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References: For these three lectures (these are the slide for the first),
the reader who wants more background information on exterior differential
systems might want to consult the brief introduction

http://www.math.duke.edu/∼bryant/Introduction to EDS.pdf

Many of the examples discussed here and the main variants of Cartan’s
theory of structure equations can be found in the lecture notes on EDS
that can be found here

http://arxiv.org/abs/1405.3116

This latter article contains many references to the literature and further
resources.



Lie’s Third Theorem: If L is a finite-dimensional, real Lie algebra, then
there exists a Lie algebra homomorphism λ : L → Vect(L) satisfying

λ(x)(0) = x for all x ∈ L.

Dual Formulation: Let δ : L∗ → Λ2(L∗) be a linear map. If its exten-
sion δ : Λ∗(L∗) → Λ∗(L∗) as a graded derivation of degree 1 satisfies δ2 = 0,
then there is a DGA homomorphism φ :

(

Λ∗(L∗), δ
)

→
(

Ω∗(L), d
)

satisfying

φ(α)(0) = α.

Basis Formulation: If Ci
jk = −Ci

kj (1 ≤ i, j, k ≤ n) are constants, then

there exist linearly independent 1-forms ωi (1 ≤ i ≤ n) on Rn satisfying
the structure equations

dωi = − 1
2C

i
jk ω

j
∧ωk

if and only if these formulae imply d
(

dωi
)

= 0.
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A geometric problem: Classify those Riemannian surfaces (M2, g) whose
Gauss curvature K satisfies the second order system

Hessg(K) = a(K)g + b(K)dK2

for some functions a and b.

Analysis Writing g = ω1
2 + ω2

2, the structure equations yield

dω1 = −ω12 ∧ω2

dω2 = ω12 ∧ω1

dω12 = K ω1 ∧ω2

dK = K1 ω1 +K2 ω2

and the condition to be studied is encoded as
(

dK1

dK2

)

=

(

−K2

K1

)

ω12 +

(

a(K) + b(K)K1
2 b(K)K1K2

b(K)K1K2 a(K) + b(K)K1
2

)(

ω1

ω2

)

.

Applying d2 = 0 to these two equations yields
(

a′(K)− a(K)b(K) +K
)

Ki = 0 for i = 1, 2.

Thus, unless a′(K) = a(K)b(K)−K, such metrics have K constant.
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Conversely, suppose that a′(K) = a(K)b(K)−K. Does there exist a
‘solution’ (N3, ω) to the following system?

dω1 = −ω12 ∧ω2

dω2 = ω12 ∧ω1

dω12 = K ω1 ∧ω2

ω1 ∧ω2 ∧ω12 6= 0, ω =





ω1

ω2

ω12









dK
dK1

dK2



 =





K1 K2 0

a(K) + b(K)K1
2 b(K)K1K2 −K2

b(K)K1K2 a(K) + b(K)K1
2 K1









ω1

ω2

ω12



 .

Note: d2 = 0 is ‘formally satisfied’ for these structure equations.

Answer: A theorem of É. Cartan [1904] implies that a ‘solution’ (N3, ω)
does indeed exist and is determined uniquely (locally near p, up to diffeo-
morphism) by the ‘value’ of (K,K1,K2) at p.
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Cartan’s result: Suppose that Ci
jk = −Ci

kj and Fα
i (with 1 ≤ i, j, k ≤ n

and 1 ≤ α ≤ s) are real-analytic functions on Rs such that the equations

dωi = − 1
2C

i
jk(a)ω

j
∧ωk and daα = Fα

i (a)ωi

formally satisfy d2 = 0. Then, for every b0 ∈ R
s, there exists an open

neighborhood U of 0 ∈ Rn, linearly independent 1-forms ηi on U , and a
function b : U → Rs satisfying

dηi = − 1
2C

i
jk(b) η

j
∧ ηk, dbα = Fα

i (b) η
i, and b(0) = b0.

Up to local diffeomorphism of (Rn, 0), the pair (η, b) is germ-unique.

Remark 1: Cartan assumed that F = (Fα
i ) has constant rank, but it

turns out that, for a ‘solution’ (η, b) with U connected, F (b) =
(

Fα
i (b)

)

always has constant rank anyway.

Remark 2: Cartan worked in the real-analytic category and used the
Cartan-Kähler theorem in his proof, but the above result is now known to
be true in the smooth category.
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The Hessian equation example:

dω1 = −ω12 ∧ω2

dω2 = ω12 ∧ω1

dω12 = K ω1 ∧ω2

ω1 ∧ω2 ∧ω12 6= 0, ω =





ω1

ω2

ω12









dK
dK1

dK2



 =





K1 K2 0
a(K) + b(K)K1

2 b(K)K1K2 −K2

b(K)K1K2 a(K) + b(K)K1
2 K1









ω1

ω2

ω12



 .

d2 = 0 is formally satisfied when a′(K) = a(K)b(K)−K.

Remark: The F -matrix either has rank 0 (when K1 = K2 = a(K) = 0)
or 2 (all other cases). The rank 0 cases have K constant. The rank 2
cases have a 1-dimensional symmetry group and each represents a surface
of revolution.
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Modern formulation of Cartan’s theory:A Lie algebroid is a vector
bundle a : Y → A over a manifold A endowed with a Lie algebra structure

{, } : Γ(Y )× Γ(Y ) → Γ(Y )

and a bundle map α : Y → TA that induces a Lie algebra homomorphism
on sections and satisfies the Leibnitz compatibility condition

{U, fV } = α(U)(f)V + f {U, V } for f ∈ C∞(A) and U, V ∈ Γ(Y ).

In our case, take a basis U i of Y = Rs × Rn with a : Y → Rs the
projection and define

{U j , Uk} = Ci
jk(a)U i and α(U i) = Fα

i (a)
∂

aα
.

The ‘formal’ condition d2 = 0 ensures that α induces a Lie algebra
homomorphism and satisfies the above compatibility condition.

A ‘solution’ is a b : Bn → A covered by a bundle map η : TB → Y of
rank n that induces a Lie algebra homomorphism on sections.
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Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



Some geometric applications:

1. Classification of Bochner-Kähler metrics. (B—, 2001)

2. Classification of Levi-flat minimal hypersurfaces in C
2. (B—, 2002)

3. Classification of isometrically deformable surfaces preserving the mean
curvature. (originally done by Bonnet in the 1880s)

4. Surfaces with prescribed curvature operator. (B—, 2001)

5. Classification of projectively flat Finsler surfaces of constant flag
curvature (B—, 1997).

6. Classification of austere 3-folds. (B—, 1991)

7. Classification of the exotic symplectic holonomies. (originally done
by Schwachhofer, et al.)

Many more examples drawn from classical differential geometry.



A generalization of Cartan’s Theorem.Consider equations

dηi = − 1
2C

i
jk(h) η

j
∧ ηk dha =

(

F a
i (h) +Aa

iα(h)p
α
)

ηi.

Ci
jk, F

a
i , and Aa

iα (where 1 ≤ i, j, k ≤ n, 1 ≤ a ≤ s, and 1 ≤ α ≤ r) are
specified functions on a domain X ⊂ Rs. Assume:

(1) The functions C, F , and A are real analytic.
(2) The tableau A(h) =

(

Aa
iα(h)

)

is rank r and involutive, with Cartan
characters s1 ≥ s2 ≥ · · · ≥ sq > sq+1 = 0 for all h ∈ Rs.

(3) d2 = 0 reduces to equations of the form

0 = Aa
iα(h)

(

dpα +Bα
j (h, p) η

j
)

∧ ηi

for some functions Bα
j . (Torsion absorbable hypothesis)

Then: Modulo diffeomorphism, the general real-analytic solution depends
on sq functions of q variables. Moreover, one can specify h and p arbitrarily
at a point.

Remark: The proof is a straightforward modification of Cartan’s proof in
the case r = 0 (i.e., when there are no ‘free derivatives’ pα).
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Involutivity: For A ⊂ W ⊗ V ∗ a subspace and 0 ⊂ V1 ⊂ V2 · · · ⊂ Vn = V
a generic flag, the surjective maps V ∗ → V ∗

k induce images Ak ⊂ W ⊗ V ∗

k .
Set

sk = dim(Ak)− dim(Ak−1)

and
A(1) =

(

A⊗ V ∗
)

∩
(

W ⊗ S2(V ∗)
)

.

Cartan’s Inequality states that

dimA(1) ≤ s1 + 2 s2 + · · ·+ n sn .

If equality holds, A is said to be involutive (and the flag {Vk} is A-regular).

Think of A as the possible first derivatives of a map f : V → W . Then A(1)

is the set of possible second derivatives of f .

In the present case, W = Rs and V = Rn, while A(h) is spanned by the r
matrices

(

Aa
iα(h)

)

, 1 ≤ α ≤ r.
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the case r = 0 (i.e., when there are no ‘free derivatives’ pα).
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Example: Riemannian 3-manifolds with const. Ricci eigenvalues.

For simplicity, assume the eigenvalues are all distinct, with c1 > c2 > c3.
Then there exist ωi, φi so that g = ω1

2 + ω2
2 + ω3

2 and

dω1 = φ2 ∧ω3 − φ3 ∧ω2

dω2 = φ3 ∧ω1 − φ1 ∧ω3

dω3 = φ1 ∧ω2 − φ2 ∧ω1

dφ1 = φ2 ∧φ3 + c1 ω2 ∧ω3

dφ2 = φ3 ∧φ1 + c2 ω3 ∧ω1

dφ3 = φ1 ∧φ2 + c3 ω1 ∧ω2

2nd Bianchi implies that there are functions ai and bi so that

φ1 = a1 ω1 + (c1−c3) b3 ω2 + (c1−c2) b2 ω3

φ2 = a2 ω2 + (c2−c1) b1 ω3 + (c2−c3) b3 ω1

φ3 = a3 ω3 + (c3−c2) b2 ω1 + (c3−c1) b1 ω2 .

d(dωi) = 0, then yields 9 equations for dai, dbi. These can be written in
the form

dai =
(

Aij(a, b) + pij
)

ωj

dbi =
(

Bij(a, b) + qij
)

ωj ,

where qii = 0 and qij = −pjk/(ci−cj) when (i, j, k) are distinct.
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dφ1 = φ2 ∧φ3 + c1 ω2 ∧ω3

dφ2 = φ3 ∧φ1 + c2 ω3 ∧ω1

dφ3 = φ1 ∧φ2 + c3 ω1 ∧ω2

2nd Bianchi implies that there are functions ai and bi so that

φ1 = a1 ω1 + (c1−c3) b3 ω2 + (c1−c2) b2 ω3

φ2 = a2 ω2 + (c2−c1) b1 ω3 + (c2−c3) b3 ω1

φ3 = a3 ω3 + (c3−c2) b2 ω1 + (c3−c1) b1 ω2 .

d(dωi) = 0, then yields 9 equations for dai, dbi. These can be written in
the form

dai =
(

Aij(a, b) + pij
)

ωj

dbi =
(

Bij(a, b) + qij
)

ωj ,

where qii = 0 and qij = −pjk/(ci−cj) when (i, j, k) are distinct.
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This defines an involutive tableau (in the p-variables) of rank r = 9 and
with characters s1 = 6, s2 = 3, and s3 = 0. Cartan’s criteria are satisfied,
so the desired metrics depend on three functions of two variables.

A similar analysis applies when c1 = c2 6= c3, showing that such metrics
depend on two functions of one variable.

When c1 = c2 = c3, the Cartan analysis gives the expected result that
the solutions depend on a single constant.
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General Holonomy. A torsion-free H-structure on Mn (where H ⊂
GL(m) and dim(m) = n) satisfies the first structure equation

dω = −φ ∧ω

where φ takes values in h ⊂ GL(m) and the second structure equation

dφ = −φ ∧φ+R(ω ∧ω)

where R takes values in K0(h), the space of curvature tensors. Second
Bianchi becomes

dR = −φ · R+R′(ω)

where R′ takes values in K1(h) ⊂ K0(h)⊗m∗.

Theorem: For all groups H satisfying Berger’s criteria except the exotic
symplectic list, K1(h) is an involutive tableau and the above equations
satisfy Cartan’s criteria.

Ex: For G2 ⊂ GL(7,R), the tableau K1(g2) has s6 = 6 > s7 = 0, so the
general metric with G2-holonomy depends on six functions of 6 variables.
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Other examples.

1. (Cartan, 1926) The metrics in dimension 4 with holonomy SU(2)
depend locally on 2 functions of 3 variables.

2. (Cartan-Einstein, 1929-32) Analysis of Einstein’s proposed unified
field theory via connections with torsion.

3. (Cartan, 1943) The Einstein-Weyl structures in dimension 3 depend
on 4 functions of 2 variables.

4. (B—, 1987) The Ricci-solitons in dimension 3 depend on 2 functions
of 2 variables.

5. (B—, 2008) The solitons for the G2-flow in dimension 7 depend on 16
functions of 6 variables.
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