

I Locality: for any open U ⊆ X , Ch(V
∣∣
U

) = Ch(V) ∩ T ∗(U).

I For a short exact sequence 0→ V ′ → V → V ′′ → 0,
Ch(V) = Ch(V ′) ∪ Ch(V ′′).

I dim Ch(V) ≥ dim X (sketch of proof later).
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Inverse and direct images for sheaves

Let f : X → Y be a morphism of algebraic varieties. (Or a
continuous map of topological spaces.)

For a sheaf F on X , and an open V ⊆ Y , define

f·(F)(V ) = F(f −1(V )).

Then f·(F) is a sheaf on Y . Example: if Y = {y}, then
f·(F)(y) = Γ(X ,F), the global sections.

For a sheaf G on Y , and an open U ⊆ X , define

f̄ (G)(U) = lim
−→

V⊇f (U)

G(V ).

Then f̄ (G) is a presheaf on X , and we let f ·(G) be the associated
sheaf. Example: if f : {y} ↪→ Y , then f ·(G) = Gy , the stalk.
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Inverse and direct images for sheaves

One easily shows the adjunction formula

Hom(f ·(G),F) = Hom(G, f·(F)).

This implies that for X
f→ Y

g→ Z , we have

(gf )· = g·f· and (gf )· = f ·g ·.

(Namely, (gf )· = g·f· is obvious, and (gf )· = f ·g · follows by
adjunction.)
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Inverse and direct images for O-modules

For a morphism of algebraic varieties f : (X ,OX )→ (Y ,OY ),
there is a morphism

− ◦ f : OY → f·OX

given as composing by f .

If V is an OX -module, then f·(V) is an f·OX -module, and therefore
an OY -module via − ◦ f . We denote this OY -module by f∗(V).

If W is an OY -module, then f ·(W) is an f ·OY -module. By
adjunction, − ◦ f defines a morphism f ·OY → OX , which we can
use to extend scalars:

f ∗(W) = OX ⊗f ·OY
f ·(W).
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Inverse and direct images for D-modules

This is harder because there is no map DY → f·DX . We therefore
use the following (DX , f

·DY )-bimodule:

DX→Y = f ∗(DY ) = OX ⊗f ·OY
f ·DY .

For W ∈M(DY ), the inverse image is the DX -module

f +(W) = DX→Y ⊗f ·DY
f ·W = OX ⊗f ·OY

f ·W.

As an OX -module, f +(W) is the same as f ∗(W). f + is a right
exact functor, and has left derived functors.

Moreover, if X
f→ Y

g→ Z , then (gf )+ = f +g +.
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consider
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This is a right f·f
·DY -module, hence also a DY -module. (∃ a map

DY → f·f
·DY .)

This functor does not have good properties in general, but it does
if X and Y are affine. One can then get the functor we want by
glueing the affine pieces via the Čech resolution. To do this, one
needs to pass to derived categories.
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needs to pass to derived categories.



Inverse and direct images for D-modules

For direct image, one could try to take a right DX -module V and
consider

f·(V ⊗ DX→Y ).

This is a right f·f
·DY -module, hence also a DY -module. (∃ a map

DY → f·f
·DY .)

This functor does not have good properties in general, but it does
if X and Y are affine. One can then get the functor we want by
glueing the affine pieces via the Čech resolution. To do this, one
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Derived categories

Objects of the derived category D(A) of an abelian category A are
complexes over A. This includes objects of A, viewed as
complexes concentrated in degree 0. One often imposes
boundedness conditions on the complexes in D(A).

Morphisms in D(A) are generated by the chain maps together with
the formally introduced inverses of “quasiisomorphisms”, i.e., those
chain maps which induce isomorphisms on cohomology.

If F : A → B is a functor between abelian categories, then the left
derived functor LF : D(A)→ D(B) is computed as
LF (X ) = F (P), where P, with a quasiisomorphism P → X , is a
suitable resolution (e.g. a projective complex, or a flat complex).

The right derived functor RF : D(A)→ D(B) is computed as
RF (X ) = F (I ), where I , with a quasiisomorphism X → I , is a
suitable resolution (e.g. an injective complex).
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The direct image functor

For V ∈ D(M(DX )), one shows that

f+(V) = Rf·(V
L
⊗DX→Y )

is in D(M(DY )).

Moreover, the functor f+ has nice properties. Notably, if

X
f→ Y

g→ Z then (gf )+ = g+f+.

(There is however no adjunction property between Lf + and f+ in
general. Also, f+ is not a derived functor of any functor on the
level of abelian categories.)
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Life is nicer in the affine world

If X and Y are affine, it is enough to keep track of the global
sections; no need to use f· and f ·. We define:

DX→Y = O(X )⊗O(Y ) D(Y );

it is a (D(X ),D(Y ))-bimodule.

For a left D(Y )-module W , f +(W ) is the left D(X )-module

f +(W ) = DX→Y ⊗D(Y ) W = O(X )⊗O(Y ) W .

For a right D(X )-module V , f+(V ) is the right D(Y )-module

f+(V ) = V ⊗D(X ) DX→Y .
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Example 1

Let p : X = F ×Y → Y be the projection with F ,Y and X affine.

Then O(X ) = O(F )⊗ O(Y ), D(X ) = D(F )⊗ D(Y ), and

DX→Y = (O(F )⊗ O(Y ))⊗O(Y ) D(Y ) = O(F )⊗ D(Y )

is free over D(Y ).

It follows that p+ is exact, and that p+(W ) = O(F )⊗W for
W ∈M(D(Y ).
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Example 1 – continued

To calculate the derived functors of p+, we should resolve
DX→Y = O(F )⊗ D(Y ) by projective modules over
D(X ) = D(F )⊗ D(Y ). To do this, we should resolve the
D(F )-module O(F ).

For example if F = C, we can take the resolution

0→ D(1)
·∂→ D(1)→ O(C)→ 0.

So p+(M) and L1p+(M) are the cohomology modules of the

complex 0→ M
∂→ M → 0.
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Example 2

Let Y and F be affine, fix f0 ∈ F , and consider the embedding
i : Y ↪→ Y × F = X given by i(y) = (y , f0).

Then DY→X = O(Y )⊗O(Y )⊗O(F ) D(Y )⊗ D(F ) =
D(Y )⊗ (C⊗O(F ) D(F )).

This is equal to D(Y )⊗∆(F ), where ∆(F ) = C⊗O(F ) D(F ) is
the space of “normal derivatives” to Y in X . For example, if F is
C or C∗, then ∆(F ) = ⊕iC∂i .

In particular, DY→X is free over D(Y ), so i+ is exact, and

i+(M) = M ⊗∆(F ).

This module is supported on Y .

On the other hand, i+ has left derived functors.
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Remark

Closed embeddings and projections are basic cases, because other
functions can be factorized as compositions of projections and
closed embeddings.

Namely, if f : X → Y is a morphism, we can consider its graph,
which is a closed subvariety of X × Y , and it is isomorphic to X .

In this way we get if : X ↪→ X × Y . If pY : X × Y → Y is the
projection, then f = pY ◦ if .
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Kashiwara’s equivalence

Example 2 generalizes to the case of any closed embedding
i : Y ↪→ X .

Here Y and X are not necessarily affine, but such an i is an affine
map, i.e., the preimage of any affine subvariety is affine.

Then DY→X is locally free over DY ; on certain “coordinate
neighborhoods”, it is DY tensor the “normal derivatives to Y ”.

So there is no need to derive the tensor product functor. Moreover,
since i is an affine morphism, i· is exact on quasicoherent sheaves,
and one need not derive i· either.
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Kashiwara’s equivalence

Thus i+ :MR
qc(DY )→MR

qc(DX ), given by

i+(V) = i·(V ⊗DY
DY→X )

is an exact functor.

This functor defines an equivalence of the category MR
qc(DY ) with

the category MR
qc,Y (DX ) of quasicoherent right DX -modules

supported in Y . The inverse is the functor i ! given by

i !(W) = Homi ·DX
(DY→X , i

·W).

In addition, both i+ and i ! take coherent modules to coherent
modules, so they also make the categories MR

coh(DY ) and
MR

coh,Y (DX ) equivalent.
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LECTURE III



Recall

X an algebraic variety (smooth); DX sheaf of differential
operators; DX -modules.

f : X → Y a morphism ⇒ have inverse image functor
f + :ML

qc(DY )→ML
qc(DX ). (Right exact, has left derived

functors.)

Direct image functor f+: in general, between derived categories of
right D-modules.

i : Y ↪→ X a closed embedding ⇒

i+ :MR
qc(coh)(DY )→MR

qc(coh),Y (DX )

is an equivalence of categories (Kashiwara).
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A DX -module V is holonomic if holdef(V) = 0, i.e.,
dim Ch(V) = dim X .

Holonomic modules form a category closed under taking
submodules, quotients or extensions.

All holonomic modules are of finite length. This statement is again
local, so it is enough to prove it for affine X . In this case, we can
use Kashiwara’s equivalence for X ↪→ CN , and the result for CN .

For any morphism f : X → Y of general algebraic varieties, the
functors f+ and Lf + preserve holonomicity.
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A connection on X is a coherent DX -module V, which is locally
free of finite rank as an OX -module.

Equivalently, Ch(V) is X × {0}, the zero section of the cotangent
bundle.

One can think of connections as sheaves of sections of vector
bundles with flat connections.

Connections are also called local systems.
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So all Borel subalgebras of g can be organized into an algebraic
variety:
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stabilizer in G of a Borel subalgebra b of g.
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Flag variety of sl(n,C)

For g = sl(n,C), B is the variety of all flags in Cn:

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn

with dim Vi = i .

If vi ∈ Vi form a basis, then g ∈ SL(n,C) fixes the flag iff it is
upper triangular in the basis vi .

Each flag is contained in the product of all Grassmannians of Cn,
which is a projective variety.

Moreover, the condition for a point in the product of
Grassmannians to be a flag is closed.

So the flag variety is a closed subvariety of a projective variety, and
hence it is itself projective.
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Flag variety of g = sl(2,C)

For g = sl(2,C), the flags

0 = V0 ⊂ V1 ⊂ V2 = C2

are just the lines V1 in C2.

So the flag variety of sl(2,C) is the complex projective space P1,
or the Riemann sphere.
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Universal enveloping algebra

U(g) is the associative algebra with 1, generated by g, with
relations

XY − YX = [X ,Y ], X ,Y ∈ g,

where [X ,Y ] denotes the bracket of X and Y in g.

Since the group G acts on B = G/B, it also acts on functions on
B, by (g · f )(b) = f (g−1b).

Differentiating this action gives an action of the Lie algebra g on
the functions on B.

In this way we get a map from g into (global) vector fields on B.

This map extends to a map from U(g) into (global) differential
operators on B, Γ(B,DB).
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Theorem

The map U(g)→ Γ(B,DB) is surjective.
The kernel is the ideal Iρ of U(g) generated by the annihilator in
the center of U(g) of the trivial g-module C.

Denoting U(g)/Iρ by Uρ, we get

Uρ
∼=−→ Γ(B,DB).
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Localization

If V is a DB-module, then its global sections Γ(B,V) form a
module over Γ(B,DB) ∼= Uρ.

So we have a functor Γ :Mqc(DB)→M(Uρ).

Conversely, if M is a Uρ-module, we can “localize” it to obtain the
DB-module

∆ρ(M) = DB ⊗Uρ M.

∆ρ :M(Uρ)→Mqc(DB) is called the localization functor.
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The trivial g-module corresponds to OB:

Since B is projective, the only global regular functions are the
constants.

The constants are annihilated by all vector fields, hence by g.

So Γ(X ,OB) is the trivial g-module C.
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More examples for sl(2,C)

Let us describe a few more sl(2,C)-modules with trivial
infinitesimal character, and the corresponding sheaves on B = P1.

We will use the usual basis of sl(2,C):

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

with commutation relations

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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More examples for sl(2,C)

There are irreducible g-modules D2, D−2, P with h-eigenvalues:

I 2, 4, 6, . . . for D2;

I . . . ,−6,−4,−2 for D−2;

I . . . ,−3,−1, 1, 3, . . . for P.

In each case all the h-eigenspaces are one-dimensional, e moves
them up by 2, and f moves them down by 2.

All these modules are related to representations of the real Lie
group SU(1, 1); D±2 to the discrete series representations, and P
to the principal series representation.
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More examples for sl(2,C)

To describe sheaves on B = P1 = C ∪ {∞}, we cover B by two
copies of C:
P1 \ {∞} with variable z , and P1 \ {0} with variable ζ = 1/z .

Any quasicoherent O-module or D-module on B is determined by
its sections on these two copies of C, which have to agree on the
intersection C∗ = P1 \ {0,∞}.

By the chain rule, ∂ζ = −z2∂z . By a short computation one
computes the map g→ Γ(B,DB):
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More examples for sl(2,C)

The first D-module we consider is given as C[∂z ] ∼= C[z , z−1]/C[z ]
on P1 \ {∞}, and as 0 on P1 \ {0}.

This is compatible because C[z , z−1]/C[z ] is supported at {0},
and hence equal to 0 on C∗.

Checking the g-action, we see that the global sections of this sheaf
are isomorphic to D−2.

Analogously, setting V to be C[ζ, ζ−1]/C[ζ] on P1 \ {0}, and 0 on
P1 \ {∞}, we get a D-module with global sections D2.

Finally, P is obtained from the D-module equal to C[z , z−1]z1/2 on
P1 \ {∞}, and to C[ζ, ζ−1]ζ1/2 on P1 \ {0}.
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Other infinitesimal characters

How to get other finite-dimensional modules?

Recall the Borel-Weil Theorem: for λ ∈ h∗ integral, dominant and
regular, have representation Cλ of B (h acts by λ− ρ, n by 0).

This defines a G -equivariant line bundle G ×B Cλ on G/B. Its
sheaf of sections is denoted by O(λ).

Then Γ(B,O(λ)) = Fλ, the finite-dimensional g-module with
infinitesimal character λ (and highest weight λ− ρ).

O(λ) does not have an action of DB, but of a slightly modified
sheaf Dλ of differential operators on the line bundle O(λ).
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Twisted differential operators

If λ is regular and integral but not dominant, one still has O(λ)
and Dλ, but now Fλ appears in higher cohomology of O(λ), and
there are no global sections (Bott).

If λ ∈ h∗ is not integral, then O(λ) does not exist, but one can still
construct the sheaf of “twisted differential operators” Dλ.

Γ(B,Dλ) is the quotient Uλ of U(g) corresponding to infinitesimal
character λ.

One can again define the localization functor
∆λ :M(Uλ)→Mqc(Dλ).
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Twisted differential operators

Beilinson-Bernstein theorem holds if λ is dominant and regular –
then ∆λ is an equivalence of categories.

If λ is regular but not dominant, then it is no longer true, but it is
true on the level of derived categories (like Bott-Borel-Weil – we
did get Fλ, but in higher cohomology).

This is useful because if w ∈W , then Uλ = Uwλ, but Dλ 6= Dwλ,
and so one gets several possible localizations and can use their
interplay (e.g., intertwining functors).

If λ is singular (i.e., has nontrivial stabilizer in W ), then there are
more sheaves than modules (recall O(λ)). In this case, M(Uλ) is a
quotient category of Mqc(Dλ) if λ is dominant; an analogous fact
is true for the derived categories if λ is not necessarily dominant.
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Equivariant group actions

Let K be an algebraic subgroup of G (allow covers). Then K acts
on g, and k ↪→ g.

One can study (g,K )-modules, (Uλ,K )-modules, or
(Dλ,K )-modules. These have an algebraic K -action, compatible
with the action of the algebra.

Examples:

1. K = N or K = B: highest weight modules;

2. GR a real form of G , GR ∩ K a maximal compact subgroup of
GR. Then (g,K )-modules correspond to group representations
of GR.
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Equivariant group actions

Some care is needed to define quasicoherent equivariant sheaves.
One can turn a K -action π on V into a dual action of O(K ):

π̃ : V → O(K )⊗ V = O(K ,V ), π̃(v)(k) = π(k)v .

This extends to a map O(K )⊗ V → O(K )⊗ V

On the sheaf level one considers p, µ : K × B → B, the projection,
respectively the action map, and requires to have an isomorphism
µ∗(V)→ p∗(V), satisfying a certain “cocycle condition”.
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Equivariant group actions

We assume that K is connected, and sufficiently big, i.e., it has
only finitely many orbits on B.

Then every coherent (Dλ,K )-module is holonomic.
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Beilinson-Bernstein equivalence

For λ regular dominant,

∆λ :M(Uλ,K )→Mqc(Dλ,K )

is an equivalence of categories. The proof is basically the same as
without K .

This leads to a very nice geometric classification of irreducible
(g,K )-modules.
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Beilinson-Bernstein classification

Start with a K -orbit Q
i
↪→ B and an irreducible K -equivariant

connection τ on Q.

Since τ corresponds to a bundle, it is given by a representation W
of the stabilizer S of a point in Q. The action of the Lie algebra s
on W should be given by λ− ρ, and it should integrate to S
(compatibility).

Set I(Q, τ) = i+(τ). This is the standard (Dλ,K )-module
corresponding to (Q, τ).

I(Q, τ) has a unique irreducible (Dλ,K )-submodule L(Q, τ).

Any irreducible (Dλ,K )-module is L(Q, τ) for unique Q and τ .
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Proofs

Surprisingly easy!

We set B′ = B \ ∂Q, and factorize Q
i
↪→ B as Q

i ′
↪→ B′

j
↪→ B.

Since i ′ is a closed embedding, i ′+ is a Kashiwara’s equivalence.

Since j is an open embedding, j+ is just j· and j+ is the restriction.
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Proofs

I(Q, τ) = j+i ′+(τ) has no sections supported in ∂Q.

So 0 6= V ⊆ I(Q, τ) implies V
∣∣
B′ 6= 0.

I(Q, τ)
∣∣
B′ = i ′+(τ) is irreducible by Kashiwara, so

V
∣∣
B′ = I(Q, τ)

∣∣
B′ .

So any two irreducible submodules of I(Q, τ) have to intersect,
and hence they agree.
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Proofs

If V is any irreducible (Dλ,K )-module, then SuppV is irreducible;
otherwise, the restriction of V to a component would be a
submodule.

There are only finitely many orbits, so the orbit in SuppV of
maximal dimension, call it Q, is dense in SuppV.

By Kashiwara, V
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B′ = i ′+(τ), for some holonomic K -equivariant

module τ on Q.

The support of τ is all of Q by K -equivariance. So τ is a
connection on a dense open subset of Q, hence everywhere by
K -equivariance.
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Example: g = sl(2,C), K ⊂ SL(2,C) diagonal

The orbits of K on B = C ∪ {∞} are {0}, C∗ and {∞}.

For Q = {0}, the stabilizer is K , and compatibility with λ means λ
must be a positive integer. In this case, τ is just Cλ.

Since i+ is just adding normal derivatives, I(Q, τ) = Cλ ⊗ C[∂z ]
and it is irreducible. This corresponds to the highest weight
(g,K )-module with highest weight −λ− ρ.

The situation is analogous at ∞, with roles of z and ζ = 1/z
reversed, and we get a lowest weight module with lowest weight
λ+ ρ.
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Example: g = sl(2,C), K ⊂ SL(2,C) diagonal

For Q = C∗, the stabilizer is {±1}. The compatibility with λ is
empty.

There are two possible connections: τ0 = O(C∗) corresponding to
the trivial representation of {±1}, and τ1 = O(C∗)z1/2,
corresponding to the sign representation of {±1}.

The standard modules I(C∗, τk) correspond to the even and odd
principal series representations. They are irreducible unless λ is an
integer of the same parity as k .

In this last case, the irreducible submodule is the sheaf O(λ)
corresponding to the finite-dimensional representation, while the
quotient is the direct sum of the standard modules corresponding
to {0} and {∞}.
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Equivariant derived categories

If λ is not dominant, the Beilinson-Bernstein equivalence of derived
categories breaks apart for K -equivariant modules.

The reason is that to calculate L∆λ one needs free (or at least
flat) resolutions over Uλ. But these are not (Uλ,K )-modules.

Analogously, U(g) is not a (g,K )-module for the action of g by left
multiplication and the adjoint action of K .

U(g) and Uλ are however weak (g,K )-modules: they have an
action π of g, and an action ν of K , the action π is K -equivariant,
but ν and π do not necessarily agree on k. Then ω = ν − π is a
new action of k.
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Equivariant derived categories

Beilinson and Ginzburg proposed to replace the ordinary complexes
of (g,K )-modules by the equivariant complexes.

These are complexes of weak (g,K )-modules, but equipped with
the extra structure of explicit homotopies iX , X ∈ k, making the
action ω null-homotopic.

In particular, on cohomology of such complexes we get
(g,K )-modules in the strong sense.

The family iX should also be K -equivariant, they should commute
with the g-action, and anticommute with each other.
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Equivariant derived categories

A typical example of an equivariant complex is the standard
(Koszul) complex of g,

N(g) = U(g)⊗
∧

(g),

with the usual Koszul differential.

The map iX is simply given by wedging by X . This complex has
the structure of a differential graded algebra.

One now as usual passes to homotopic category and localizes with
respect to quasiisomorphisms to obtain the equivariant derived
category.
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Equivariant derived categories

This works equally well for (Uλ,K )-modules or (Dλ,K )-modules.

Bernstein and Lunts proposed another, geometric construction,
which works for (Dλ,K )-modules and for equivariant constructible
sheaves. For (Dλ,K )-modules, the two constructions agree.

Bernstein and Lunts also proved that for (g,K )-modules, the
ordinary and equivariant derived categories are equivalent.

This makes it possible to localize certain constructions using
homological algebra of (g,K )-modules, like the Zuckerman
functors.
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Zuckerman functors

Let T be a closed reductive subgroup of K . Let
For :M(g,K )→M(g,T ) be the forgetful functor.

For has a right adjoint, the Zuckerman functor Γ.

To construct Γ(V ), V ∈M(g,T ), one uses the object
O(K )⊗ V = O(K ,V ).

This has a K action, the right regular action on O(K ), and a
g-action given by a twisted action on V :
(XF )(k) = πV (Ad(k)X )(F (k)).

It also has a (k,T )-action, the left regular action on O(K )
tensored by the action on V .
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Zuckerman functors

The (g,K )-action commutes with the (k,T )-action and therefore
descends to

Γ(V ) = Hom(k,T )(C,O(K )⊗ V ).

The derived functors of Γ are given by the corresponding Ext
modules.

On the level of equivariant derived categories, one can construct an
analogous functor by setting

Γeq(V ) = Hom·(k,T ,N(t))(N(k),O(K )⊗ V )

for an equivariant (g,T )-complex V .
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Zuckerman functors

One shows that Γeq is a well defined functor from equivariant
(g,T )-complexes to equivariant (g,K )-complexes, and that it
descends to the level of equivariant derived categories.

This involves checking that N(k) is a “projective” equivariant
(k,T )-complex, i.e., that it has properties expected from a
projective resolution.

If V is concentrated in degree 0, then the cohomology modules of
Γeq(V ) are the classical derived Zuckerman functors of V .

It is possible to localize the above construction. Moreover, there is
a purely geometric version. This was done by Sarah Kitchen, along
with some further results.
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