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References: For these three lectures (these are the slide for the second), the
reader who wants more background information on exterior differential systems
might want to consult the brief introduction

http://www.math.duke.edu/~bryant/Introduction_to_EDS.pdf

Many of the examples discussed here and the main variants of Cartan’s theory
of structure equations can be found in the lecture notes on EDS that can be
found here

http://arxiv.org/abs/1405.3116

This latter article contains many references to the literature and further
resources.
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I. Basic EDS

An exterior differential system on M is a graded ideal Z C Q7 (M) that is
closed under exterior differentiation, i.e., d(Z) C Z.

An integral manifold of Z is a submanifold f : N™ — M satisfying f*(«) =0
foralla € 7.

An integral element of Z is a subspace E C T, M such that E*(a) = 0 for
all @ € Z. Let V,(Z) C Gr,(T'M) denote the set of p-dimensional integral
elements of 7.

Example: If f : N — M is an integral manifold of Z, then f'(T,N) C Ty, M
is an integral element of 7.

Fundamental Problem: Given an E € V,,(Z), when does there exist an integral
manifold f : N — M and an z € N such that f'(T,N) = E?
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Polar spaces. Fix E € VP(I), with E C T, M, and let eq,..., e, be a basis
of E. The polar space of E is the subspace

HE)={veT,M|alv,e,...,ep) =0VaecIP } C T, M.
Any E; € Vp11(Z) that contains E must lie in H(E) and, conversely, any

E. € Grp1(TM) that satisfies E C E, C H(E) satisfies E € Vpq1(Z).
Set ¢(E) = dim (T, M/H(E)).

Cartan’s Bound Let F € V,,(I) be fixed, and let F = (Ey, E1,...,E,_1) be
a flag of subspaces of F, with dim F; = i. Thus,
0),=FEyCE1C---CE,.1 CECT,M.
Proposition: There is an open E-neighborhood U C Gr,(T'M) such that
Vn(Z) NU is contained in a smooth submanifold of U of codimension
o(F) = c(Eo) + c(E1) + -+ + c(Ep-1).

When equality holds, we say that F' is a regular flag and E' is ordinary.
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Cartan-Kahler Theorem: If Z C Q (M) is a real-analytic EDS and E €
Vn(Z) is ordinary, then there is an Z-integral manifold f : N — M with
E = f'(T;N) for some z € N.

Generality: The character sequence of the flag F = (Eo, E1,...,Fp_1) is

c(Ep) i=0,
si(F) =< c(B;) — c(Ei-1) 1<i<n,
dim H (Ep_1) —n i=mn.

Then the ‘generic’ ordinary integral manifold of Z depends on
s0(F') constants

s1(F') functions of 1 variable,
s2(F') functions of 2 variables,

$n(F') functions of n variables.



Example: (Cartan’s Third Theorem) Let %, = —Cj, and F* (with 1 <
1,7,k <nand 1 < a < s) be functions on R*. One wants to know whether
or not there exist linearly independent 1-forms w® on R™ and a function a =
(a®) : R™ — R® that satisfy the Cartan structure equations

dw® = -1 ;k(a) wl AWk and da® = Ff(a) w'.
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Theorem: If C' and F' as above satisfy compatibility, and are real-analytic, then
for each ug € R®, there exists a pair (a,w) on R™ with a(0) = ug satisfying
the above Cartan structure equations (unique up to Diff (R™, 0)).
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0% = du® — F{*(u) (pj da’).
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independent everywhere and span the cotangent space everywhere.



Proof: Let M = GL(n,R)xR"xR?®, and letp : M — GL(n,R), z : M — R",
and u : M — R? be the projections. Consider the ideal Z generated on M by
the n 2-forms

Y* = d(p; da’) + $Cj (u)(p] da') A (ply, da™)
and the s 1-forms o
0% = du® — F{*(u) (pj da’).

Note that one can write

" =m; nda’
for some 1-forms 7T;— = dpé- + Pjik da* for some functions P;k on M and that
the forms 7T; dz*, and 0% define a coframing on M, i.e., they are linearly
independent everywhere and span the cotangent space everywhere.

Now, d(Z) C Z if and only if C' and F satisfy compatibility. Also, the n-plane
field defined by w; = 0 = 0 consists of ordinary integral elements. Now apply

the Cartan-Kahler Theorem, obtaining (a,w) = (u(z), p}(x) da’). QED.
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allz e V.

Set up an EDS as follows: Let M =V x W x A and let u : M — W,
x: M — V,and p: M — A denote the projections. Let Z be the ideal
generated by the components of the W-valued 1-form # = du — pdx. Thus,
T is generated in degree 1 by m = dim W 1-forms and in degree 2 by the (at
most) m independent 2-forms that are the components of d§ = —dpadz.

A E €V, (TM) at (ug,xo,po) € M on which the components of dx are
independent will be described by equations of the form

du —podr =dp —sdzx =0
where s € A ® V* must satisfy (sdx)adz =0, i.e.,
sEAQVI AW @ SHV*) =AW,



Whether E € V,,(I) is ordinary or not depends only on A C W ® V*, and we
say that A is involutive if E is ordinary. We define the Cartan characters of A
to be the characters s;(A) = s;(F) of any regular flag F.



Whether E € V,,(I) is ordinary or not depends only on A C W ® V*, and we
say that A is involutive if E is ordinary. We define the Cartan characters of A
to be the characters s;(A) = s;(F) of any regular flag F.

When A is involutive, if one takes the Taylor series of the ‘general’ solution
f:V — W of the equations forcing f’(z) to lie in A for all z, one gets

f@) = fo+ frle) + fal@) + -+ frlx) + -,
where f, is a W-valued homogeneous polynomial of degree k£ on V' and hence
lies in the subspace

AFED = (W@ SE(V*)) N (Ae Sk (V™).
which has dimension
dim A®~D =3 (4 (A
im 2 k1 s;(4),

which is exactly what one would expect if f were to be thought of as being
comprised of s1(A) functions of 1 variable, s3(A) functions of 2 variables, etc.
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We also need involutivity of the subspaces A(u,v) spanned by the r matrices

OF¥
d < p<r.
((%p(u,v)) 1<p<r
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Theorem: If C and F' as above satisfy the compatibility and involutivity hy-
potheses and are real-analytic, then for any (ug,vg) € R5*", there exist (a, b, w)
on an open neighborhood V' of 0 € R™ that satisfy

dw’ = —3C(a) AwP and da® = F(a,b)w".

The general solution, up to diffeomorphism, depends on s4(A) functions of g
variables where ¢ < n is the largest integer for which s4(A) > 0.



Theorem: If C and F' as above satisfy the compatibility and involutivity hy-
potheses and are real-analytic, then for any (ug,vg) € R5*", there exist (a, b, w)
on an open neighborhood V' of 0 € R™ that satisfy

dw’ = —3C(a) AwP and da® = F(a,b)w".

The general solution, up to diffeomorphism, depends on s4(A) functions of g
variables where ¢ < n is the largest integer for which s4(A) > 0.

Remark: The proof is similar to the proof of Cartan’s Theorem; one defines a
differential ideal Z on

M = GL(n,R) x R" x R® x R"
that is generated by the n 2-forms
Y = d(p} da?) + 3C5 () (p] da') n (ply, da™)
and the s 1-forms o
0% = du® — F*(u,v) (p; da?).
and shows that the hypotheses imply that there is a regular flag.
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Example: (Torsion-free H-structures) Let m be a vector space over R of
dimension m, and let H C GL(m) be a connected Lie subgroup of dimension r
with Lie algebra h C gl(m) = m@ m*.

Problem: Determine the generality, modulo diffeomorphism, of the (local) H-
structures that are torsion-free, and, more generally, of torsion-free connections
on m-manifolds with holonomy contained in (a conjugate of) H.

Remark: When the first prolongation space of h) vanishes, i.e., when
h') = (hom’) N (m@s*(m’) = (0),

these two questions are essentially the same, since, in this case, an H-structure
that is torsion-free has a (unique) compatible torsion-free connection and con-
versely. For simplicity, | will assume this holds.



Let 7 : B — M™ be an H-structure on M™ endowed with a torsion-free
compatible connection. Let n : TB — m be the canonical m-valued 1-
form on B, then the torsion-free compatible connection defines an h-valued
1-form 6 : T B — 1 satisfying the first structure equation

dn = —0nrn,
and having the equivariance R} () = Ad(h=')(6) forall h € H.



Let 7 : B — M™ be an H-structure on M™ endowed with a torsion-free
compatible connection. Let n : TB — m be the canonical m-valued 1-
form on B, then the torsion-free compatible connection defines an h-valued
1-form 6 : T B — 1 satisfying the first structure equation

dn = —0nrn,
and having the equivariance R} () = Ad(h=')(6) forall h € H.

One then has the second structure equation
df =070+ 3 R(nan)

for a unique curvature function R : B — h®A?(m*). It satisfies the first
Bianchi identity,

0=d(dn) = —dfan+0rdy=—(d0+0r0)An=—1R(nan)rn=0.
le., R takes values in the kernel Ko(h) C h®A?(m*) of the natural map
hRA*(m*) C me@m* @A*(m*) - m@A3(m*).



Differentiating the second structure equation gives the second Bianchi identity
0= d(d6) = L (AR + sh(O)R) (1 ),
where pg : H — GL(Ko(h)) is the induced representation of H on Ko(h),
and pj : h — g[(KO([j)) is the induced map on Lie algebras. This means that
dR = —p(0) R + R/ (n),

where R’ : B — Ky(h) ® m* takes values in the kernel K1(h) C Ko(h) ® m*
of the natural linear mapping defined by skew-symmetrization

Ko(h) @ m* C hoA?(m*) @ m* — h QA3 (m*).



Differentiating the second structure equation gives the second Bianchi identity
0= d(d6) = L (AR + sh(O)R) (1 ),
where pg : H — GL(Ko(h)) is the induced representation of H on Ko(h),
and pj : h — g[(KO([j)) is the induced map on Lie algebras. This means that
dR = —p(0) R + R/ (n),

where R’ : B — Ky(h) ® m* takes values in the kernel K1(h) C Ko(h) ® m*
of the natural linear mapping defined by skew-symmetrization

Ko(h) @ m* C hoA?(m*) @ m* — h QA3 (m*).

The structure equations with w = (1, 6), and a = R while b = R’ becomes
dp=—0rn, df=—-0r0+1a(nan), da = —p((0)a + b(n)

where a and b take values in Ko(h) and K7 (h) respectively. This is exactly of
the type treated by the Variant Theorem.
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manifold with holonomy SU(2), i.e, the case of a Ricci-flat Kahler surface.
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Example: When m = 4 and H = SU(2) C SO(4), this becomes a Riemannian
manifold with holonomy SU(2), i.e, the case of a Ricci-flat Kahler surface.
In this case, we have

dno 0 61 02 O3 7o

dpf _ [0 0 =05 O] fm

dne -0, 03 0 —6; 72

dns =03 —6 61 O 3

and

do, 262103 Ryt Ri2 Ris oA — T2A7)3
dfs | = — (2605701 | + | Ro1 Ra2 Ros NoAN2 — N3AT
dos 201707 R31 Rz Rss NoAN3 — NLAT2

where Rij = Rji and R11 + R22 + R33 =0.
Calculation shows that, in the equation dR = —p{,(0) R+ R'(7), the tableau
of free derivatives is involutive, with characters

(817 52,53, 84) = (57 57 27 0)7

so the general solution depends on 2 functions of 3 variables.



