Classification of naturally reductive spaces

Thomas Friedrich (Humboldt-Universität zu Berlin)

Srni, January 2015

Classification of naturally reductive spaces

Thomas Friedrich (Humboldt-Universität zu Berlin)

Srni, January 2015

– joint work with Ilka Agricola and Ana Ferreira –

Naturally reductive homogeneous spaces

(M,g) a Riemannian manifold, M=G/H s.t. G is a group of isometries acting transitively and effectively

Dfn. M = G/H is *naturally reductive* if \mathfrak{h} admits a reductive complement \mathfrak{m} in \mathfrak{g} s.t.

$$\langle [X,Y]_{\mathfrak{m}},Z\rangle + \langle Y,[X,Z]_{\mathfrak{m}}\rangle = 0 \text{ for all } X,Y,Z \in \mathfrak{m}, \quad (*)$$

where $\langle -, - \rangle$ denotes the inner product on \mathfrak{m} induced from g. The PFB $G \to G/H$ induces a metric connection ∇ with torsion

$$g(T(X,Y),Z):=T(X,Y,Z)=-\langle [X,Y]_{\mathfrak{m}},Z\rangle,$$

the so-called *canonical connection*. It always satisfies $\nabla T = \nabla \mathcal{R} = 0$. **Observation:** condition (*) \Leftrightarrow T is a 3-form, i.e. $T \in \Lambda^3(M)$. Conversely:

Thm. A complete Riemannian manifold equipped with a metric connection ∇ with torsion T and curvature \mathcal{R} such that $\nabla \mathcal{R} = 0$ and $\nabla T = 0$, is locally isometric to a homogeneous space.

[Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection ∇ with skew torsion (T is 3-form) such that $\nabla T = \nabla \mathcal{R} = 0$

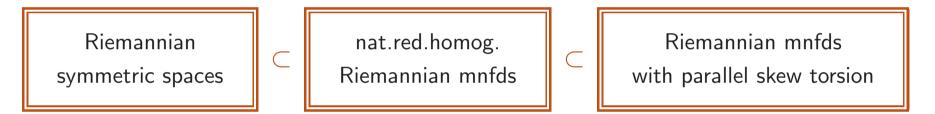
A subclass: Riemannian symm. spaces (T = 0, class. by Cartan)

However, a classification of n.r. spaces in *all* dimensions is impossible.

Set-up: (M,g) Riemannian mnfd, ∇ metric conn., ∇^g Levi-Civita conn.

$$T(X, Y, Z) = g(\nabla_X Y - \nabla_Y X - [X, Y], Z) \in \Lambda^3(M^n)$$
$$\nabla_X Y = \nabla_X^g Y + \frac{1}{2}T(X, Y, -)$$

(M, g, T) carries nat. red. homog. structure if $\nabla \mathcal{R} = 0$ and $\nabla T = 0$



Remark Some mnfds carry several nat.red.structures.

 $S^n = SO(n+1)/SO(n)$ and T = 0.

 $S^6 = G_2/SU(3), \ S^7 = Spin(7)/G_2, \ S^{15} = Spin(9)/Spin(7) \text{ and } T \neq 0.$

Thm: If (M, g) is not loc. isometric to a sphere or a Lie group, then its admits at most <u>one</u> naturally reductive homogeneous structure. [Olmos-Reggiani, 2012]

Review of some classical results

- all isotropy irreducible homogeneous manifolds are naturally reductive
- the \pm -connections on any Lie group with a biinvariant metric are naturally reductive (and, by the way, flat) [Cartan-Schouten, 1926]
- construction / classification (under some assumptions) of left-invariant naturally reductive metrics on compact Lie groups [D'Atri-Ziller, 1979]

• All 6-dim. homog. nearly Kähler mnfds (w.r.t. their canonical almost Hermitian structure) are naturally reductive. These are precisely: $S^3 \times S^3$, \mathbb{CP}^3 , the flag manifold $F(1,2) = U(3)/U(1)^3$, and $S^6 = G_2/SU(3)$.

• Known classifications:

- dimension 3 [Tricerri-Vanhecke, 1983], dimension 4 [Kowalski-Vanhecke, 1983], dimension 5 [Kowalski-Vanhecke, 1985]

These proceed by finding normal forms for the curvature. We will use the torsion as basic geometric quantity.

An important tool: the 4-form σ_T

Dfn. For any $T \in \Lambda^3(M)$, define $(e_1, \ldots, e_n \text{ a local ONF})$

$$\sigma_T := \frac{1}{2} \sum_{i=1}^n (e_i \,\lrcorner\, T) \land (e_i \,\lrcorner\, T)$$

[Exa: For $T = \alpha e_{123} + \beta e_{456}$, $\sigma_T = 0$; for $T = (e_{12} + e_{34})e_5$, $\sigma_T = -e_{1234}$]

- σ_T appears in many important relations:
 - * $T^2 = -2\sigma_T + ||T||^2$ in the Clifford algebra
 - * If $\nabla T = 0$: $dT = 2\sigma_T$ and $\nabla^g T = \frac{1}{2}\sigma_T$ either $\sigma_T = 0$ or the algebra $\mathfrak{hol}^{\nabla} \subset \mathfrak{iso}(T)$ is non-trivial

σ_T and the Nomizu construction

Idea: for M = G/H, reconstruct \mathfrak{g} from \mathfrak{h} , T, \mathcal{R} and $V \cong T_x M$

Set-up: \mathfrak{h} a real Lie algebra, V a real f.d. \mathfrak{h} -module with \mathfrak{h} -invariant pos. def. scalar product \langle,\rangle , i.e. $\mathfrak{h} \subset \mathfrak{so}(V) \cong \Lambda^2 V$

 $\mathcal{R}: \Lambda^2 V \to \mathfrak{h}$ an \mathfrak{h} -equivariant map, $T \in (\Lambda^3 V)^{\mathfrak{h}}$ an \mathfrak{h} -invariant 3-form,

Define a Lie algebra structure on $\mathfrak{g} := \mathfrak{h} \oplus V$ by $(A, B \in \mathfrak{h}, X, Y \in V)$:

 $[A + X, B + Y] := ([A, B]_{\mathfrak{h}} - \mathcal{R}(X, Y)) + (AY - BX - T(X, Y))$

Jacobi identity for $\mathfrak{g} \Leftrightarrow$

•
$$\mathfrak{S}^{X,Y,Z} \mathcal{R}(X,Y,Z,V) = \sigma_T(X,Y,Z,V)$$
 (1st Bianchi condition)
• $\mathfrak{S}^{X,Y,Z} \mathcal{R}(T(X,Y),Z) = 0$ (2nd Bianchi condition)

Observation: If (M, g, T) satisfies $\nabla T = 0$, then $\mathcal{R} : \Lambda^2(M) \to \Lambda^2(M)$ is symmetric (as in the Riemannian case).

Consider $C(V) := C(V, -\langle, \rangle)$: Clifford algebra, (recall: $T^2 = -2\sigma_T + ||T||^2$)

Thm. If $\mathcal{R}: \Lambda^2 V \to \mathfrak{h} \subset \Lambda^2 V$ is symmetric, the first Bianchi condition is equivalent to $T^2 + \mathcal{R} \in \mathbb{R} \subset \mathcal{C}(V)$ ($\Leftrightarrow 2\sigma_T = \mathcal{R} \subset \mathcal{C}(V)$), and the second Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant); crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A, '03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one condition!

Splitting theorems

Dfn. For T 3-form, define

[introduced in AFr, 2004]

- kernel: ker $T = \{X \in TM \mid X \sqcup T = 0\}$
- Lie algebra generated by its image: $\mathfrak{g}_T := \operatorname{Lie}\langle X \,\lrcorner\, T \,|\, X \in V \rangle$ \mathfrak{g}_T is *not* related in any obvious way to the isotropy algebra of T!

Thm 1. Let (M, g, T) be a c.s.c. Riemannian mfld with parallel skew torsion T. Then ker T and $(\ker T)^{\perp}$ are ∇ -parallel and ∇^{g} -parallel integrable distributions, M is a Riemannian product s.t.

$$(M, g, T) = (M_1, g_1, T_1 = 0) \times (M_2, g_2, T_2), \quad \ker T_2 = \{0\}$$

Thm 2. If $\sigma_T = 0$ and $TM = \mathcal{T}_1 \oplus \ldots \oplus \mathcal{T}_q$ splits into \mathfrak{g}_T -irreducible, ∇ -par. distributions, then all \mathcal{T}_i are ∇^g -par. and integrable, M is a Riemannian product, and the torsion T splits accordingly

$$(M,g,T) = (M_1,g_1,T_1) \times \ldots \times (M_q,g_q,T_q)$$

A structure theorem for vanishing σ_T

Thm. Let (M^n, g) be an *irreducible*, c.s.c. Riemannian mnfld with parallel skew torsion $T \neq 0$ s.t. $\sigma_T = 0$, $n \geq 5$. Then M^n is a simple compact Lie group with biinvariant metric or its dual noncompact symmetric space.

Key ideas: $\sigma_T = 0 \Rightarrow$ Nomizu construction yields Lie algebra structure on TM

use \mathfrak{g}_T ; use a Skew Holonomy Theorem by Olmos-Reggiani (2012), based on A-Fr (2004), to show that G_T is simple and acts on TM by its adjoint rep.

prove that $\mathfrak{g}_T = \mathfrak{iso}(T) = \mathfrak{hol}^g$, hence acts irreducibly on TM, hence M is an irred. symmetric space by Berger's Thm

Exa. Fix $T \in \Lambda^3(\mathbb{R}^n)$ with constant coefficients s.t. $\sigma_T = 0$. Then the flat space (\mathbb{R}^n, g, T) is a reducible Riemannian mnfld with parallel skew torsion and $\sigma_T = 0 \rightarrow$ assumption '*M* irreducible' is crucial! (the Riemannian manifold is decomposable, but the torsion is not)

Classification of nat. red. spaces in n = 3

[Tricerri-Vanhecke, 1983]

Then $\sigma_T = 0$, and the Nomizu construction can be applied directly to obtain in a few lines:

Thm. Let $(M^3, g, T \neq 0)$ be a 3-dim. c.s.c. Riemannian mnfld with a naturally reductive structure. Then (M^3, g) is one of the following:

• \mathbb{R}^3, S^3 or \mathbb{H}^3 ;

• isometric to one of the following Lie groups with a suitable left-invariant metric:

SU(2), $\widetilde{SL}(2,\mathbb{R})$, or the 3-dim. Heisenberg group H^3

N.B. A general classification of mnfds with par. skew torsion is meaninless – any 3-dim. volume form of a metric connection is parallel.

Proof: $T = \lambda e_{123}$, $\mathcal{R} = \alpha \Omega \odot \Omega$, $\mathfrak{hol}^{\nabla} = \mathbb{R} \cdot \Omega$. By the Nomizu construction, e_1, e_2, e_3 , and Ω are a basis of \mathfrak{g} with commutator relations

$$[e_1, e_2] = -\alpha \Omega - \lambda e_3 =: \tilde{\Omega}, \quad [e_1, e_3] = \lambda e_2, \quad [e_2, e_3] = -\lambda e_1,$$
$$[\Omega, e_1] = e_2, \quad [\Omega, e_2] = -e_1, \quad [\Omega, e_3] = 0.$$

The 3-dimensional subspace \mathfrak{h} spanned by e_1, e_2 , and $\tilde{\Omega}$ is a Lie subalgebra of \mathfrak{g} that is transversal to the isotropy algebra \mathfrak{k} (since $\lambda \neq 0$). Consequently, M^3 is a Lie group with a left invariant metric. One checks that \mathfrak{h} has the commutator relations

$$[e_1, e_2] = \tilde{\Omega}, \quad [\tilde{\Omega}, e_1] = (\lambda^2 - \alpha)e_2, \quad [e_2, \tilde{\Omega}] = (\lambda^2 - \alpha)e_1.$$

For $\alpha = \lambda^2$, this is the 3-dimensional Heisenberg Lie algebra, otherwise it is $\mathfrak{su}(2)$ or $\mathfrak{sl}(2,\mathbb{R})$ depending on the sign of $\lambda^2 - \alpha$.

Classification of nat. red. spaces in n = 4

Thm. $(M^4, g, T \neq 0)$ a c. s. c. Riem. 4-mnfld with parallel skew torsion. Then

1) V := *T is a ∇ -parallel and ∇^g -parallel vector field.

2) $\operatorname{Hol}(\nabla^g) \subset \operatorname{SO}(3)$, hence M^4 is isometric to a product $N^3 \times \mathbb{R}$, where (N^3, g) is a 3-manifold with a parallel 3-form T.

• T has normal form $T = e_{123}$, so dim ker T = 1 and 2) follows at once from our 1st splitting thm: but the existence of V explains directly & geometrically the result in a few lines.

Cor. A 4-dim. naturally reductive Riemannian manifold with $T \neq 0$ is locally isometric to a Riemannian product $N^3 \times \mathbb{R}$, where N^3 is a 3-dimensional naturally reductive Riemannian manifold. [Kowalski-Vanhecke, 1983]

Classification of nat. red. spaces in n = 5

Assume $(M^5, g, T \neq 0)$ is Riemannian mnfd with parallel skew torsion

• \exists a local frame s.t (for constants $\lambda, \varrho \in \mathbb{R}$)

$$T = -(\varrho e_{125} + \lambda e_{345}), \quad *T = -(\varrho e_{34} + \lambda e_{12}), \quad \sigma_T = \varrho \lambda e_{1234}$$

• Case A: $\sigma_T = 0 \iff \varrho \lambda = 0 \iff \ker T \neq 0$: apply 2nd splitting thm,

Thm A: M^5 is loc. a product $N^3 \times N^2$. If M^5 is nat. red., then N^3 is nat. red. and N^2 has constant Gaussian curvature.

• Case B: $\sigma_T \neq 0$, two subcases:

* Case B.1: $\lambda \neq \varrho$, $\operatorname{Iso}(T) = \operatorname{SO}(2) \times \operatorname{SO}(2)$

* Case B.2: $\lambda = \varrho$, $\operatorname{Iso}(T) = \operatorname{U}(2)$

n = 5: Classification I

Case B.1: $\lambda \neq \varrho$

Thm. Let (M^5, g, T) be Riemannian 5-manifold with parallel skew torsion s.t. T has the normal form

$$T = -(\varrho e_{125} + \lambda e_{345}), \quad \varrho \lambda \neq 0 \text{ and } \varrho \neq \lambda.$$

Then $\nabla \mathcal{R} = 0$, i.e. M is locally naturally reductive, and the family of admissible torsion forms and curvature operators depends on 4 parameters.

[Use Clifford criterion to relate \mathcal{R} and σ_T]

Remark: For $\lambda = \rho$ (case B.2), no classification for parallel skew torsion is possible (many non-homogeneous Sasakian mnfds are known).

Now one can apply the Nomizu construction to obtain the classification:

n = 5: Classification II

Thm. A c.s.c. Riemannian 5-mnfld (M^5, g, T) with parallel skew torsion $T = -(\rho e_{125} + \lambda e_{345})$ with $\rho \lambda \neq 0$ is isometric to one of the following naturally reductive homogeneous spaces:

If $\lambda \neq \varrho$ (B.1):

a) The 5-dimensional Heisenberg group H^5 with a two-parameter family of left-invariant metrics,

b) A manifold of type $(G_1 \times G_2)/SO(2)$ where G_1 and G_2 are either SU(2), $SL(2,\mathbb{R})$, or H^3 , but not both equal to H^3 with one parameter $r \in \mathbb{Q}$ classifying the embedding of SO(2) and a two-parameter family of homogeneous metrics.

If $\lambda = \rho$ (B.2): One of the spaces above or SU(3)/SU(2) or SU(2,1)/SU(2) (the family of metrics depends on two parameters).

[Kowalski-Vanhecke, 1985] ₁₅

Example: The (2n + 1)-dimensional Heisenberg group

$$\begin{aligned} H^{2n+1} &= \left\{ \begin{bmatrix} 1 & x^t & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}; \, x, y \in \mathbb{R}^n, z \in \mathbb{R} \right\} &\cong \mathbb{R}^{2n+1}, \quad \text{local} \\ \text{coordinates} & x_1, \dots, x_n, y_1, \dots, y_n, z \end{aligned}$$

• Metric: parameters $\lambda = (\lambda_1, \dots, \lambda_n)$, all $\lambda_i > 0$

$$g_{\lambda} = \sum_{i=1}^{n} \frac{1}{\lambda_i} (dx_i^2 + dy_i^2) + \left[dz - \sum_{j=1}^{n} x_j dy_j \right]^2$$

• Contact str.:
$$\eta = dz - \sum_{i=1}^{n} x_i dy_1$$
, $\varphi = \sum_{i=1}^{n} \left[dx_i \otimes \left(\frac{\partial}{\partial y_i} + x_i \frac{\partial}{\partial z} \right) - dy_i \otimes \frac{\partial}{\partial x_i} \right]$

• Characteristic connection ∇ : torsion: $T = \eta \wedge d\eta = -\sum_{i=1}^n \lambda_i \eta \wedge \alpha_i \wedge \beta_i$

Curvature: $\mathcal{R} = \sum_{i \leq j}^{n} \lambda_i \lambda_j (\alpha_i \wedge \beta_i)^2$ [read: symm. tensor product of 2-forms] 16

The case n = 6 l

Assume ker T = 0 from beginning.

 $*\sigma_T$: a 2-form , classify by its **rank!** (=0,2,4,6 / Case A, B, C, D)

The idea: Can $*\sigma_T$ be interpreted as an almost complex structure?

Exa. Recall: $\Lambda^3(\mathbb{R}^6) \stackrel{\mathrm{U}(3)}{=} W_1^{(2)} \oplus W_3^{(12)} \oplus W_4^{(6)}$: types of almost complex structures preserved by a connection with skew torsion.

On $S^3 \times S^3$, there exist U(3)-structures with the following subcases:

Type	$W_1 \oplus W_3$	W_1	$W_3 \oplus W_4$	
$\operatorname{rk}(*\sigma_T)$	6	6	2	0
$\mathfrak{iso}(T)$	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	T^2	$\mathfrak{so}(3) \times \mathfrak{so}(3)$

 $W_1 \oplus W_3: \text{ torsion } T = \alpha \, e_{135} + \alpha' \, e_{246} + \beta \, (e_{245} + e_{236} + e_{146}).$ $W_3 \oplus W_4: \text{ torsion } T = (e_{12} - e_{34}) \wedge (\sigma \, e_5 + \nu \, e_6) + \tau \, (e_{12} - e_{34}) \wedge e_5.$

Case A: $\sigma_T = 0$

This covers, for example, torsions of form $\mu e_{123} + \nu e_{456}$. This is basically all by our 2nd splitting thm:

Thm. A c.s.c. Riemannian 6-mnfld with parallel skew torsion T s.t. $\sigma_T = 0$ and ker T = 0 splits into two 3-dimensional manifolds with parallel skew torsion,

$$(M^6, g, T) = (N_1^3, g_1, T_1) \times (N_2^3, g_2, T_2)$$

Cor. Any 6-dim. nat. red. homog. space with $\sigma_T = 0$ and $\ker T = 0$ is locally isometric to a product of two 3-dimensional nat. red. homog. spaces.

The case n = 6 II

Case B: $rk(*\sigma_T) = 2$

A priori, it is not possible to define an almost complex structure.

Thm. Let (M^6, g, T) be a 6-mnfd with parallel skew torsion s.t. ker T = 0, $\operatorname{rk}(*\sigma_T) = 2$. Then $\nabla \mathcal{R} = 0$, i.e. M is nat. red., and there exist constants $a, b, c, \alpha, \beta \in \mathbb{R}$ s.t.

$$T = \alpha(e_{12} + e_{34}) \wedge e_5 + \beta(e_{12} - e_{34}) \wedge e_6$$

$$\mathcal{R} = a(e_{12} + e_{34})^2 + c(e_{12} + e_{34}) \odot (e_{12} - e_{34}) + b(e_{12} - e_{34})^2$$

with the relation $a + b = -(\alpha^2 + \beta^2)$.

Now perform Nomizu construction to conclude:

Thm. A c.s.c. Riemannian 6-mnfd with parallel skew torsion T and $\operatorname{rk}(*\sigma_T) = 2$ is the product $G_1 \times G_2$ of two Lie groups equipped with a family of left invariant metrics. G_1 and G_2 are either $S^3 = \operatorname{SU}(2)$, $\widetilde{\operatorname{SL}}(2,\mathbb{R})$, or H^3 .

The case n = 6 III

Case B: $rk(*\sigma_T) = 4$

Thm. For the torsion form of a metric connection with parallel skew torsion (ker T = 0), the case rk ($*\sigma_T$) = 4 cannot occur.

[but: such forms exist if $\nabla T \neq 0$! – these results explain why a classification is possible without knowing the orbit class. of $\Lambda^3(\mathbb{R}^6)$ under SO(6)]

The case n = 6 IV

Case C: $rk(*\sigma_T) = 6$

Thm. Given (M^6, g, T) of the described type. Then all three eigenvalues of $*\sigma_T$ are equal. Hence $*\sigma_T$ is proportional to the fundamental form of an almost complex structure J. It's either nearly Kähler (W_1) , or it is naturally reductive of Gray-Hervella class $W_1 \oplus W_3$ and $\mathfrak{hol}^{\nabla} = \mathfrak{so}(3)$.

Why no W_4 part? if $\sigma_T = *\Omega$, then $d\sigma_T = d * \Omega$; but $d\sigma_T = (ddT)/2 = 0$, hence $\delta\Omega = 0$.

N.B. If class W_1 (M^6 nearly Kähler mnfd): the only homogeneous ones are $S^6, S^3 \times S^3, \mathbb{CP}^3, F(1,2)$. [Butruille, 2005]

It is not known whether there exist non-homogeneous nearly Kähler mnfds.

Again, we have an explicit formula for torsion and curvature, then perform the Nomizu construction (. . . and survive).

The case n = 6 V

Final result of Nomizu construction:

Thm. A c.s.c. Riemannian 6-mnfd with parallel skew torsion T, $rk(*\sigma_T) = 6$ and ker T = 0 that is *not* isometric to a nearly Kähler manifold is one of the following Lie groups with a suitable family of left-invariant metrics:

• The nilpotent Lie group with Lie algebra $\mathbb{R}^3 \times \mathbb{R}^3$ with commutator $[(v_1, w_1), (v_2, w_2)] = (0, v_1 \times v_2)$,

- the direct or the semidirect product of S^3 with \mathbb{R}^3 ,
- \bullet the product $S^3 \times S^3$,
- the Lie group $SL(2, \mathbb{C})$ viewed as a 6-dimensional real mnfd.

- find 3-dim. subalgebra defining a 3-dim. quotient and prove that the 6-dim. Lie alg. is its isometry algebra; for example, $SL(2, \mathbb{C})$ appears because it's the isometry group of hyperbolic space \mathbb{H}^3_{22}

Example: $SL(2, \mathbb{C})$ viewed as a 6-dimensional real mnfd

• Write $\mathfrak{sl}(2,\mathbb{C}) = \mathfrak{su}(2) \oplus i \mathfrak{su}(2)$; Killing form $\beta(X,Y)$ is neg. def. on $\mathfrak{su}(2)$, pos. def.on $i \mathfrak{su}(2)$

• $M^6 = G/H = SL(2, \mathbb{C}) \times SU(2)/SU(2)$ with H = SU(2) embedded diag (recall that $\mathfrak{hol}^{\nabla} = \mathfrak{so}(3)$; want that isotropy rep. = holonomy rep.)

• \mathfrak{m}_{α} red. compl. of \mathfrak{h} inside $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{su}(2)$ depending on $\alpha \in \mathbb{R} - \{1\}$,

 $\mathfrak{h} = \{ (B,B) : B \in \mathfrak{su}(2) \}, \quad \mathfrak{m}_{\alpha} := \{ (A + \alpha B, B) : A \in i \mathfrak{su}(2), B \in \mathfrak{su}(2) \}.$

• Riemannian metric:

 $g_{\lambda}((A_1 + \alpha B_1, B_1), (A_2 + \alpha B_2, B_2)) := \beta(A_1, A_2) - \frac{1}{\lambda^2}\beta(B_1, B_2), \quad \lambda > 0$

• In suitable ONB: almost hermitian str.: $\Omega := x_{12} + x_{34} + x_{56}$ with torsion

$$T = N + d\Omega \circ J = \left[2\lambda(1-\alpha) + \frac{4}{\lambda(1-\alpha)} \right] x_{135} + \frac{2}{\lambda(1-\alpha)} [x_{146} + x_{236} + x_{245}].$$

• Curvature: has to be a map $\mathcal{R} : \Lambda^2(M^6) \to \mathfrak{hol}^{\nabla} \subset \mathfrak{so}(6)$, here: mainly projection on $\mathfrak{hol}^{\nabla} = \mathfrak{so}(3)$.

• $\nabla T = \nabla \mathcal{R} = 0$, i.e. naturally reductive for all α, λ ; type $W_1 \oplus W_3$ or W_3