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Complex representations of symmetric groups

Sn — the symmetric group on {1, 2, . . . , n}

Pn := {λ = (λ1, . . . , λk) : λ1 ≥ · · · ≥ λk , λ1 + · · ·+ λk = n}

λ ∈ Pn is called a partition of n, denoted λ ` n

Sλ — the Specht module associated to λ

Theorem. {Sλ : λ ` n} is a cross-section of isomorphism classes of
simple Sn-modules.

Examples:

I S(n) is the trivial module
I S(1,1,...,1) is the sign module
I S(n) ⊕ S(n−1,1) is the natural module
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Principal block of O for sln

g := sln(C)

O — BGG category O

O0 — principal block of O

Sn — Weyl group of g

M(µ) — Verma module with highest weight µ

L(µ) — unique simple quotient of M(µ)

Theorem. {L(w) := L(w · 0) : w ∈ Sn} is a cross-section of isomorphism
classes of simple objects in O0
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Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Grothendieck group and different bases

Corollary. Gr(O0) ∼= Z[Sn].

Note. {[L(w)] : w ∈ Sn} is the natural basis in Gr(O0).

∆(w) := M(w · 0)

Fact. {[∆(w)] : w ∈ Sn} is the standard basis in Gr(O0).

Reason: [∆(x) : L(y)] 6= 0 implies x ≤ y and [∆(x) : L(x)] = 1.

Fact. O0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : w ∈ Sn} is a basis in Gr(O0).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 4/20



Tilting modules

Theorem.[Collingwood-Irving, Ringel] For w ∈ Sn there is a unique
indecomposable module T (w) such that

I ∆(w) ⊂ T (w) and the cokernel has a Verma flag;
I T (w) is self-dual.

T (w) — tilting module

Fact. {[T (w)] : w ∈ Sn} is a basis in Gr(O0).

Reason: Extensions between Vermas are directed.

Question. Which bases in Z[Sn] correspond to:

I {[L(w)] : w ∈ Sn}?
I {[∆(w)] : w ∈ Sn}?
I {[P(w)] : w ∈ Sn}?
I {[T (w)] : w ∈ Sn}?
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Projective functors

Recall: A projective functor θ : O0 → O0 is a direct summand of
V ⊗C −, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective
functor θw such that θwP(e) ∼= P(w).

(b) {θw : w ∈ Sn} is a cross-section of isomorphism classes of
indecomposable projective endofunctors of O0.

Definition. P — the category of projective functors.

Note: P is additive, idempotent split with finitely many indecomposables
up to isomorphism, it has the structure of a tensor category.
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Combinatorics of projective functors

Observation. For s simple reflection and w ∈ Sn there are s.e.s.

∆(ws) ↪→ θs∆(w) � ∆(w) if ws > w ,

∆(w) ↪→ θs∆(w) � ∆(ws) if ws < w .

Fact. P is generated by θs , s simple reflection, as a tensor category.

Corollary. Gr⊕(P) ∼= Z[Sn]

Question. Which basis of Z[Sn] is {[θw ],w ∈ Sn}?

“Answer”: The same as {[P(w)],w ∈ Sn}.
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Categorification of the right regular Z[Sn]-module

Note. Projective functors are exact.

Consequence. Each [θw ] is an endomorphism of Gr(O0)

Identify: Gr(O0) with Z[Sn] via [∆(w)] 7→ w .

Identify: Gr⊕(P) with Z[Sn] via [θs ] 7→ (e + s).

Theorem The action of P on O0 is a categorification of the right regular
Z[Sn]-module.

Diagrammatically:

O0
P

mm Gr7−→ Z[Sn]
Z[Sn ]

jj
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Kazhdan-Lusztig basis

Note. The action of P categorifies Z[Sn] and not Sn.

Question. What is {[θw ],w ∈ Sn}?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform Z[Sn] to
the Hecke algebra.

Categorically this means to introduce a grading on O0.
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Alternative approach: coinvariants

C[x1, x2, . . . , xn] — polynomial algebra

grading: deg(xi ) = 2

Sn acts on C[x1, x2, . . . , xn] by permuting indices

C[x1, x2, . . . , xn]Sn
i — invariant homogeneous polynomials of degree i

C[x1, x2, . . . , xn]Sn
+ =

⊕
i>0 C[x1, x2, . . . , xn]sni

Definition. The coinvariant algebra is
C := C[x1, x2, . . . , xn]/(C[x1, x2, . . . , xn]Sn

+ ).

Fact. C ∼= C[Sn]Sn as an Sn-module, in particular, dimC = |Sn|.
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Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: Soergel bimodules

si = (i , i + 1) — simple reflection in Sn for i = 1, 2, . . . , n − 1

Fact. Sn is a Coxeter group with generators si

l : Sn → Z — the length function

Csi — the algebra of si -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules Bw , w ∈ Sn as
follows:

I Be := C
I For w = si1si2 . . . sik reduced decomposition, the bimodule Bw is the

unique indecomposable direct summand of

C⊗Csi1 C⊗Csi2 · · · ⊗C
sik C

which is not isomorphic to Bx , where l(x) < l(w).

Volodymyr Mazorchuk Algebraic categorification and its applications, II 11/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Alternative approach: combinatorial description of P

Bw , w ∈ Sn — Soergel bimodules

Note: For s simple reflection, Bs ⊗C Bs ∼= Bs ⊕ Bs .

Fact. For x , y ∈ Sn, each direct summand of the C-C-bimodule Bx ⊗C By
is isomorphic to Bz for some z ∈ Sn.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel’s combinatorial description]
The categories P and S are equivalent as tensor categories.

Corollary. Gr⊕[S] ∼= Z[Sn].

Volodymyr Mazorchuk Algebraic categorification and its applications, II 12/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of permutation modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

λLong — longest representatives in Wλ\W

Xλ — Serre subcategory of O0 generated by L(w), w 6∈ λLong

Fact: P preserves Xλ

Theorem. [M.-Stroppel] The induced action of P on O0/Xλ categorifies
the permutation module IndW

Wλ
triv.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/20



Categorification of induced sign modules

λ = (λ1, λ2, . . . , λk) — composition of n

gλ ⊂ g — corresponding parabolic subalgebra.

Wλ — corresponding Young subgroup of Sn

Shortλ — shortest representatives in W /Wλ

Yλ — Serre subcategory of O0 generated by L(w), w ∈ Shortλ,
(Rocha-Caridi’s parabolic category O)

Fact: P preserves Yλ

Theorem. [Soergel]
The action of P on Yλ categorifies the induced sign module IndW

Wλ
sign.
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Categorification of Specht modules

λ = (λ1, λ2, . . . , λk) — partition of n

w0 — longest element in W

wλ
0 — longest element in Wλ

Y ′λ — Serre subcategory of Yλ generated by L(w), w ∈ Shortλ, such
that GKdim(L(w)) < GKdim(L(wλ

0 w0))

Fact: P preserves Y ′λ

Theorem. [Khovanov-M.-Stroppel]
The induced action of P on Yλ/Y ′λ categorifies Sλt

.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 15/20



Categorification of Specht modules

λ = (λ1, λ2, . . . , λk) — partition of n

w0 — longest element in W

wλ
0 — longest element in Wλ

Y ′λ — Serre subcategory of Yλ generated by L(w), w ∈ Shortλ, such
that GKdim(L(w)) < GKdim(L(wλ

0 w0))

Fact: P preserves Y ′λ

Theorem. [Khovanov-M.-Stroppel]
The induced action of P on Yλ/Y ′λ categorifies Sλt

.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 15/20



Categorification of Specht modules

λ = (λ1, λ2, . . . , λk) — partition of n

w0 — longest element in W

wλ
0 — longest element in Wλ

Y ′λ — Serre subcategory of Yλ generated by L(w), w ∈ Shortλ, such
that GKdim(L(w)) < GKdim(L(wλ

0 w0))

Fact: P preserves Y ′λ

Theorem. [Khovanov-M.-Stroppel]
The induced action of P on Yλ/Y ′λ categorifies Sλt

.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 15/20



Categorification of Specht modules

λ = (λ1, λ2, . . . , λk) — partition of n

w0 — longest element in W

wλ
0 — longest element in Wλ

Y ′λ — Serre subcategory of Yλ generated by L(w), w ∈ Shortλ, such
that GKdim(L(w)) < GKdim(L(wλ

0 w0))

Fact: P preserves Y ′λ

Theorem. [Khovanov-M.-Stroppel]
The induced action of P on Yλ/Y ′λ categorifies Sλt
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Alternative categorification of Specht modules

λ = (λ1, λ2, . . . , λk) — partition of n

wλ
0 — longest element in Wλ

X ′λ — Serre subcategory of O0/Xλ generated by L(w), w ∈ λLong, such
that GKdim(L(w)) = GKdim(L(wλ

0 ))

Fact: P preserves X ′λ

Theorem. [M.-Stroppel]
The action of P on X ′λ categorifies Sλ.
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Comparison

λ = (λ1, λ2, . . . , λk) — partition of n

Question. Are categorifications of Sλ via X ′λ and Yλt/Y ′λt equivalent?

Need: An equivalence between these two categories which naturally
commutes with the action of P

Theorem. [M.-Stroppel]
These two categorifications are indeed equivalent (using derived
completion functors).

Theorem. [M.-Miemietz]
Simple transitive categorification of a Specht module (using P) is unique
up to equivalence.

Note. The latter works only in type A.
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Further categorifications using P

Kazhdan-Lusztig’s cell modules for Sn

Note. This requires a generalization of parabolic category O

Induced cell modules IndW
Wλ

cell

Note. Uses combinatorially defined subquotients of O0

Note. Permutation and induced sign modules are special cases

Wedderburn’s basis for Q[Sn]

Schur-Weyl duality
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Summary of bonuses provided by categorification

Various bases in Z[Sn] and in other categorified modules

Different submodules in Z[Sn]

Filtration of Z[Sn] using Gelfand-Kirillov dimension of simples in O

Uniqueness of categorification allows to compare different categories of
g-modules

Explicit knowledge of categorification provides explicit (partial)
information on the underlying category
(e.g. quiver and relations for blocks of O)
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THANK YOU!!!
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