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References: For these three lectures (these are the slide for the third), the
reader who wants more background information on exterior differential systems
might want to consult the brief introduction

http://www.math.duke.edu/∼bryant/Introduction to EDS.pdf

Many of the examples discussed here and the main variants of Cartan’s theory
of structure equations can be found in the lecture notes on EDS that can be
found here

http://arxiv.org/abs/1405.3116

This latter article contains many references to the literature and further
resources.



I. Riemannian Surfaces with |∇K|2 = 1

Consider (M2, g) whose Gauss curvature satisfies |∇K|2 = 1. The structure
equations on the orthonormal frame bundle π : B → M have g = ω1

2 + ω2
2

and are
dω1 = −ω12 ∧ω2

dω2 = ω12 ∧ω1

dω12 = aω1 ∧ω2

da = cos b ω1 + sin b ω2

ω1 ∧ω2 ∧ω12 6= 0,

where K = a is the Gauss curvature and b is the free derivative.

Using these equations, we see that d2ω1 = d2ω2 = d2ω12 = 0 are identities,
but, using the structure equations, one finds

0 = d(da) = (db − ω12) ∧ (− sin b ω1 + cos b ω2).

It follows that the hypotheses of the Variant of Cartan’s Theorem are sat-
isfied, with the characters of the tableau of free derivatives being s1 = 1,
s2 = s3 = 0. Thus, the general (local) solution depends on one function of
one variable.
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I. Ricci solitons in dimension 2
Consider (M2, g) that is a gradient Ricci soliton, i.e.,

Ric(g) = Kg = Hess(f) = ∇2f

for some function f on M .The structure equations on the orthonormal frame
bundle π : B → M have g = ω1

2 + ω2
2 and are

dω1 = −ω12 ∧ω2

dω2 = ω12 ∧ω1

dω12 = K ω1 ∧ω2

dK = K1 ω1 +K2 ω2

df = f1 ω1 + f2 ω2

df1 = −f2 ω12 +K ω1

df2 = f1 ω12 +K ω2

0 = d(df1) = (K2 +Kf2)ω1 ∧ω2

0 = d(df2) = (K1 +Kf1)ω2 ∧ω1

.

Thus, the above structure equations can be tightened to

dK = −K (f1 ω1 + f2 ω2) = −K df.

There are now no more ‘free derivatives’, but d2 = 0 is an identity.
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III. Prescribed curvature equations for Finsler surfaces For an oriented
Finsler surface (M2, F ), Cartan showed that the ‘tangent indicatrix’ Σ ⊂ TM

has a canonical coframing (ω1, ω2, ω3), satisfying

dω1 = −ω2 ∧ω3

dω2 = −ω3 ∧ω1−I ω2 ∧ω3

dω3 = −K ω1 ∧ω2−J ω2 ∧ω3

ω1 ∧ω2 ∧ω3 6= 0,

where I have written ω3 for what would be −ω12 in the Riemannian case.
The functions I, J , and K are the Finsler structure functions. K is the

Finsler-Gauss (or ‘flag’) curvature; I is the Cartan scalar, which vanishes iff
(M2, F ) is Riemannian; J is the Landsberg scalar.

Differentiating the above equations yields the Finsler-Bianchi identities

dI = J ω1 + I2 ω2 + I3 ω3 ,

dJ = −(K3 +KI)ω1 + J2 ω2 + J3 ω3 ,

dK = K1 ω1 +K2 ω2 +K3 ω3 .

for seven new functions, Ki, etc. These are the ‘free derivatives’, and their
tableau has (s1, s2, s3) = (3, 3, 1).
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Case 1: I = 0 (the Riemannian case), forces J = 0, so

dω1 = −ω2 ∧ω3

dω2 = −ω3 ∧ω1

dω3 = −K ω1 ∧ω2

dK = K1 ω1 +K2 ω2

Tableau has (s1, s2, s3) = (1, 1, 0), so 1 function of 2 variables.

Case 2: J = 0 (Landsberg surfaces)

dI = + I2 ω2 + I3 ω3 ,

dK = K1 ω1 +K2 ω2 −KI ω3 .

Tableau has (s1, s2, s3) = (2, 2, 0), so 2 functions of 2 variables.
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Case 3: K-basic (i.e., K3 = 0, so K well-defined on M)
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dK = K1 ω1 +K2 ω2 .

Tableau has (s1, s2, s3) = (3, 3, 0), so 3 functions of 2 variables.
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IV. Ricci potentials in dimension 3 Consider the problem of the generality
of Riemannian 3-manifolds (M3, g) for which there exists a function f (a ‘Ricci
potential’) such that

Ric(g) = (df)2 +H(f) g

where H is a specified function of one variable. On the orthonormal frame
bundle B6 → M3, we have structure equations

dωi = −ωij ∧ωj and





dω23

dω31

dω12



 = −





ω12∧ω31

ω23∧ω12

ω31∧ω23



−
(

R− 1

2
tr(R) I3

)





ω2∧ω3

ω3∧ω1

ω1∧ω2





where R = (Rij) is the symmetric matrix of the Ricci tensor. By hypothesis,
there exists a function f such that Rij = fifj +H(f)δij where

df = f1 ω1 + f2 ω2 + f3 ω3 .

The four functions (f, f1, f2, f3) will play the role of the aα in the structure
equations, and d(df) = 0 implies that there exist fij = fji so that

dfi = −ωij fj + fij ωj
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The equations d(dωi) = 0 are identities (because R is symmetric), but the
equations d(dωij) = 0 can be written as

(

2(f11 + f22 + f33)−H ′(f)
)

df = 0.

Thus, either df = 0 (in which case, the metric is Einstein) or else

f11 + f22 + f33 −
1

2
H ′(f) = 0,

so that one has

dfi = −ωijfj +
(

bij +
1

6
H ′(f)δij

)

ωj .

where the (new) bij = bji are subject to the trace condition b11+b22+b33 = 0.
These bij will play the role of the ‘free derivatives’ in the structure equations.

We can now easily check that these structure equations satisfy the compatibility
and involutivity conditions for the Cartan Variant Theorem, with characters

(s1, s2, s3, s4, s5, s6) = (3, 2, 0, 0, 0, 0),

so, up to diffeomorphism, these structures (M3, g, f) depend on 2 functions of
2 variables.
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and involutivity conditions for the Cartan Variant Theorem, with characters

(s1, s2, s3, s4, s5, s6) = (3, 2, 0, 0, 0, 0),

so, up to diffeomorphism, these structures (M3, g, f) depend on 2 functions of
2 variables.



V. Einstein-Weyl structures in dimension 3 These are CO(3)-structures on
3-manifolds endowed with a compatible connection on B7 → M3 that satisfies
the structure equations


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Differentiating these equations gives relations of the following form ((i,j,k) is
an even permutation of (1,2,3)), where, the 9 Lij satisfy L11+L22+L33 = 0.

dH0 = 2H0 θ0 + (Lij − Lji) ηk

dHi = 2Hi θ0 −Hjθk +Hk θj + Lij ηj

These are involutive with (s1, s2, s3, . . .) = (4, 4, 0, . . .).



V. Einstein-Weyl structures in dimension 3
These are CO(3)-structures on 3-manifolds endowed with a compatible con-
nection on B7 → M3 that satisfies the structure equations





dη1
dη2
dη3



 = −





θ0 θ3 −θ2
−θ3 θ0 θ1
θ2 −θ1 θ0



 ∧





η1
η2
η3





and








dθ0
dθ1
dθ2
dθ3









=









0
θ2∧θ3
θ3∧θ1
θ1∧θ2









+









2H1 2H2 2H3

H0 H3 −H2

−H3 H0 H1

H2 −H1 H0













η2∧η3
η3∧η1
η1∧η2



 .

Differentiating these equations gives relations of the following form ((i,j,k) is
an even permutation of (1,2,3)), where, the 9 Lij satisfy L11+L22+L33 = 0.

dH0 = 2H0 θ0 + (Lij − Lji) ηk

dHi = 2Hi θ0 −Hjθk +Hk θj + Lij ηj

These are involutive with (s1, s2, s3, . . .) = (4, 4, 0, . . .).



V. Einstein-Weyl structures in dimension 3
These are CO(3)-structures on 3-manifolds endowed with a compatible con-
nection on B7 → M3 that satisfies the structure equations





dη1
dη2
dη3



 = −





θ0 θ3 −θ2
−θ3 θ0 θ1
θ2 −θ1 θ0



 ∧





η1
η2
η3





and








dθ0
dθ1
dθ2
dθ3









=









0
θ2∧θ3
θ3∧θ1
θ1∧θ2









+









2H1 2H2 2H3

H0 H3 −H2

−H3 H0 H1

H2 −H1 H0













η2∧η3
η3∧η1
η1∧η2



 .

Differentiating these equations gives relations of the following form ((i,j,k) is
an even permutation of (1,2,3)), where, the 9 Lij satisfy L11+L22+L33 = 0.

dH0 = 2H0 θ0 + (Lij − Lji) ηk

dHi = 2Hi θ0 −Hjθk +Hk θj + Lij ηj

These are involutive with (s1, s2, s3, . . .) = (4, 4, 0, . . .).



V. Einstein-Weyl structures in dimension 3
These are CO(3)-structures on 3-manifolds endowed with a compatible con-
nection on B7 → M3 that satisfies the structure equations





dη1
dη2
dη3



 = −





θ0 θ3 −θ2
−θ3 θ0 θ1
θ2 −θ1 θ0



 ∧





η1
η2
η3





and








dθ0
dθ1
dθ2
dθ3









=









0
θ2∧θ3
θ3∧θ1
θ1∧θ2









+









2H1 2H2 2H3

H0 H3 −H2

−H3 H0 H1

H2 −H1 H0













η2∧η3
η3∧η1
η1∧η2



 .

Differentiating these equations gives relations of the following form ((i,j,k) is
an even permutation of (1,2,3)), where, the 9 Lij satisfy L11+L22+L33 = 0.

dH0 = 2H0 θ0 + (Lij − Lji) ηk

dHi = 2Hi θ0 −Hjθk +Hk θj + Lij ηj

These are involutive with (s1, s2, s3, . . .) = (4, 4, 0, . . .).



VI. Nearly-Kähler 6-manifolds A nearly-Kähler 6-manifold is a manifold M6

endowed with a SU(3)-structure π : B → M with torsion, whose first structure
equations take the form

dηi = −θil̄ ∧ ηl + λ ηj ∧ ηk

where (i, j, k) is an even perm. of (1, 2, 3), θi̄ = −θjı̄ and θiı̄ = 0, and λ = λ̄.

The identities d(dηi) = 0 imply that dλ = 0 and

dθi̄ = −θik̄ ∧ θk̄ + λ2
(

3

4
ηi ∧ ηj −

1

4
δi̄ ηl ∧ ηl

)

+Ki̄pq̄ ηq ∧ ηp ,

where the functions Ki̄pq̄ satisfy

Ki̄pq̄ = Kp̄iq̄ = Kiq̄p̄ = Kjı̄qp̄ and Kiı̄pq̄ = 0.

This leaves 27 real components in the tensor K, and d(dθi̄) = 0 yields

dKi̄pq̄ = −Kℓ̄pq̄ θiℓ̄+Kiℓ̄pq̄ θℓ̄−Ki̄ℓq̄ θpℓ̄+Ki̄pℓ̄ θℓq̄+Ki̄pq̄ℓ̄ ηℓ+Ki̄pq̄ℓ ηℓ̄ ,

where Ki̄pq̄ℓ̄ = Ki̄pℓ̄q̄ and Ki̄pq̄ℓ = Ki̄ℓq̄p, etc.

This is involutive, with characters (s1, . . . , s5, s6) = (27, 27, 19, 9, 2, 0).
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