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References: For these three lectures (these are the slide for the third), the
reader who wants more background information on exterior differential systems
might want to consult the brief introduction

http://www.math.duke.edu/~bryant/Introduction_to_EDS.pdf

Many of the examples discussed here and the main variants of Cartan’s theory
of structure equations can be found in the lecture notes on EDS that can be
found here

http://arxiv.org/abs/1405.3116

This latter article contains many references to the literature and further
resources.



I. Riemannian Surfaces with [VK|? =1
Consider (M?, g) whose Gauss curvature satisfies [VK|? = 1. The structure

equations on the orthonormal frame bundle 7 : B — M have g = w1? + wy?
and are

dwl = —Wi12 AW

dw2 = w12 ANW1 0

W1 AW AW
dwis = awi Aws 1Awe Awie # 0,
da = cosbwy + sinbwsy

where K = a is the Gauss curvature and b is the free derivative.
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Consider (M?, g) whose Gauss curvature satisfies [VK|? = 1. The structure
equations on the orthonormal frame bundle 7 : B — M have g = w1? + wy?
and are
dwl = —Wi12 AW
dw2 = w12 ANW1 0
W1 AW AW
dwis = awi Aws 1Awe Awie # 0,
da = cosbwy + sinbwsy

where K = a is the Gauss curvature and b is the free derivative.
Using these equations, we see that d%w; = d%w; = d2w;5 = 0 are identities,
but, using the structure equations, one finds

0 =d(da) = (db — wi2) A (—sinbwy + cosbws).

It follows that the hypotheses of the Variant of Cartan’s Theorem are sat-
isfied, with the characters of the tableau of free derivatives being s; = 1,
sg = s3 = 0. Thus, the general (local) solution depends on one function of
one variable.
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Ric(g) = Kg = Hess(f) = V*f

for some function f on M.
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l. Ricci solitons in dimension 2
Consider (Mz,g) that is a gradient Ricci soliton, i.e.,

Ric(g) = Kg = Hess(f) = V*f
for some function f on M. The structure equations on the orthonormal frame

bundle 7 : B — M have g = w;? + wo? and are
dK = —K (fiw1 + fawz)

df = fiw1 + fawe
dfi = —fawiz + Kw
dfe = frwiz + Kwe
0=d(df1) = (Ko + K fa) w1 Aws
0=d(df2) = (K1 + Kfi)wanwi’
Thus, the above structure equations can be tightened to
dK = —K (fiwi + fowz) = —K df.

There are now no more ‘free derivatives', but d2 = 0 is an identity.

dw1 = —Wi12 AWy
dWQ = W12 AW1

dwlg = le N W2
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Finsler-Gauss (or ‘flag') curvature; I is the Cartan scalar, which vanishes iff
(M2, F) is Riemannian; J is the Landsberg scalar.



I1l. Prescribed curvature equations for Finsler surfaces
For an oriented Finsler surface (M?, F), Cartan showed that the ‘tangent in-
dicatrix’ ¥ C TM has a canonical coframing (w1, w2, ws), satisfying

dwi = —wo Aws3
dwe = —wz Awi—1 wa Aws w1 Awe Aws # 0,
dW3 = —le /\(UQ—JLUQ AN W3

where | have written w3 for what would be —wi5 in the Riemannian case.
The functions I, J, and K are the Finsler structure functions. K is the
Finsler-Gauss (or ‘flag') curvature; I is the Cartan scalar, which vanishes iff
(M2, F) is Riemannian; J is the Landsberg scalar.
Differentiating the above equations yields the Finsler-Bianchi identities

dl = J w1 + Is wo + I3 ws,
dJ = —(K3+KI)OJ1 + Jowe + J3ws,
dK = K1w1 —|—KQCU2 —|—K3W3.

for seven new functions, K;, etc. These are the ‘free derivatives’, and their
tableau has (s1, s2,s3) = (3,3, 1).



Case 1: T = 0 (the Riemannian case), forces J =0, so
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Case 1: T = 0 (the Riemannian case), forces J =0, so

dwl = —W2 ANW3
dw2 = —W3 AW1
dwg = —le N W2

dK = K1w1 +K2w2

Tableau has (s1, s2,83) = (1,1,0), so 1 function of 2 variables.
Case 2: J = 0 (Landsberg surfaces)

dI = + Iy ws + I3 ws,
dK = K1w1 +K2w2 —KI(Ug.

Tableau has (s1, s2,83) = (2,2,0), so 2 functions of 2 variables.



Case 3: K-basic (i.e., K3 =0, so K well-defined on M)
dl = J wr +lhwy +I3ws,
dJ = —-Klw + Jows + J3ws,
dK = Kiw + Kows.
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Case 3: K-basic (i.e., K3 =0, so K well-defined on M)

dI = J wq + Lhw +13ws,
dJ = —Kle +J2(U2 +J3(U3,
dK = K1w1 +K2W2.

Tableau has (s1, s2,83) = (3,3,0), so 3 functions of 2 variables.

Case 4: K is constant

dl = Jwi +Lhw +I3ws,
dJ= —-Klw +Jowy —+ J3ws,
dK = 0

Tableau has (s1, s2,83) = (2,2,0), so 2 functions of 2 variables.
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Consider the problem of the generality of Riemannian 3-manifolds (M3, g) for
which there exists a function f (a ‘Ricci potential’) such that

Ric(g) = (df)* + H(f) g

where H is a specified function of one variable.
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IV. Ricci potentials in dimension 3
Consider the problem of the generality of Riemannian 3-manifolds (M3, g) for
which there exists a function f (a ‘Ricci potential’) such that

Ric(g) = (df)* + H(f) g

where H is a specified function of one variable. On the orthonormal frame
bundle B® — M3, we have structure equations

dw23 W12A\W31 W AW3
dw; = —Wij AWj and dws | = — | wagrwis —(R — %tr(R) 13) W3AW1
dwi2 W31/AW23 W1AW2

where R = (R;;) is the symmetric matrix of the Ricci tensor. By hypothesis,
there exists a function f such that R;; = fif; + H(f)d:; where

df = fiw1 + faws + faws.

The four functions (f, f1, f2, f3) will play the role of the a® in the structure
equations, and d(df) = 0 implies that there exist f;; = fj; so that

dfi = —wij fj + fijwj



The equations d(dw;) = 0 are identities (because R is symmetric), but the
equations d(dw;;) = 0 can be written as

(2(f11 + faz + f33) — H/(f)) df =0.



The equations d(dw;) = 0 are identities (because R is symmetric), but the
equations d(dw;;) = 0 can be written as

(2(f11 + foz + faz) = H'(f)) df = 0.
Thus, either df = 0 (in which case, the metric is Einstein) or else
fi1+ fa2+ fss — 2H'(f) =0,
so that one has
dfi = —wijfj + (bij + g H'(£)di5) wj -
where the (new) b;; = bj; are subject to the trace condition b1+ baa + b33 = 0.
These b;; will play the role of the ‘free derivatives’ in the structure equations.



The equations d(dw;) = 0 are identities (because R is symmetric), but the
equations d(dw;;) = 0 can be written as

(2(f11 + foz + faz) = H'(f)) df = 0.
Thus, either df = 0 (in which case, the metric is Einstein) or else
fi1+ fa2+ fss — 2H'(f) =0,
so that one has
dfi = —wijfj + (bij + g H'(£)di5) wj -
where the (new) b;; = bj; are subject to the trace condition b1+ baa + b33 = 0.
These b;; will play the role of the ‘free derivatives’ in the structure equations.

We can now easily check that these structure equations satisfy the compatibility
and involutivity conditions for the Cartan Variant Theorem, with characters
(817 52, 83, 54, S5, 86) = (3a 25 07 Oa 07 O)a

so, up to diffeomorphism, these structures (M3, g, f) depend on 2 functions of
2 variables.
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These are CO(3)-structures on 3-manifolds endowed with a compatible con-
nection on B7 — M?3 that satisfies the structure equations
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These are CO(3)-structures on 3-manifolds endowed with a compatible con-
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V. Einstein-Weyl structures in dimension 3
These are CO(3)-structures on 3-manifolds endowed with a compatible con-
nection on B7 — M?3 that satisfies the structure equations

dm b O3 —02 m
dnpe | == -0 6o 61| A [m
dns b —61 o 3
and
dfg 0 2H, 2H, 2H;
d91 92A93 HO H3 —Hg 21113
d92 - 93A91 T —H3 HO H1 37T
d93 91/\92 H2 —H1 HO AT

Differentiating these equations gives relations of the following form ((i,j,k) is
an even permutation of (1,2,3)), where, the 9 L;; satisfy L1 + Laa+ Lz = 0.

dHo = 2Ho 00 + (Lij — Lji) mk
dH; =2H,; 0y — H;0, + H, 0; + Li; n;

These are involutive with (s1, $2,83,...) = (4,4,0,...).
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V1. Nearly-Kahler 6-manifolds
A nearly-Kahler 6-manifold is a manifold M% endowed with a SU(3)-structure
7w : B — M with torsion, whose first structure equations take the form

dn; = =6, 7am + A5 AT
where (i, j, k) is an even perm. of (1,2,3), 6;; = —0;; and 6;; = 0, and A = \.
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V1. Nearly-Kahler 6-manifolds
A nearly-Kahler 6-manifold is a manifold M% endowed with a SU(3)-structure
7w : B — M with torsion, whose first structure equations take the form

dni = =0 nm + A5 AT
where (i, j, k) is an even perm. of (1,2,3), 6;; = —0;; and 6;; = 0, and A = \.
The identities d(dn;) = 0 imply that d\ = 0 and
i3 = =01 A Oz + N (31 AT — 3033 ATE) + Kizpq g A Ty
where the functions K35 satisfy
Kijpg = Kpjiq = Kigps = Kjigp  and  Kizpg = 0.

This leaves 27 real components in the tensor K, and d(d#;;) = 0 yields
dRigpg = —Kagpg Oi7 + Kigpg 005 — Kizeq Opr + Kizpr Oeq + Kigpga e + Kigpge 0z »

where K K.

impat = Kigprg and Kizpge = Kizgp, etc.

This is involutive, with characters (s1,...,ss5,s6) = (27,27,19,9,2,0).



