2 2Igebraic cateyorification and itf applicationf,

Dolodymyr $\mathfrak{M a z o r d} \mathfrak{b e}$

Winter School "(下rometry and phyfici" January $\mathbf{1 7}=24,2015$, Srni, \mathfrak{C}_{3} ed R Republic

Categorification in short

Categorification in short

"Definition"

Categorification in short

"Definition"
Roughly speaking, categorification means an "upgrade" from set theory to category theory, in particular:

Categorification in short

"Definition"

Roughly speaking, categorification means an "upgrade" from set theory to category theory, in particular:
sets are upgraded to categories

Categorification in short

"Definition"

Roughly speaking, categorification means an "upgrade" from set theory to category theory, in particular:
sets are upgraded to categories
functions are upgraded to functors

Categorification in short

"Definition"

Roughly speaking, categorification means an "upgrade" from set theory to category theory, in particular:
sets are upgraded to categories
functions are upgraded to functors
equalities are upgraded to isomorphisms

Categorification in short

"Definition"

Roughly speaking, categorification means an "upgrade" from set theory to category theory, in particular:
sets are upgraded to categories
functions are upgraded to functors
equalities are upgraded to isomorphisms

Motivation

Motivation

Question: Why do we need categorification?

Motivation

Question: Why do we need categorification?

Answer: Categories have more structure than sets.

Motivation

Question: Why do we need categorification?

Answer: Categories have more structure than sets.

This can be used to get new useful information about objects we study.

Motivation

Question: Why do we need categorification?

Answer: Categories have more structure than sets.

This can be used to get new useful information about objects we study.

Example: Khovanov homology — links and crossings

Example: Khovanov homology — links and crossings

L - diagram of an oriented link

Example: Khovanov homology — links and crossings

L - diagram of an oriented link
n_{+}- number of right crossings

Example: Khovanov homology — links and crossings

L - diagram of an oriented link
n_{+}- number of right crossings
n_{-}- number of left crossings

Example: Khovanov homology — links and crossings

L - diagram of an oriented link
n_{+}- number of right crossings
n_{-}- number of left crossings

left crossing

Example: Khovanov homology — links and crossings

L - diagram of an oriented link
n_{+}- number of right crossings
n_{-}- number of left crossings

left crossing

Example: Khovanov homology - Kauffman bracket

Example: Khovanov homology - Kauffman bracket

Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]$ of L is defined via the following rule:

Example: Khovanov homology - Kauffman bracket

Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]$ of L is defined via the following rule:

Example: Khovanov homology — Kauffman bracket

Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]$ of L is defined via the following rule:

together with $\{\bigcirc L\}=\left(v+v^{-1}\right)\{L\}$

Example: Khovanov homology - Kauffman bracket

Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]$ of L is defined via the following rule:

together with $\{\bigcirc L\}=\left(v+v^{-1}\right)\{L\}$
and normalized by the conditions $\{\emptyset\}=1$.

Example: Khovanov homology - Kauffman bracket

Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]$ of L is defined via the following rule:

together with $\{\bigcirc L\}=\left(v+v^{-1}\right)\{L\}$
and normalized by the conditions $\{\emptyset\}=1$.

Example: Khovanov homology — Jones polynomial

Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{\mathrm{J}}(L)$ of L is defined by

$$
\hat{J}(L):=(-1)^{n_{-}} v^{n_{+}-2 n_{-}}\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]
$$

Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$
\hat{J}(L):=(-1)^{n_{-}} v^{n_{+}-2 n_{-}}\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]
$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via $\left(v+v^{-1}\right) \mathrm{J}(L)=\widehat{J}(L)$.

Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$
\hat{J}(L):=(-1)^{n_{-}} v^{n_{+}-2 n_{-}}\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]
$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via $\left(v+v^{-1}\right) \mathrm{J}(L)=\hat{J}(L)$.

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$
\hat{J}(L):=(-1)^{n_{-}} v^{n_{+}-2 n_{-}}\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]
$$

Definition. The (usual) Jones polynomial $\mathrm{J}(L)$ is defined via $\left(v+v^{-1}\right) \mathrm{J}(L)=\hat{J}(L)$.

Theorem. [Jones] $\mathrm{J}(L)$ is an invariant of an oriented link.
Example. For the Hopf link

$$
H:=\Omega
$$

Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$
\hat{J}(L):=(-1)^{n_{-}} v^{n_{+}-2 n_{-}}\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]
$$

Definition. The (usual) Jones polynomial $\mathrm{J}(L)$ is defined via $\left(v+v^{-1}\right) \mathrm{J}(L)=\hat{J}(L)$.

Theorem. [Jones] $\mathrm{J}(L)$ is an invariant of an oriented link.
Example. For the Hopf link

$$
H:=\Omega
$$

we have $\quad \hat{J}=\left(v+v^{-1}\right)\left(v+v^{5}\right) \quad$ and $\quad \mathrm{J}(H)=v+v^{5}$.

Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$
\hat{J}(L):=(-1)^{n_{-}} v^{n_{+}-2 n_{-}}\{L\} \in \mathbb{Z}\left[v, v^{-1}\right]
$$

Definition. The (usual) Jones polynomial $\mathrm{J}(L)$ is defined via $\left(v+v^{-1}\right) \mathrm{J}(L)=\hat{J}(L)$.

Theorem. [Jones] $\mathrm{J}(L)$ is an invariant of an oriented link.
Example. For the Hopf link

$$
H:=\Omega
$$

we have $\quad \hat{J}=\left(v+v^{-1}\right)\left(v+v^{5}\right) \quad$ and $\quad \mathrm{J}(H)=v+v^{5}$.

Example: Khovanov homology - characterization of J

Example: Khovanov homology - characterization of J

Theorem. The Jones polynomial is uniquely determined by the property $\mathrm{J}(\bigcirc)=1$

Example: Khovanov homology - characterization of J

Theorem. The Jones polynomial is uniquely determined by the property $\mathrm{J}(\bigcirc)=1$
and the skein relation

Example: Khovanov homology - characterization of J

Theorem. The Jones polynomial is uniquely determined by the property $\mathrm{J}(\bigcirc)=1$
and the skein relation

Example: Khovanov homology - characterization of J

Theorem. The Jones polynomial is uniquely determined by the property $\mathrm{J}(\bigcirc)=1$
and the skein relation

Example: Khovanov homology - idea and ingredients

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \cdot \rrbracket$

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \rrbracket \rrbracket$
\mathbb{C}-mod - category of finite dimensional \mathbb{C}-vector spaces

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \rrbracket$
\mathbb{C}-mod - category of finite dimensional \mathbb{C}-vector spaces
\mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \cdot \rrbracket$
\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces
\mathbb{C}-gmod - category of finite dimensional graded \mathbb{C}-vector spaces
$\operatorname{Com}^{b}(\mathbb{C}$-gmod $)$ - category of finite complexes over \mathbb{C}-gmod

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \cdot \rrbracket$
\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces
\mathbb{C}-gmod - category of finite dimensional graded \mathbb{C}-vector spaces
$\operatorname{Com}^{b}(\mathbb{C}$-gmod $)$ - category of finite complexes over \mathbb{C}-gmod
$\llbracket \cdot \rrbracket$ takes values in $\mathrm{Com}^{b}(\mathbb{C}$-mod)

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \cdot \rrbracket$
\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces
\mathbb{C}-gmod - category of finite dimensional graded \mathbb{C}-vector spaces
$\operatorname{Com}^{b}(\mathbb{C}$-gmod $)$ - category of finite complexes over \mathbb{C}-gmod
$\llbracket \cdot \rrbracket$ takes values in $\mathrm{Com}^{b}(\mathbb{C}$-mod)
$V-\mathbb{C}$ in degree $1 \oplus \mathbb{C}$ in degree -1

Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\llbracket \cdot \rrbracket$
\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces
\mathbb{C}-gmod - category of finite dimensional graded \mathbb{C}-vector spaces
$\operatorname{Com}^{b}(\mathbb{C}$-gmod $)$ - category of finite complexes over \mathbb{C}-gmod
$\llbracket \cdot \rrbracket$ takes values in $\mathrm{Com}^{b}(\mathbb{C}$-mod)
$V-\mathbb{C}$ in degree $1 \oplus \mathbb{C}$ in degree -1

Example: Khovanov homology — categorification

Example: Khovanov homology - categorification

Categorification of normalization conditions:

Example: Khovanov homology - categorification

Categorification of normalization conditions:

$$
\llbracket \varnothing \rrbracket=0 \rightarrow \mathbb{C} \rightarrow 0
$$

Example: Khovanov homology - categorification

Categorification of normalization conditions:
$\llbracket \varnothing \rrbracket=0 \rightarrow \mathbb{C} \rightarrow 0$
$\llbracket \bigcirc L \rrbracket=V \otimes \llbracket L \rrbracket$

Example: Khovanov homology - categorification

Categorification of normalization conditions:

$$
\llbracket \varnothing \rrbracket=0 \rightarrow \mathbb{C} \rightarrow 0
$$

$$
\llbracket \bigcirc L \rrbracket=V \otimes \llbracket L \rrbracket
$$

Categorification of the Kauffman bracket:

Example: Khovanov homology - categorification

Categorification of normalization conditions:

$$
\llbracket \varnothing \rrbracket=0 \rightarrow \mathbb{C} \rightarrow 0
$$

$$
\llbracket \bigcirc L \rrbracket=V \otimes \llbracket L \rrbracket
$$

Categorification of the Kauffman bracket:

$$
\llbracket<\|=\operatorname{Total}(0 \rightarrow \llbracket \xrightarrow{\rightarrow} \mathbb{d})(\rrbracket\langle-1\rangle \rightarrow 0)
$$

Example: Khovanov homology - categorification

Categorification of normalization conditions:

$$
\llbracket \varnothing \rrbracket=0 \rightarrow \mathbb{C} \rightarrow 0
$$

$$
\llbracket \bigcirc L \rrbracket=V \otimes \llbracket L \rrbracket
$$

Categorification of the Kauffman bracket:

Main difficulty: Definition of d.

Example: Khovanov homology - the result

Example: Khovanov homology — the result

[.] - shift in homological position

Example: Khovanov homology - the result

[•] - shift in homological position
$\langle\cdot\rangle$ — shift in grading

Example: Khovanov homology - the result

[•] - shift in homological position
$\langle\cdot\rangle$ - shift in grading
Theorem. [Khovanov]
Homology of $\llbracket \cdot \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of an oriented link.

Example: Khovanov homology - the result

[•] - shift in homological position
$\langle\cdot\rangle$ — shift in grading
Theorem. [Khovanov]
Homology of $\llbracket \cdot \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of an oriented link.

Note: $\llbracket \llbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is not an invariant of an oriented link.

Example: Khovanov homology - the result

[•] - shift in homological position
$\langle\cdot\rangle$ — shift in grading
Theorem. [Khovanov]
Homology of $\llbracket \rrbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of an oriented link.

Note: $\llbracket \llbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is not an invariant of an oriented link.
Decategorification theorem. [Khovanov]
Graded Euler characteristic of $\llbracket L \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$equals $\hat{J}(L)$.

Benefit: Khovanov homology is a strictly stronger invariant than Jones
polvnomial. For examole:

Example: Khovanov homology - the result

[.] — shift in homological position
$\langle\cdot\rangle$ — shift in grading
Theorem. [Khovanov]
Homology of $\llbracket \rrbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of an oriented link.

Note: $\llbracket \llbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is not an invariant of an oriented link.
Decategorification theorem. [Khovanov]
Graded Euler characteristic of $\llbracket L \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$equals $\hat{J}(L)$.
Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Example: Khovanov homology - the result

[.] — shift in homological position
$\langle\cdot\rangle$ — shift in grading
Theorem. [Khovanov]
Homology of $\llbracket \rrbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of an oriented link.

Note: $\llbracket \llbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is not an invariant of an oriented link.
Decategorification theorem. [Khovanov]
Graded Euler characteristic of $\llbracket L \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$equals $\hat{J}(L)$.
Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.

Example: Khovanov homology - the result

[.] — shift in homological position
$\langle\cdot\rangle$ — shift in grading
Theorem. [Khovanov]
Homology of $\llbracket \rrbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of an oriented link.

Note: $\llbracket \llbracket \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is not an invariant of an oriented link.
Decategorification theorem. [Khovanov]
Graded Euler characteristic of $\llbracket L \rrbracket\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$equals $\hat{J}(L)$.
Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.

Alternative approach - Alexander theorem

Alternative approach - Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid

Alternative approach - Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid
Elementary diagrams:

Alternative approach - Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid
Elementary diagrams:

the cup diagram

the cap diagram

right crossing

left crossing

Alternative approach - Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid
Elementary diagrams:

the cup diagram

the cap diagram

right crossing

left crossing

Corollary. Every oriented link is a composition of elementary diagrams.

Alternative approach - Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid
Elementary diagrams:

the cup diagram

the cap diagram

right crossing

left crossing

Corollary. Every oriented link is a composition of elementary diagrams.

Alternative approach - the Hopf link example

Alternative approach - the Hopf link example

Example. For the Hopf link we could take:

Alternative approach - the Hopf link example

Example. For the Hopf link we could take:

Alternative approach - the Hopf link example

Example. For the Hopf link we could take:

Alternative approach - quantum groups

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}
Fact. $U(\mathfrak{g})$ is a cocommutative Hopf algebra.

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}
Fact. $U(\mathfrak{g})$ is a cocommutative Hopf algebra.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is involutive.

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}
Fact. $U(\mathfrak{g})$ is a cocommutative Hopf algebra.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is involutive.
$U_{v}(\mathfrak{g})$ - the quantum enveloping algebra of \mathfrak{g}
Fact. $U_{v}(\mathfrak{g})$ is a Hopf algebra, not cocommutative.

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}
Fact. $U(\mathfrak{g})$ is a cocommutative Hopf algebra.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is involutive.
$U_{v}(\mathfrak{g})$ - the quantum enveloping algebra of \mathfrak{g}
Fact. $U_{v}(\mathfrak{g})$ is a Hopf algebra, not cocommutative.

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}
Fact. $U(\mathfrak{g})$ is a cocommutative Hopf algebra.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is involutive.
$U_{v}(\mathfrak{g})$ - the quantum enveloping algebra of \mathfrak{g}
Fact. $U_{v}(\mathfrak{g})$ is a Hopf algebra, not cocommutative.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is not involutive.

Alternative approach - quantum groups

\mathfrak{g} - simple finite dimensional Lie algebra
$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}
Fact. $U(\mathfrak{g})$ is a cocommutative Hopf algebra.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is involutive.
$U_{v}(\mathfrak{g})$ - the quantum enveloping algebra of \mathfrak{g}
Fact. $U_{v}(\mathfrak{g})$ is a Hopf algebra, not cocommutative.
Consequence. The isomorphism $V \otimes W \cong W \otimes V$ is not involutive.

Alternative approach - tangles

Alternative approach - tangles

Tang - the category of oriented tangles

Alternative approach - tangles

Tang - the category of oriented tangles

Objects: Non-negative integers

Alternative approach - tangles

Tang - the category of oriented tangles

Objects: Non-negative integers

Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Alternative approach - tangles

Tang - the category of oriented tangles
Objects: Non-negative integers
Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Alternative approach - tangles

Tang - the category of oriented tangles

Objects: Non-negative integers

Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2 Exampie 2. An oriented cap diagramis a morphism from 2 to 0

Alternative approach - tangles

Tang - the category of oriented tangles
Objects: Non-negative integers

Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.
Example 2: An oriented cap diagram is a morphism from 2 to 0

Alternative approach - tangles

Tang - the category of oriented tangles
Objects: Non-negative integers

Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.
Example 2: An oriented cap diagram is a morphism from 2 to 0 .

Alternative approach - tangles

Tang - the category of oriented tangles
Objects: Non-negative integers

Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.
Example 2: An oriented cap diagram is a morphism from 2 to 0.
Example 3: An oriented crossing is a morphism from 2 to 2.

Alternative approach - tangles

Tang - the category of oriented tangles
Objects: Non-negative integers

Informally: $n \in\{0,1,2, \ldots\}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.
Example 2: An oriented cap diagram is a morphism from 2 to 0.
Example 3: An oriented crossing is a morphism from 2 to 2.

Alternative approach — idea of quantum knot invariants

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
\qquad

Alternative approach — idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod

Alternative approach — idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F(elementary diagram)
$=$ certain explicit homomorphisms of

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F (elementary diagram) := certain explicit homomorphisms of $U_{v}(\mathfrak{g})$-modules

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F (elementary diagram) := certain explicit homomorphisms of $U_{v}(\mathfrak{g})$-modules
oriented link L

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F (elementary diagram) := certain explicit homomorphisms of $U_{v}(\mathfrak{g})$-modules
oriented link $L \rightarrow$ tangle T_{L}

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F (elementary diagram) := certain explicit homomorphisms of $U_{v}(\mathfrak{g})$-modules
oriented link $L \rightarrow$ tangle $T_{L} \rightarrow$ endom. $\mathrm{F}\left(T_{L}\right)$ of $\mathbb{C}(v)$

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F (elementary diagram) := certain explicit homomorphisms of $U_{v}(\mathfrak{g})$-modules
oriented link $L \rightarrow$ tangle $T_{L} \rightarrow$ endom. $\mathrm{F}\left(T_{L}\right)$ of $\mathbb{C}(v)$
Consequence: $\mathrm{F}\left(T_{L}\right)(1)$ is an invariant of L.

Alternative approach - idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]
Consider some $U_{v}(\mathfrak{g})$.
V - the "natural" $U_{v}(\mathfrak{g})$-module
Define a functor F: Tang $\rightarrow U_{v}(\mathfrak{g})$-mod
$\mathrm{F}(n):=V^{\otimes n}$, where $\mathrm{F}(0):=\mathbb{C}(v)$
F (elementary diagram) := certain explicit homomorphisms of $U_{v}(\mathfrak{g})$-modules
oriented link $L \rightarrow$ tangle $T_{L} \rightarrow$ endom. $\mathrm{F}\left(T_{L}\right)$ of $\mathbb{C}(v)$
Consequence: $\mathrm{F}\left(T_{L}\right)(1)$ is an invariant of L.

Quantum invariants - $U_{q}\left(\mathfrak{s l}_{2}\right)$

Quantum invariants - $U_{q}\left(\mathfrak{s l}_{2}\right)$

Definition: $U_{v}\left(\mathfrak{s l}_{2}\right)$ has generators E, F, K, K^{-1} and relations

Quantum invariants - $U_{q}\left(\mathfrak{s l}_{2}\right)$

Definition: $U_{v}\left(\mathfrak{s l}_{2}\right)$ has generators E, F, K, K^{-1} and relations

$$
K E=v^{2} E K, \quad K F=v^{-2} F K, \quad K K^{-1}=K^{-1} K=1,
$$

$$
E F-F E=\frac{K-K^{-1}}{v-v^{-1}}
$$

Quantum invariants $-U_{q}\left(\mathfrak{s l}_{2}\right)$

Definition: $U_{v}\left(\mathfrak{s l}_{2}\right)$ has generators E, F, K, K^{-1} and relations

$$
\begin{gathered}
K E=v^{2} E K, \quad K F=v^{-2} F K, \quad K K^{-1}=K^{-1} K=1, \\
E F-F E=\frac{K-K^{-1}}{v-v^{-1}} .
\end{gathered}
$$

Hopf structure:

Quantum invariants $-U_{q}\left(\mathfrak{s l}_{2}\right)$

Definition: $U_{v}\left(\mathfrak{s l}_{2}\right)$ has generators E, F, K, K^{-1} and relations

$$
\begin{gathered}
K E=v^{2} E K, \quad K F=v^{-2} F K, \quad K K^{-1}=K^{-1} K=1, \\
E F-F E=\frac{K-K^{-1}}{v-v^{-1}} .
\end{gathered}
$$

Hopf structure:
$\Delta(E)=1 \otimes E+E \otimes K, \quad \Delta(F)=K^{-1} \otimes F+F \otimes 1, \quad \Delta\left(K^{ \pm 1}\right)=K^{ \pm 1} \otimes K^{ \pm 1}$.

Quantum invariants $-U_{q}\left(\mathfrak{s l}_{2}\right)$

Definition: $U_{v}\left(\mathfrak{s l}_{2}\right)$ has generators E, F, K, K^{-1} and relations

$$
\begin{gathered}
K E=v^{2} E K, \quad K F=v^{-2} F K, \quad K K^{-1}=K^{-1} K=1, \\
E F-F E=\frac{K-K^{-1}}{v-v^{-1}} .
\end{gathered}
$$

Hopf structure:
$\Delta(E)=1 \otimes E+E \otimes K, \quad \Delta(F)=K^{-1} \otimes F+F \otimes 1, \quad \Delta\left(K^{ \pm 1}\right)=K^{ \pm 1} \otimes K^{ \pm 1}$.

Quantum invariants - natural $U_{v}\left(\mathfrak{s l}_{2}\right)$-module

Quantum invariants - natural $U_{v}\left(\mathfrak{s l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$

Quantum invariants - natural $U_{v}\left(\mathfrak{s l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{a}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module

Quantum invariants - natural $U_{v}\left(\mathfrak{S l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module
Basis: w_{0} and w_{1}

Quantum invariants - natural $U_{v}\left(\mathfrak{s l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module
Basis: w_{0} and w_{1}
Action:

Quantum invariants - natural $U_{v}\left(\mathfrak{S l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module
Basis: w_{0} and w_{1}

Action:

$$
\begin{gathered}
E w_{k}=[k+1] w_{k+1}, \quad F w_{k}=-[n-k+1] w_{k-1}, \\
K^{ \pm 1} w_{k}=-v^{ \pm(2 k-n)} w_{k}
\end{gathered}
$$

Quantum invariants - natural $U_{v}\left(\mathfrak{S l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module
Basis: w_{0} and w_{1}

Action:

$$
\begin{gathered}
E w_{k}=[k+1] w_{k+1}, \quad F w_{k}=-[n-k+1] w_{k-1}, \\
K^{ \pm 1} w_{k}=-v^{ \pm(2 k-n)} w_{k}
\end{gathered}
$$

Notation: $w_{i_{1}} \otimes w_{i_{2}} \otimes \cdots \otimes w_{i_{k}}$ denoted by $i_{1} i_{2} \ldots i_{k}$

Quantum invariants - natural $U_{v}\left(\mathfrak{S l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module
Basis: w_{0} and w_{1}
Action:

$$
\begin{gathered}
E w_{k}=[k+1] w_{k+1}, \quad F w_{k}=-[n-k+1] w_{k-1}, \\
K^{ \pm 1} w_{k}=-v^{ \pm(2 k-n)} w_{k}
\end{gathered}
$$

Notation: $w_{i_{1}} \otimes w_{i_{2}} \otimes \cdots \otimes w_{i_{k}}$ denoted by $i_{1} i_{2} \ldots i_{k}$
Consequence: Basis in $V^{\otimes n}$ consists of $0-1$-sequences of length n.

Quantum invariants - natural $U_{v}\left(\mathfrak{S l}_{2}\right)$-module

Quantum numbers: $[a]:=\frac{v^{2}-v^{-a}}{v-v^{-1}}, a \in \mathbb{Z}$
V - the "natural" $U_{v}\left(\mathfrak{s l}_{2}\right)$-module
Basis: w_{0} and w_{1}
Action:

$$
\begin{gathered}
E w_{k}=[k+1] w_{k+1}, \quad F w_{k}=-[n-k+1] w_{k-1}, \\
K^{ \pm 1} w_{k}=-v^{ \pm(2 k-n)} w_{k}
\end{gathered}
$$

Notation: $w_{i_{1}} \otimes w_{i_{2}} \otimes \cdots \otimes w_{i_{k}}$ denoted by $i_{1} i_{2} \ldots i_{k}$
Consequence: Basis in $V^{\otimes n}$ consists of $0-1$-sequences of length n.

Quantum invariants - action of tangles

Quantum invariants - action of tangles

Definition. The functor F : Tang $\rightarrow U_{v}\left(\mathfrak{s l}_{2}\right)$-mod is given by:

Quantum invariants - action of tangles

Definition. The functor $\mathrm{F}:$ Tang $\rightarrow U_{v}\left(\mathfrak{s l}_{2}\right)$-mod is given by:
$U: \mathbb{C}(v) \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
1 \mapsto 01+v 10 .
$$

Quantum invariants - action of tangles

Definition. The functor $\mathrm{F}:$ Tang $\rightarrow U_{v}\left(\mathfrak{s l}_{2}\right)$-mod is given by:
$U: \mathbb{C}(v) \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
1 \mapsto 01+v 10 .
$$

$\cap: \hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \mathbb{C}(v)$ is given by:

$$
00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1
$$

Quantum invariants - action of tangles

Definition. The functor F : Tang $\rightarrow U_{v}\left(\mathfrak{s l}_{2}\right)$-mod is given by:
$U: \mathbb{C}(v) \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
1 \mapsto 01+v 10 .
$$

$\cap: \hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \mathbb{C}(v)$ is given by:

$$
00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1
$$

right crossing: $\hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
00 \mapsto-v 00, \quad 11 \mapsto-v 11, \quad 01 \mapsto 10+\left(v^{-1}-v\right) 01, \quad 10 \mapsto 01 .
$$

Quantum invariants - action of tangles

Definition. The functor F : Tang $\rightarrow U_{v}\left(\mathfrak{s l}_{2}\right)$-mod is given by:
$U: \mathbb{C}(v) \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
1 \mapsto 01+v 10 .
$$

$\cap: \hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \mathbb{C}(v)$ is given by:

$$
00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1
$$

right crossing: $\hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
00 \mapsto-v 00, \quad 11 \mapsto-v 11, \quad 01 \mapsto 10+\left(v^{-1}-v\right) 01, \quad 10 \mapsto 01 .
$$

left crossing: $\hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:
$00 \mapsto-v^{-1} 00, \quad 11 \mapsto-v^{-1} 11, \quad 01 \mapsto 10, \quad 10 \mapsto 01+\left(v-v^{-1}\right) 10$.

Quantum invariants - action of tangles

Definition. The functor F : Tang $\rightarrow U_{v}\left(\mathfrak{s l}_{2}\right)$-mod is given by:
$U: \mathbb{C}(v) \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
1 \mapsto 01+v 10 .
$$

$\cap: \hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \mathbb{C}(v)$ is given by:

$$
00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1
$$

right crossing: $\hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:

$$
00 \mapsto-v 00, \quad 11 \mapsto-v 11, \quad 01 \mapsto 10+\left(v^{-1}-v\right) 01, \quad 10 \mapsto 01 .
$$

left crossing: $\hat{\mathcal{V}}_{1}^{\otimes 2} \rightarrow \hat{\mathcal{V}}_{1}^{\otimes 2}$ is given by:
$00 \mapsto-v^{-1} 00, \quad 11 \mapsto-v^{-1} 11, \quad 01 \mapsto 10, \quad 10 \mapsto 01+\left(v-v^{-1}\right) 10$.

Quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants and Jones polynomial

Quantum $U_{v}\left(s_{2}\right)$-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]

Quantum $U_{V}\left(s_{2}\right)$-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]
Let L be an oriented link. Then

Quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]
Let L be an oriented link. Then the polynomials $\mathrm{F}\left(T_{L}\right)(1)$ and $\hat{J}(L)$ coincide.

Quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]
Let L be an oriented link. Then the polynomials $\mathrm{F}\left(T_{L}\right)(1)$ and $\hat{J}(L)$ coincide.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - the idea

Categorification of quantum $U_{v}\left(s_{2}\right)$-invariants - the idea

Cat - category of categories

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - the idea

Cat - category of categories Idea: Construct a functor from Tang to Cat?

Categorification of quantum $U_{v}\left(s_{2}\right)$-invariants - the idea

Cat - category of categories
Idea: Construct a functor from Tang to Cat?
Results in: Khovanov's "functor-valued invariants of tangles"

Categorification of quantum $U_{v}\left(s_{2}\right)$-invariants - the idea

Cat - category of categories
Idea: Construct a functor from Tang to Cat?
Results in: Khovanov's "functor-valued invariants of tangles"

Approach via category \mathcal{O}

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}
$\mathfrak{g l}_{n}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$- standard triangular decomposition

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}
$\mathfrak{g l}_{n}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$- standard triangular decomposition
\mathcal{O} - BGG category \mathcal{O}

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}
$\mathfrak{g l}_{n}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$- standard triangular decomposition
\mathcal{O} - BGG category \mathcal{O}
S_{n} — the Weyl group of $\mathfrak{g l}_{n}$

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}
$\mathfrak{g l}_{n}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$- standard triangular decomposition
\mathcal{O} - BGG category \mathcal{O}
S_{n} — the Weyl group of $\mathfrak{g l}_{n}$

Fact: S_{n} acts on \mathfrak{h}^{*} in the natural way

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}
$\mathfrak{g l}_{n}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$- standard triangular decomposition
\mathcal{O} - BGG category \mathcal{O}
S_{n} — the Weyl group of $\mathfrak{g l}_{n}$

Fact: S_{n} acts on \mathfrak{h}^{*} in the natural way
$M(\lambda)$ - Verma module with highest weight $\lambda-\rho$

Approach via category \mathcal{O}

$\mathfrak{g l}_{n}$ - reductive Lie algebra over \mathbb{C}
$\mathfrak{g l}_{n}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$- standard triangular decomposition
\mathcal{O} - BGG category \mathcal{O}
S_{n} — the Weyl group of $\mathfrak{g l}_{n}$

Fact: S_{n} acts on \mathfrak{h}^{*} in the natural way
$M(\lambda)$ - Verma module with highest weight $\lambda-\rho$

Blocks in \mathcal{O}

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}

$k \in\{0,1,2, \ldots, n\}$

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup
\mathfrak{p}_{k} - corresponding parabolic subalgebra

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup
\mathfrak{p}_{k} - corresponding parabolic subalgebra
$\mathcal{O}_{0}^{(k, n-k)}$ - parabolic subcategory of locally \mathfrak{p}_{k}-finite modules

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup
\mathfrak{p}_{k} - corresponding parabolic subalgebra
$\mathcal{O}_{0}^{(k, n-k)}$ - parabolic subcategory of locally \mathfrak{p}_{k}-finite modules
Definition: $\mathcal{C}_{n}:=\bigoplus_{k=0}^{n} \mathcal{O}_{0}^{(k, n-k)}$

Fact: \mathcal{C}_{n} has 2^{n} simple objects up to isomorphism.

Definition: $\operatorname{Gr}\left(\mathcal{C}_{n}\right)$ is the Groth

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup
\mathfrak{p}_{k} - corresponding parabolic subalgebra
$\mathcal{O}_{0}^{(k, n-k)}$ - parabolic subcategory of locally \mathfrak{p}_{k}-finite modules
Definition: $\mathcal{C}_{n}:=\bigoplus_{k=0}^{n} \mathcal{O}_{0}^{(k, n-k)}$
Fact: \mathcal{C}_{n} has 2^{n} simple objects up to isomorphism.

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup
\mathfrak{p}_{k} - corresponding parabolic subalgebra
$\mathcal{O}_{0}^{(k, n-k)}$ - parabolic subcategory of locally \mathfrak{p}_{k}-finite modules
Definition: $\mathcal{C}_{n}:=\bigoplus_{k=0}^{n} \mathcal{O}_{0}^{(k, n-k)}$
Fact: \mathcal{C}_{n} has 2^{n} simple objects up to isomorphism.
Definition: $\operatorname{Gr}\left(\mathcal{C}_{n}\right)$ is the Grothendieck group of \mathcal{C}_{n}

Blocks in \mathcal{O}

\mathcal{O}_{0} - the principal block of \mathcal{O}
$k \in\{0,1,2, \ldots, n\}$
$S_{k} \times S_{n-k} \subset S_{N}$ - maximal Young subgroup
\mathfrak{p}_{k} - corresponding parabolic subalgebra
$\mathcal{O}_{0}^{(k, n-k)}$ - parabolic subcategory of locally \mathfrak{p}_{k}-finite modules
Definition: $\mathcal{C}_{n}:=\bigoplus_{k=0}^{n} \mathcal{O}_{0}^{(k, n-k)}$
Fact: \mathcal{C}_{n} has 2^{n} simple objects up to isomorphism.
Definition: $\operatorname{Gr}\left(\mathcal{C}_{n}\right)$ is the Grothendieck group of \mathcal{C}_{n}

Categorification of $V^{\otimes n}$ for $v=1$

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}-$ natural inclusion

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}-$ natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}$ - natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors
Note: $Z_{(\mathfrak{p}, \mathfrak{q})}$ is only right exact

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}$ — natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors
Note: $Z_{(\mathfrak{p}, \mathfrak{q})}$ is only right exact
Action: $\mathrm{E}: \mathcal{D}^{b}\left(\mathcal{O}^{(k, n-k)}\right) \xrightarrow{\mathrm{I}} \mathcal{D}^{b}\left(\mathcal{O}^{(k, 1, n-k-1)}\right) \xrightarrow{\mathcal{L Z}} \mathcal{D}^{b}\left(\mathcal{O}^{(k+1, n-k-1)}\right)$

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}$ — natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors
Note: $Z_{(\mathfrak{p}, \mathfrak{q})}$ is only right exact
Action: $\mathrm{E}: \mathcal{D}^{b}\left(\mathcal{O}^{(k, n-k)}\right) \xrightarrow{\mathrm{I}} \mathcal{D}^{b}\left(\mathcal{O}^{(k, 1, n-k-1)}\right) \xrightarrow{\mathcal{L Z}} \mathcal{D}^{b}\left(\mathcal{O}^{(k+1, n-k-1)}\right)$
Action: F - adjoint to E

Meaning: Taking the Grothendieck group results in V

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}$ — natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors
Note: $Z_{(\mathfrak{p}, \mathfrak{q})}$ is only right exact
Action: $\mathrm{E}: \mathcal{D}^{b}\left(\mathcal{O}^{(k, n-k)}\right) \xrightarrow{\mathrm{I}} \mathcal{D}^{b}\left(\mathcal{O}^{(k, 1, n-k-1)}\right) \xrightarrow{\mathcal{L Z}} \mathcal{D}^{b}\left(\mathcal{O}^{(k+1, n-k-1)}\right)$
Action: F - adjoint to E
Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^{\otimes n}$ for $v=1$.
Meaning: Taking the Grothendieck group results in V

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}$ - natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors
Note: $Z_{(\mathfrak{p}, \mathfrak{q})}$ is only right exact
Action: $\mathrm{E}: \mathcal{D}^{b}\left(\mathcal{O}^{(k, n-k)}\right) \xrightarrow{\mathrm{I}} \mathcal{D}^{b}\left(\mathcal{O}^{(k, 1, n-k-1)}\right) \xrightarrow{\mathcal{L Z}} \mathcal{D}^{b}\left(\mathcal{O}^{(k+1, n-k-1)}\right)$
Action: F - adjoint to E
Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^{\otimes n}$ for $v=1$.
Meaning: Taking the Grothendieck group results in $V^{\otimes n}$

Categorification of $V^{\otimes n}$ for $v=1$

Observation: $\operatorname{dim} V^{\otimes n}=\operatorname{rank}\left(\operatorname{Gr}\left(\mathcal{C}_{n}\right)\right)$
$\mathfrak{p} \subset \mathfrak{q}$ - parabolic subalgebras
$\mathrm{I}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{q}} \subset \mathcal{O}^{\mathfrak{p}}$ - natural inclusion
$\mathrm{Z}_{(\mathfrak{p}, \mathfrak{q})}: \mathcal{O}^{\mathfrak{p}} \subset \mathcal{O}^{\mathfrak{q}}$ - adjoint Zuckerman functors
Note: $Z_{(\mathfrak{p}, \mathfrak{q})}$ is only right exact
Action: $\mathrm{E}: \mathcal{D}^{b}\left(\mathcal{O}^{(k, n-k)}\right) \xrightarrow{\mathrm{I}} \mathcal{D}^{b}\left(\mathcal{O}^{(k, 1, n-k-1)}\right) \xrightarrow{\mathcal{L Z}} \mathcal{D}^{b}\left(\mathcal{O}^{(k+1, n-k-1)}\right)$
Action: F - adjoint to E
Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^{\otimes n}$ for $v=1$.
Meaning: Taking the Grothendieck group results in $V^{\otimes n}$

Categorification of v

Categorification of v

Question: Where can we find v ?

Categorification of v

Question: Where can we find v ?

Answer: Introduce grading.

Categorification of v

Question: Where can we find v ?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

Categorification of v

Question: Where can we find v ?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.
$\tilde{\mathcal{C}}_{n}-$ graded version of \mathcal{C}_{n}
\qquad

Categorification of v

Question: Where can we find v ?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.
$\tilde{\mathcal{C}}_{n}-$ graded version of \mathcal{C}_{n}
Theorem. [Stroppel] The action of graded Zuckerman functors on $\mathcal{D}^{b}\left(\tilde{\mathcal{C}}_{n}\right)$ categorifies $V{ }^{\otimes n}$

Categorification of v

Question: Where can we find v ?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.
$\tilde{\mathcal{C}}_{n}-$ graded version of \mathcal{C}_{n}
Theorem. [Stroppel] The action of graded Zuckerman functors on $\mathcal{D}^{b}\left(\tilde{\mathcal{C}}_{n}\right)$ categorifies $V^{\otimes n}$

Here: v corresponds to shift of grading.

Categorification of v

Question: Where can we find v ?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.
$\tilde{\mathcal{C}}_{n}-$ graded version of \mathcal{C}_{n}
Theorem. [Stroppel] The action of graded Zuckerman functors on $\mathcal{D}^{b}\left(\tilde{\mathcal{C}}_{n}\right)$ categorifies $V^{\otimes n}$

Here: v corresponds to shift of grading.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - setup

Categorification of quantum $U_{v}\left(\mathfrak{s L}_{2}\right)$-invariants - setup

Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - setup

Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.
\qquad
Use: Singular and singular-parabolic blocks of \mathcal{O}

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - setup

Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.
Need: Categorification of $V^{\otimes m}$ for $m<n$
Use: Singular and singular-parabolic blocks of \mathcal{O}

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - setup

Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.
Need: Categorification of $V^{\otimes m}$ for $m<n$
Use: Singular and singular-parabolic blocks of \mathcal{O}

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - setup

Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.
Need: Categorification of $V^{\otimes m}$ for $m<n$
Use: Singular and singular-parabolic blocks of \mathcal{O}

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants - shuffling functors

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - shuffling functors

$s \in S_{n}$ - simple reflection

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - shuffling functors

$s \in S_{n}$ - simple reflection
θ_{s} - wall-crossing functor

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants - shuffling functors

$s \in S_{n}$ - simple reflection
θ_{s} - wall-crossing functor
Fact There are adjunctions $\theta_{s} \rightarrow \mathrm{Id}$ and $\mathrm{Id} \rightarrow \theta_{s}$

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants - shuffling functors

$s \in S_{n}$ - simple reflection
θ_{s} - wall-crossing functor
Fact There are adjunctions $\theta_{s} \rightarrow \mathrm{Id}$ and $\mathrm{Id} \rightarrow \theta_{s}$
Definition.[Carlin] Shuffling functor $C_{s}:=\operatorname{Coker}\left(\operatorname{Id} \rightarrow \theta_{s}\right)$ (adjoint: coshuffling)

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants - shuffling functors

$s \in S_{n}$ - simple reflection
θ_{s} - wall-crossing functor
Fact There are adjunctions $\theta_{s} \rightarrow \mathrm{Id}$ and $\mathrm{Id} \rightarrow \theta_{s}$
Definition.[Carlin] Shuffling functor $C_{s}:=\operatorname{Coker}\left(\operatorname{Id} \rightarrow \theta_{s}\right)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants - shuffling functors

$s \in S_{n}$ - simple reflection
θ_{s} - wall-crossing functor
Fact There are adjunctions $\theta_{s} \rightarrow \mathrm{Id}$ and $\mathrm{Id} \rightarrow \theta_{s}$
Definition.[Carlin] Shuffling functor $C_{s}:=\operatorname{Coker}\left(\operatorname{Id} \rightarrow \theta_{s}\right)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants assignments

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants assignments

Assign:

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants assignments

Assign:
Cap diagram: Translation onto a wall.

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants assignments

Assign:
Cap diagram: Translation onto a wall.
Cup diagram: Translation out of a wall.

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.

Categorification of quantum $U_{v}\left(\mathfrak{S l}_{2}\right)$-invariants assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants

Theorem.[Stroppel] This gives rise to a functor $\mathcal{F}:$ Tang \rightarrow Cat (up to position and degree shifts).

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants

Theorem.[Stroppel] This gives rise to a functor $\mathcal{F}:$ Tang \rightarrow Cat (up to position and degree shifts).

Theorem.[Stroppel] For L oriented link, the functor $\mathcal{F}\left(T_{L}\right)\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of L.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants

Theorem.[Stroppel] This gives rise to a functor $\mathcal{F}:$ Tang \rightarrow Cat (up to position and degree shifts).

Theorem.[Stroppel] For L oriented link, the functor $\mathcal{F}\left(T_{L}\right)\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of L.

Theorem.[Brundan-Stroppel] This is equivalent to Khovanov's categorification of Jones polynomial.

Categorification of quantum $U_{v}\left(\mathfrak{s l}_{2}\right)$-invariants

Theorem.[Stroppel] This gives rise to a functor $\mathcal{F}:$ Tang \rightarrow Cat (up to position and degree shifts).

Theorem.[Stroppel] For L oriented link, the functor $\mathcal{F}\left(T_{L}\right)\left[n_{-}\right]\left\langle n_{+}-2 n_{-}\right\rangle$is an invariant of L.

Theorem.[Brundan-Stroppel] This is equivalent to Khovanov's categorification of Jones polynomial.

THANK YOU!!!

