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Categorification in short

“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to
category theory, in particular:

sets are upgraded to categories

functions are upgraded to functors

equalities are upgraded to isomorphisms
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Motivation

Question: Why do we need categorification?

Answer: Categories have more structure than sets.

This can be used to get new useful information about objects we study.
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Example: Khovanov homology — links and crossings

L — diagram of an oriented link

n+ — number of right crossings

n− — number of left crossings

__???
??��������

???

right crossing

??���
���

__????????

left crossing
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Example: Khovanov homology — Kauffman bracket

Definition. The Kauffman bracket {L} ∈ Z[v , v−1] of L is defined via the
following rule:

 ���

���
????????

 =


− v




together with {©L} = (v + v−1){L}

and normalized by the conditions {∅} = 1.
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Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial Ĵ(L) of L is defined by

Ĵ(L) := (−1)n−vn+−2n−{L} ∈ Z[v , v−1]

Definition. The (usual) Jones polynomial J(L) is defined via
(v + v−1)J(L) = Ĵ(L).

Theorem. [Jones] J(L) is an invariant of an oriented link.

Example. For the Hopf link

H :=
oo//

we have Ĵ = (v + v−1)(v + v5) and J(H) = v + v5.
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Example: Khovanov homology — characterization of J

Theorem. The Jones polynomial is uniquely determined by the property
J(©) = 1

and the skein relation

v2J

 ??���
���

__????????

− v−2J

 __???
??��������

???

 = (v − v−1)J

 YY EE

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Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket J·K

C-mod — category of finite dimensional C-vector spaces

C-gmod — category of finite dimensional graded C-vector spaces

Comb(C-gmod) — category of finite complexes over C-gmod

J·K takes values in Comb(C-mod)

V — C in degree 1 ⊕ C in degree −1
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Example: Khovanov homology — categorification

Categorification of normalization conditions:

J∅K = 0→ C→ 0

J©LK = V ⊗ JLK

Categorification of the Kauffman bracket:

u

w
v ���

���
????????

}

�
~ = Total

0→

u

v

}

~ d→

u

v

}

~ 〈−1〉 → 0



Main difficulty: Definition of d .
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Example: Khovanov homology — the result

[·] — shift in homological position

〈·〉 — shift in grading

Theorem. [Khovanov]
Homology of J·K[n−]〈n+ − 2n−〉 is an invariant of an oriented link.

Note: J·K[n−]〈n+ − 2n−〉 is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of JLK[n−]〈n+ − 2n−〉 equals Ĵ(L).

Benefit: Khovanov homology is a strictly stronger invariant than Jones
polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
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Alternative approach — Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

@A BC
the cup diagram

GF ED

the cap diagram

__???
??��������

???

right crossing

??���
���

__????????

left crossing

Corollary. Every oriented link is a composition of elementary diagrams.
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Alternative approach — the Hopf link example

Example. For the Hopf link we could take:

GFED
GFED

??����� ??
__??

??����� ??
__??

@ABC
@ABC
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Alternative approach — quantum groups

g — simple finite dimensional Lie algebra

U(g) — the universal enveloping algebra of g

Fact. U(g) is a cocommutative Hopf algebra.

Consequence. The isomorphism V ⊗W ∼= W ⊗ V is involutive.

Uv (g) — the quantum enveloping algebra of g

Fact. Uv (g) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism V ⊗W ∼= W ⊗ V is not involutive.
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Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: n ∈ {0, 1, 2, . . . } should be thought of as a collection of n
points.

Morphisms: Oriented diagrams generated by (oriented) elementary
diagrams (up to isotopy), connecting the corresponding points, read from
bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
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Alternative approach — idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some Uv (g).

V — the “natural” Uv (g)-module

Define a functor F : Tang→ Uv (g)-mod

F(n) := V⊗n, where F(0) := C(v)

F(elementary diagram) := certain explicit homomorphisms of
Uv (g)-modules

oriented link L → tangle TL → endom. F(TL) of C(v)

Consequence: F(TL)(1) is an invariant of L.
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Quantum invariants — Uq(sl2)

Definition: Uv (sl2) has generators E , F , K , K−1 and relations

KE = v2EK , KF = v−2FK , KK−1 = K−1K = 1,

EF − FE =
K − K−1

v − v−1 .

Hopf structure:

∆(E ) = 1⊗E+E⊗K , ∆(F ) = K−1⊗F+F⊗1, ∆(K±1) = K±1⊗K±1.
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Quantum invariants — natural Uv(sl2)-module

Quantum numbers: [a] := va−v−a

v−v−1 , a ∈ Z

V — the “natural” Uv (sl2)-module

Basis: w0 and w1

Action:

Ewk = [k + 1]wk+1, Fwk = −[n − k + 1]wk−1,

K±1wk = −v±(2k−n)wk

Notation: wi1 ⊗ wi2 ⊗ · · · ⊗ wik denoted by i1i2 . . . ik

Consequence: Basis in V⊗n consists of 0-1–sequences of length n.
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Quantum invariants — action of tangles

Definition. The functor F : Tang→ Uv (sl2)-mod is given by:

∪ : C(v)→ V̂⊗2
1 is given by:

1 7→ 01 + v10.

∩ : V̂⊗2
1 → C(v) is given by:

00 7→ 0, 11 7→ 0, 01 7→ v−1, 10 7→ 1.

right crossing: V̂⊗2
1 → V̂⊗2

1 is given by:

00 7→ −v00, 11 7→ −v11, 01 7→ 10 + (v−1 − v)01, 10 7→ 01.

left crossing: V̂⊗2
1 → V̂⊗2

1 is given by:

00 7→ −v−100, 11 7→ −v−111, 01 7→ 10, 10 7→ 01 + (v − v−1)10.
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Quantum Uv(sl2)-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]

Let L be an oriented link. Then

the polynomials F(TL)(1) and Ĵ(L) coincide.
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Categorification of quantum Uv(sl2)-invariants — the idea

Cat — category of categories

Idea: Construct a functor from Tang to Cat?

Results in: Khovanov’s “functor-valued invariants of tangles”
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Approach via category O

gln — reductive Lie algebra over C

gln = n− ⊕ h⊕ n+ — standard triangular decomposition

O — BGG category O

Sn — the Weyl group of gln

Fact: Sn acts on h∗ in the natural way

M(λ) — Verma module with highest weight λ− ρ
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Blocks in O
O0 — the principal block of O

k ∈ {0, 1, 2, . . . , n}

Sk × Sn−k ⊂ SN — maximal Young subgroup

pk — corresponding parabolic subalgebra

O(k,n−k)
0 — parabolic subcategory of locally pk -finite modules

Definition: Cn :=
n⊕

k=0

O(k,n−k)
0

Fact: Cn has 2n simple objects up to isomorphism.

Definition: Gr(Cn) is the Grothendieck group of Cn

Volodymyr Mazorchuk Algebraic categorification and its applications, I 22/29
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Categorification of V⊗n for v = 1

Observation: dimV⊗n = rank(Gr(Cn))

p ⊂ q — parabolic subalgebras

I(p,q) : Oq ⊂ Op — natural inclusion

Z(p,q) : Op ⊂ Oq — adjoint Zuckerman functors

Note: Z(p,q) is only right exact

Action: E : Db(O(k,n−k))
I−→ Db(O(k,1,n−k−1))

LZ−→ Db(O(k+1,n−k−1))

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies V⊗n for v = 1.

Meaning: Taking the Grothendieck group results in V⊗n

Volodymyr Mazorchuk Algebraic categorification and its applications, I 23/29
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Categorification of v

Question: Where can we find v?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) O is equivalent to the
category of (ungraded) modules over a finite dimensional positively
graded and even Koszul algebra.

C̃n — graded version of Cn

Theorem. [Stroppel] The action of graded Zuckerman functors on
Db(C̃n) categorifies V⊗n

Here: v corresponds to shift of grading.
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Categorification of quantum Uv(sl2)-invariants — setup

Definition. [Bernstein-S. Gelfand] A projective functor on O is a functor
isomorphic to a direct summand of tensoring with a finite dimensional
module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of V⊗m for m < n

Use: Singular and singular-parabolic blocks of O
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Categorification of quantum Uv(sl2)-invariants — shuffling
functors

s ∈ Sn — simple reflection

θs — wall-crossing functor

Fact There are adjunctions θs → Id and Id→ θs

Definition.[Carlin] Shuffling functor Cs := Coker(Id→ θs) (adjoint:
coshuffling)

Fact. Shuffling is right exact.
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Categorification of quantum Uv(sl2)-invariants —
assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
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Categorification of quantum Uv(sl2)-invariants

Theorem.[Stroppel] This gives rise to a functor F : Tang→ Cat
(up to position and degree shifts).

Theorem.[Stroppel] For L oriented link, the functor
F(TL)[n−]〈n+ − 2n−〉 is an invariant of L.

Theorem.[Brundan-Stroppel] This is equivalent to Khovanov’s
categorification of Jones polynomial.
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THANK YOU!!!
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