2ugebraic categorification and itf applicationf,

Dolodymyr $\mathfrak{H a z o r d}$)ue

($\mathfrak{H p p} \mathfrak{a l a} \mathfrak{L}$ Iniverfity)

Winter School "(็xometry and phyfici" January $\mathbf{1 7}=24,2015$, Srni, $\mathfrak{C}_{\text {jed }}$ Riepublic

Complex representations of symmetric groups

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$

$$
\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}
$$

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ
Theorem. $\left\{\mathcal{S}^{\lambda}: \lambda \vdash n\right\}$ is a cross-section of isomorphism classes of simple S_{n}-modules.

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ
Theorem. $\left\{\mathcal{S}^{\lambda}: \lambda \vdash n\right\}$ is a cross-section of isomorphism classes of simple S_{n}-modules.

Examples:

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ
Theorem. $\left\{\mathcal{S}^{\lambda}: \lambda \vdash n\right\}$ is a cross-section of isomorphism classes of simple S_{n}-modules.

Examples:

- $\mathcal{S}^{(n)}$ is the trivial module

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ
Theorem. $\left\{\mathcal{S}^{\lambda}: \lambda \vdash n\right\}$ is a cross-section of isomorphism classes of simple S_{n}-modules.

Examples:

- $\mathcal{S}^{(n)}$ is the trivial module
- $\mathcal{S}^{(1,1, \ldots, 1)}$ is the sign module

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ
Theorem. $\left\{\mathcal{S}^{\lambda}: \lambda \vdash n\right\}$ is a cross-section of isomorphism classes of simple S_{n}-modules.

Examples:

- $\mathcal{S}^{(n)}$ is the trivial module
- $\mathcal{S}^{(1,1, \ldots, 1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

Complex representations of symmetric groups

S_{n} - the symmetric group on $\{1,2, \ldots, n\}$
$\mathbf{P}_{n}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1} \geq \cdots \geq \lambda_{k}, \lambda_{1}+\cdots+\lambda_{k}=n\right\}$
$\lambda \in \mathbf{P}_{n}$ is called a partition of n, denoted $\lambda \vdash n$
\mathcal{S}^{λ} - the Specht module associated to λ
Theorem. $\left\{\mathcal{S}^{\lambda}: \lambda \vdash n\right\}$ is a cross-section of isomorphism classes of simple S_{n}-modules.

Examples:

- $\mathcal{S}^{(n)}$ is the trivial module
- $\mathcal{S}^{(1,1, \ldots, 1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$$
\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})
$$

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$$
\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})
$$

\mathcal{O} - BGG category \mathcal{O}

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$$
\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})
$$

\mathcal{O} - BGG category \mathcal{O}
\mathcal{O}_{0} - principal block of \mathcal{O}

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})$
\mathcal{O} - BGG category \mathcal{O}
\mathcal{O}_{0} - principal block of \mathcal{O}
S_{n} — Weyl group of \mathfrak{g}

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})$
\mathcal{O} - BGG category \mathcal{O}
\mathcal{O}_{0} — principal block of \mathcal{O}
S_{n} — Weyl group of \mathfrak{g}
$M(\mu)$ - Verma module with highest weight μ

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})$
\mathcal{O} - BGG category \mathcal{O}
\mathcal{O}_{0} - principal block of \mathcal{O}
S_{n} — Weyl group of \mathfrak{g}
$M(\mu)$ - Verma module with highest weight μ
$L(\mu)$ - unique simple quotient of $M(\mu)$

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})$
\mathcal{O} - BGG category \mathcal{O}
\mathcal{O}_{0} — principal block of \mathcal{O}
S_{n} — Weyl group of \mathfrak{g}
$M(\mu)$ - Verma module with highest weight μ
$L(\mu)$ - unique simple quotient of $M(\mu)$
Theorem. $\left\{L(w):=L(w \cdot 0): w \in S_{n}\right\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_{0}

Principal block of \mathcal{O} for $\mathfrak{s l}_{n}$

$\mathfrak{g}:=\mathfrak{s l}_{n}(\mathbb{C})$
\mathcal{O} - BGG category \mathcal{O}
\mathcal{O}_{0} — principal block of \mathcal{O}
S_{n} — Weyl group of \mathfrak{g}
$M(\mu)$ - Verma module with highest weight μ
$L(\mu)$ - unique simple quotient of $M(\mu)$
Theorem. $\left\{L(w):=L(w \cdot 0): w \in S_{n}\right\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_{0}

Grothendieck group and different bases

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$
Fact. $\left\{[\Delta(w)]: w \in S_{n}\right\}$ is the standard basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$
Fact. $\left\{[\Delta(w)]: w \in S_{n}\right\}$ is the standard basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: $[\Delta(x): L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x): L(x)]=1$.

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$
Fact. $\left\{[\Delta(w)]: w \in S_{n}\right\}$ is the standard basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: $[\Delta(x): L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x): L(x)]=1$.
Fact. \mathcal{O}_{0} has finite global dimension.

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$
Fact. $\left\{[\Delta(w)]: w \in S_{n}\right\}$ is the standard basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: $[\Delta(x): L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x): L(x)]=1$.
Fact. \mathcal{O}_{0} has finite global dimension.
$P(w)$ - the indecomposable projective cover of $L(w)$

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$
Fact. $\left\{[\Delta(w)]: w \in S_{n}\right\}$ is the standard basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: $[\Delta(x): L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x): L(x)]=1$.
Fact. \mathcal{O}_{0} has finite global dimension.
$P(w)$ - the indecomposable projective cover of $L(w)$
Corollary. $\left\{[P(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.

Grothendieck group and different bases

Corollary. $\operatorname{Gr}\left(\mathcal{O}_{0}\right) \cong \mathbb{Z}\left[S_{n}\right]$.
Note. $\left\{[L(w)]: w \in S_{n}\right\}$ is the natural basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
$\Delta(w):=M(w \cdot 0)$
Fact. $\left\{[\Delta(w)]: w \in S_{n}\right\}$ is the standard basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: $[\Delta(x): L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x): L(x)]=1$.
Fact. \mathcal{O}_{0} has finite global dimension.
$P(w)$ - the indecomposable projective cover of $L(w)$
Corollary. $\left\{[P(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.

Tilting modules

$$
\text { indecomposable module } T(w) \text { such that }
$$

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

- $\left\{[L(w)]: w \in S_{n}\right\} ?$

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

- $\left\{[L(w)]: w \in S_{n}\right\}$?
- $\left\{[\Delta(w)]: w \in S_{n}\right\}$?

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

- $\left\{[L(w)]: w \in S_{n}\right\}$?
- $\left\{[\Delta(w)]: w \in S_{n}\right\}$?
- $\left\{[P(w)]: w \in S_{n}\right\}$?

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

- $\left\{[L(w)]: w \in S_{n}\right\}$?
- $\left\{[\Delta(w)]: w \in S_{n}\right\}$?
- $\left\{[P(w)]: w \in S_{n}\right\}$?
- $\left\{[T(w)]: w \in S_{n}\right\}$?

Tilting modules

Theorem. [Collingwood-Irving, Ringel] For $w \in S_{n}$ there is a unique indecomposable module $T(w)$ such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- $T(w)$ is self-dual.

$T(w)$ - tilting module

Fact. $\left\{[T(w)]: w \in S_{n}\right\}$ is a basis in $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$.
Reason: Extensions between Vermas are directed.
Question. Which bases in $\mathbb{Z}\left[S_{n}\right]$ correspond to:

- $\left\{[L(w)]: w \in S_{n}\right\}$?
- $\left\{[\Delta(w)]: w \in S_{n}\right\}$?
- $\left\{[P(w)]: w \in S_{n}\right\}$?
- $\left\{[T(w)]: w \in S_{n}\right\}$?

Projective functors

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes \mathbb{C}-$, where V is finite dimensional

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]
(a) There is a unique (up to isomorphism) indecomposable projective functor θ_{w} such that $\theta_{w} P(e) \cong P(w)$.

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes \mathbb{C}-$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]
(a) There is a unique (up to isomorphism) indecomposable projective functor θ_{w} such that $\theta_{w} P(e) \cong P(w)$.
\qquad

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]
(a) There is a unique (up to isomorphism) indecomposable projective functor θ_{w} such that $\theta_{w} P(e) \cong P(w)$.
(b) $\left\{\theta_{w}: w \in S_{n}\right\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_{0}.

Definition. \mathcal{P} - the category of projective functors.
\qquad

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]
(a) There is a unique (up to isomorphism) indecomposable projective functor θ_{w} such that $\theta_{w} P(e) \cong P(w)$.
(b) $\left\{\theta_{w}: w \in S_{n}\right\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_{0}.

Definition. \mathcal{P} - the category of projective functors.
Note: \mathcal{P} is additive, idempotent split with finitely many indecomposables

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]
(a) There is a unique (up to isomorphism) indecomposable projective functor θ_{w} such that $\theta_{w} P(e) \cong P(w)$.
(b) $\left\{\theta_{w}: w \in S_{n}\right\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_{0}.

Definition. \mathcal{P} - the category of projective functors.
Note: \mathcal{P} is additive, idempotent split with finitely many indecomposables up to isomorphism, it has the structure of a tensor category.

Projective functors

Recall: A projective functor $\theta: \mathcal{O}_{0} \rightarrow \mathcal{O}_{0}$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]
(a) There is a unique (up to isomorphism) indecomposable projective functor θ_{w} such that $\theta_{w} P(e) \cong P(w)$.
(b) $\left\{\theta_{w}: w \in S_{n}\right\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_{0}.

Definition. \mathcal{P} - the category of projective functors.
Note: \mathcal{P} is additive, idempotent split with finitely many indecomposables up to isomorphism, it has the structure of a tensor category.

Combinatorics of projective functors

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,
$\Delta(w) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w s)$ if $w s<w$.

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,
$\Delta(w) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w s)$ if $w s<w$.
Fact. \mathcal{P} is generated by θ_{s}, s simple reflection, as a tensor category.

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,
$\Delta(w) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w s)$ if $w s<w$.
Fact. \mathcal{P} is generated by θ_{s}, s simple reflection, as a tensor category.
Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}\left[S_{n}\right]$

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,
$\Delta(w) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w s)$ if $w s<w$.
Fact. \mathcal{P} is generated by θ_{s}, s simple reflection, as a tensor category.
Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}\left[S_{n}\right]$
Question. Which basis of $\mathbb{Z}\left[S_{n}\right]$ is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,
$\Delta(w) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w s)$ if $w s<w$.
Fact. \mathcal{P} is generated by θ_{s}, s simple reflection, as a tensor category.
Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}\left[S_{n}\right]$
Question. Which basis of $\mathbb{Z}\left[S_{n}\right]$ is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
"Answer": The same as $\left\{[P(w)], w \in S_{n}\right\}$.

Combinatorics of projective functors

Observation. For s simple reflection and $w \in S_{n}$ there are s.e.s.
$\Delta(w s) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w)$ if $w s>w$,
$\Delta(w) \hookrightarrow \theta_{s} \Delta(w) \rightarrow \Delta(w s)$ if $w s<w$.
Fact. \mathcal{P} is generated by θ_{s}, s simple reflection, as a tensor category.
Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}\left[S_{n}\right]$
Question. Which basis of $\mathbb{Z}\left[S_{n}\right]$ is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
"Answer": The same as $\left\{[P(w)], w \in S_{n}\right\}$.

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ Identify: $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ with $\mathbb{Z}\left[S_{n}\right]$ via $[\Delta(w)] \mapsto w$.

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ Identify: $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ with $\mathbb{Z}\left[S_{n}\right]$ via $[\Delta(w)] \mapsto w$. Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}\left[S_{n}\right]$ via $\left[\theta_{s}\right] \mapsto(e+s)$.

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$
Identify: $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ with $\mathbb{Z}\left[S_{n}\right]$ via $[\Delta(w)] \mapsto w$.
Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}\left[S_{n}\right]$ via $\left[\theta_{s}\right] \mapsto(e+s)$.
Theorem The action of \mathcal{P} on \mathcal{O}_{0} is a categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module.

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$
Identify: $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ with $\mathbb{Z}\left[S_{n}\right]$ via $[\Delta(w)] \mapsto w$.
Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}\left[S_{n}\right]$ via $\left[\theta_{s}\right] \mapsto(e+s)$.
Theorem The action of \mathcal{P} on \mathcal{O}_{0} is a categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module.

Diagrammatically:

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$
Identify: $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ with $\mathbb{Z}\left[S_{n}\right]$ via $[\Delta(w)] \mapsto w$.
Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}\left[S_{n}\right]$ via $\left[\theta_{s}\right] \mapsto(e+s)$.
Theorem The action of \mathcal{P} on \mathcal{O}_{0} is a categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module.

Diagrammatically:

$$
\mathcal{O}_{0} \circlearrowleft_{\mathcal{P}} \quad \stackrel{\mathrm{Gr}}{\longmapsto} \quad \mathbb{Z}\left[S_{n}\right] S_{\mathbb{Z}\left[S_{n}\right]}
$$

Categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module

Note. Projective functors are exact.

Consequence. Each $\left[\theta_{w}\right]$ is an endomorphism of $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$
Identify: $\operatorname{Gr}\left(\mathcal{O}_{0}\right)$ with $\mathbb{Z}\left[S_{n}\right]$ via $[\Delta(w)] \mapsto w$.
Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}\left[S_{n}\right]$ via $\left[\theta_{s}\right] \mapsto(e+s)$.
Theorem The action of \mathcal{P} on \mathcal{O}_{0} is a categorification of the right regular $\mathbb{Z}\left[S_{n}\right]$-module.

Diagrammatically:

$$
\mathcal{O}_{0} \circlearrowleft_{\mathcal{P}} \quad \stackrel{\mathrm{Gr}}{\longmapsto} \quad \mathbb{Z}\left[S_{n}\right] S_{\mathbb{Z}\left[S_{n}\right]}
$$

Kazhdan-Lusztig basis

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Recent algebraic proof by Elias-Williamson

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
Answer. This is the Kazhdan-Lusztig basis.
Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}\left[S_{n}\right]$ to

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
Answer. This is the Kazhdan-Lusztig basis.
Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).
Remark. Recent algebraic proof by Elias-Williamson.

Categorically this means to introduce a grading on \mathcal{O}_{0}

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
Answer. This is the Kazhdan-Lusztig basis.
Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).
Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}\left[S_{n}\right]$ to the Hecke algebra.

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
Answer. This is the Kazhdan-Lusztig basis.
Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).
Remark. Recent algebraic proof by Elias-Williamson.
Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}\left[S_{n}\right]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_{0}.

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}\left[S_{n}\right]$ and not S_{n}.
Question. What is $\left\{\left[\theta_{w}\right], w \in S_{n}\right\}$?
Answer. This is the Kazhdan-Lusztig basis.
Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).
Remark. Recent algebraic proof by Elias-Williamson.
Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}\left[S_{n}\right]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_{0}.

Alternative approach: coinvariants

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra grading: $\operatorname{deg}\left(x_{i}\right)=2$

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra
grading: $\operatorname{deg}\left(x_{i}\right)=2$
S_{n} acts on $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permuting indices

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra
grading: $\operatorname{deg}\left(x_{i}\right)=2$
S_{n} acts on $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permuting indices
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$ - invariant homogeneous polynomials of degree i

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra
grading: $\operatorname{deg}\left(x_{i}\right)=2$
S_{n} acts on $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permuting indices
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$ - invariant homogeneous polynomials of degree i
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}=\bigoplus_{i>0} \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra
grading: $\operatorname{deg}\left(x_{i}\right)=2$
S_{n} acts on $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permuting indices
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{\mathbb{S}_{n}}$ - invariant homogeneous polynomials of degree i
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}=\bigoplus_{i>0} \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{\mathbb{S}_{n}}$
Definition. The coinvariant algebra is
$\mathbf{C}:=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}\right)$.

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra
grading: $\operatorname{deg}\left(x_{i}\right)=2$
S_{n} acts on $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permuting indices
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$ - invariant homogeneous polynomials of degree i
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}=\bigoplus_{i>0} \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$
Definition. The coinvariant algebra is
$\mathbf{C}:=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}\right)$.
Fact. $\mathbf{C} \cong \mathbb{C}\left[S_{n}\right]_{S_{n}}$ as an S_{n}-module, in particular, $\operatorname{dim} \mathbf{C}=\left|S_{n}\right|$.

Alternative approach: coinvariants

$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ - polynomial algebra
grading: $\operatorname{deg}\left(x_{i}\right)=2$
S_{n} acts on $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permuting indices
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$ - invariant homogeneous polynomials of degree i
$\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}=\bigoplus_{i>0} \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{i}^{S_{n}}$
Definition. The coinvariant algebra is
$\mathbf{C}:=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{+}^{S_{n}}\right)$.
Fact. $\mathbf{C} \cong \mathbb{C}\left[S_{n}\right]_{S_{n}}$ as an S_{n}-module, in particular, $\operatorname{dim} \mathbf{C}=\left|S_{n}\right|$.

Alternative approach: Soergel bimodules

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}
$\mathfrak{l}: S_{n} \rightarrow \mathbb{Z}$ — the length function

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}
$\mathfrak{l}: S_{n} \rightarrow \mathbb{Z}$ - the length function
$\mathbf{C}^{s_{i}}$ — the algebra of s_{i}-invariants in \mathbf{C}

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}
$\mathfrak{l}: S_{n} \rightarrow \mathbb{Z}$ - the length function
$\mathbf{C}^{s_{i}}$ — the algebra of s_{i}-invariants in \mathbf{C}
Definition. [Soergel] Define inductively C-C-bimodules $B_{w}, w \in S_{n}$ as follows:

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}
$\mathfrak{l}: S_{n} \rightarrow \mathbb{Z}$ - the length function
$\mathbf{C}^{s_{i}}$ — the algebra of s_{i}-invariants in \mathbf{C}
Definition. [Soergel] Define inductively C-C-bimodules $B_{w}, w \in S_{n}$ as follows:

- $B_{e}:=\mathbf{C}$

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}
$\mathfrak{l}: S_{n} \rightarrow \mathbb{Z}$ - the length function
$\mathbf{C}^{s_{i}}$ — the algebra of s_{i}-invariants in \mathbf{C}
Definition. [Soergel] Define inductively C-C-bimodules $B_{w}, w \in S_{n}$ as follows:

- $B_{e}:=\mathbf{C}$
- For $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ reduced decomposition, the bimodule B_{w} is the unique indecomposable direct summand of

$$
\mathbf{C} \otimes_{\mathbf{C}^{s_{1}}} \mathbf{C} \otimes_{\mathbf{C}^{s_{2}}} \cdots \otimes_{\mathbf{C}^{s_{i}}} \mathbf{C}
$$

which is not isomorphic to B_{x}, where $\mathfrak{l}(x)<\mathfrak{l}(w)$.

Alternative approach: Soergel bimodules

$s_{i}=(i, i+1)$ - simple reflection in S_{n} for $i=1,2, \ldots, n-1$
Fact. S_{n} is a Coxeter group with generators s_{i}
$\mathfrak{l}: S_{n} \rightarrow \mathbb{Z}$ - the length function
$\mathbf{C}^{s_{i}}$ — the algebra of s_{i}-invariants in \mathbf{C}
Definition. [Soergel] Define inductively C-C-bimodules $B_{w}, w \in S_{n}$ as follows:

- $B_{e}:=\mathbf{C}$
- For $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ reduced decomposition, the bimodule B_{w} is the unique indecomposable direct summand of

$$
\mathbf{C} \otimes_{\mathbf{C}^{s_{1}}} \mathbf{C} \otimes_{\mathbf{C}^{s_{2}}} \cdots \otimes_{\mathbf{C}^{s_{i}}} \mathbf{C}
$$

which is not isomorphic to B_{x}, where $\mathfrak{l}(x)<\mathfrak{l}(w)$.

Alternative approach: combinatorial description of \mathcal{P}

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules
Note: For s simple reflection, $B_{s} \otimes \mathrm{c} B_{s} \cong B_{s} \oplus B_{s}$.

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules
Note: For s simple reflection, $B_{s} \otimes \mathrm{c} B_{s} \cong B_{s} \oplus B_{s}$.
Fact. For $x, y \in S_{n}$, each direct summand of the \mathbf{C} - \mathbf{C}-bimodule $B_{x} \otimes \mathbf{c} B_{y}$ is isomorphic to B_{z} for some $z \in S_{n}$.

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules
Note: For s simple reflection, $B_{s} \otimes \mathrm{c} B_{s} \cong B_{s} \oplus B_{s}$.
Fact. For $x, y \in S_{n}$, each direct summand of the \mathbf{C} - \mathbf{C}-bimodule $B_{x} \otimes c B_{y}$ is isomorphic to B_{z} for some $z \in S_{n}$.

Definition. \mathcal{S} is the (additive) tensor category of Soergel bimodules.

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules
Note: For s simple reflection, $B_{s} \otimes \mathrm{c} B_{s} \cong B_{s} \oplus B_{s}$.
Fact. For $x, y \in S_{n}$, each direct summand of the \mathbf{C} - \mathbf{C}-bimodule $B_{x} \otimes \mathbf{c} B_{y}$ is isomorphic to B_{z} for some $z \in S_{n}$.

Definition. \mathcal{S} is the (additive) tensor category of Soergel bimodules.
Theorem. [Soergel's combinatorial description]
The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules
Note: For s simple reflection, $B_{s} \otimes \mathrm{c} B_{s} \cong B_{s} \oplus B_{s}$.
Fact. For $x, y \in S_{n}$, each direct summand of the \mathbf{C} - \mathbf{C}-bimodule $B_{x} \otimes \mathbf{c} B_{y}$ is isomorphic to B_{z} for some $z \in S_{n}$.

Definition. \mathcal{S} is the (additive) tensor category of Soergel bimodules.
Theorem. [Soergel's combinatorial description]
The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.
Corollary. $\operatorname{Gr}_{\oplus}[\mathcal{S}] \cong \mathbb{Z}\left[S_{n}\right]$.

Alternative approach: combinatorial description of \mathcal{P}

$B_{w}, w \in S_{n}$ - Soergel bimodules
Note: For s simple reflection, $B_{s} \otimes \mathrm{c} B_{s} \cong B_{s} \oplus B_{s}$.
Fact. For $x, y \in S_{n}$, each direct summand of the \mathbf{C} - \mathbf{C}-bimodule $B_{x} \otimes \mathbf{c} B_{y}$ is isomorphic to B_{z} for some $z \in S_{n}$.

Definition. \mathcal{S} is the (additive) tensor category of Soergel bimodules.
Theorem. [Soergel's combinatorial description]
The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.
Corollary. $\operatorname{Gr}_{\oplus}[\mathcal{S}] \cong \mathbb{Z}\left[S_{n}\right]$.

Categorification of permutation modules

Categorification of permutation modules

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-\text { composition of } n
$$

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} — corresponding Young subgroup of S_{n}
${ }_{\lambda}$ Long - longest representatives in $W_{\lambda} \backslash W$

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} — corresponding Young subgroup of S_{n}
${ }_{\lambda}$ Long — longest representatives in $W_{\lambda} \backslash W$
\mathcal{X}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \notin{ }_{\lambda}$ Long

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} — corresponding Young subgroup of S_{n}
${ }_{\lambda}$ Long - longest representatives in $W_{\lambda} \backslash W$
\mathcal{X}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \notin{ }_{\lambda}$ Long
Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
${ }_{\lambda}$ Long - longest representatives in $W_{\lambda} \backslash W$
\mathcal{X}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \notin{ }_{\lambda}$ Long
Fact: \mathcal{P} preserves \mathcal{X}_{λ}
Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_{0} / \mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

Categorification of permutation modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
${ }_{\lambda}$ Long - longest representatives in $W_{\lambda} \backslash W$
\mathcal{X}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \notin{ }_{\lambda}$ Long
Fact: \mathcal{P} preserves \mathcal{X}_{λ}
Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_{0} / \mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

Categorification of induced sign modules

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
Short $_{\lambda}$ — shortest representatives in W / W_{λ}

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
Short $_{\lambda}$ — shortest representatives in W / W_{λ}
\mathcal{Y}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \in$ Short $_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{V};

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
Short $_{\lambda}$ — shortest representatives in W / W_{λ}
\mathcal{Y}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \in$ Short $_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
Short $_{\lambda}$ — shortest representatives in W / W_{λ}
\mathcal{Y}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \in$ Short $_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}
Theorem. [Soergel]
The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

Categorification of induced sign modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - composition of n
$\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ - corresponding parabolic subalgebra.
W_{λ} - corresponding Young subgroup of S_{n}
Short $_{\lambda}$ — shortest representatives in W / W_{λ}
\mathcal{Y}_{λ} - Serre subcategory of \mathcal{O}_{0} generated by $L(w), w \in$ Short $_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}
Theorem. [Soergel]
The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

Categorification of Specht modules

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0} - longest element in W

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0} - longest element in W
w_{0}^{λ} - longest element in W_{λ}

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ - partition of n
w_{0} - longest element in W
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{Y}_{\lambda}^{\prime}$ - Serre subcategory of \mathcal{Y}_{λ} generated by $L(w), w \in$ Short $_{\lambda}$, such that $\operatorname{GKdim}(L(w))<\operatorname{GKdim}\left(L\left(w_{0}^{\lambda} w_{0}\right)\right)$

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0} - longest element in W
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{Y}_{\lambda}^{\prime}$ - Serre subcategory of \mathcal{Y}_{λ} generated by $L(w), w \in$ Short $_{\lambda}$, such that $\operatorname{GKdim}(L(w))<\operatorname{GKdim}\left(L\left(w_{0}^{\lambda} w_{0}\right)\right)$

Fact: \mathcal{P} preserves $\mathcal{Y}_{\lambda}^{\prime}$

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0} - longest element in W
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{Y}_{\lambda}^{\prime}$ - Serre subcategory of \mathcal{Y}_{λ} generated by $L(w), w \in$ Short $_{\lambda}$, such that $\operatorname{GKdim}(L(w))<\operatorname{GKdim}\left(L\left(w_{0}^{\lambda} w_{0}\right)\right)$

Fact: \mathcal{P} preserves $\mathcal{Y}_{\lambda}^{\prime}$
Theorem. [Khovanov-M.-Stroppel]
The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda} / \mathcal{Y}_{\lambda}^{\prime}$ categorifies $\mathcal{S}^{\lambda^{t}}$.

Categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0} - longest element in W
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{Y}_{\lambda}^{\prime}$ - Serre subcategory of \mathcal{Y}_{λ} generated by $L(w), w \in$ Short $_{\lambda}$, such that $\operatorname{GKdim}(L(w))<\operatorname{GKdim}\left(L\left(w_{0}^{\lambda} w_{0}\right)\right)$

Fact: \mathcal{P} preserves $\mathcal{Y}_{\lambda}^{\prime}$
Theorem. [Khovanov-M.-Stroppel]
The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda} / \mathcal{Y}_{\lambda}^{\prime}$ categorifies $\mathcal{S}^{\lambda^{t}}$.

Alternative categorification of Specht modules

Alternative categorification of Specht modules

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-\text { partition of } n
$$

Alternative categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0}^{λ} - longest element in W_{λ}

Alternative categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{X}_{\lambda}^{\prime}$ - Serre subcategory of $\mathcal{O}_{0} / \mathcal{X}_{\lambda}$ generated by $L(w), w \in{ }_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w))=\operatorname{GKdim}\left(L\left(w_{0}^{\lambda}\right)\right)$

Alternative categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{X}_{\lambda}^{\prime}$ - Serre subcategory of $\mathcal{O}_{0} / \mathcal{X}_{\lambda}$ generated by $L(w), w \in{ }_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w))=\operatorname{GKdim}\left(L\left(w_{0}^{\lambda}\right)\right)$

Fact: \mathcal{P} preserves $\mathcal{X}_{\lambda}^{\prime}$

Alternative categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{X}_{\lambda}^{\prime}$ - Serre subcategory of $\mathcal{O}_{0} / \mathcal{X}_{\lambda}$ generated by $L(w), w \in{ }_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w))=\operatorname{GKdim}\left(L\left(w_{0}^{\lambda}\right)\right)$

Fact: \mathcal{P} preserves $\mathcal{X}_{\lambda}^{\prime}$
Theorem. [M.-Stroppel]
The action of \mathcal{P} on $\mathcal{X}_{\lambda}^{\prime}$ categorifies \mathcal{S}^{λ}.

Alternative categorification of Specht modules

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
w_{0}^{λ} - longest element in W_{λ}
$\mathcal{X}_{\lambda}^{\prime}$ - Serre subcategory of $\mathcal{O}_{0} / \mathcal{X}_{\lambda}$ generated by $L(w), w \in{ }_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w))=\operatorname{GKdim}\left(L\left(w_{0}^{\lambda}\right)\right)$

Fact: \mathcal{P} preserves $\mathcal{X}_{\lambda}^{\prime}$
Theorem. [M.-Stroppel]
The action of \mathcal{P} on $\mathcal{X}_{\lambda}^{\prime}$ categorifies \mathcal{S}^{λ}.

Comparison

Comparison

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-\text { partition of } n
$$

Comparison

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
Question. Are categorifications of \mathcal{S}^{λ} via $\mathcal{X}_{\lambda}^{\prime}$ and $\mathcal{Y}_{\lambda^{t}} / \mathcal{Y}_{\lambda^{t}}^{\prime}$ equivalent?
\qquad completion functors)

Comparison

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
Question. Are categorifications of \mathcal{S}^{λ} via $\mathcal{X}_{\lambda}^{\prime}$ and $\mathcal{Y}_{\lambda^{t}} / \mathcal{Y}_{\lambda^{t}}^{\prime}$ equivalent?
Need: An equivalence between these two categories which naturally commutes with the action of \mathcal{P}

Comparison

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
Question. Are categorifications of \mathcal{S}^{λ} via $\mathcal{X}_{\lambda}^{\prime}$ and $\mathcal{Y}_{\lambda^{t}} / \mathcal{Y}_{\lambda^{t}}^{\prime}$ equivalent?
Need: An equivalence between these two categories which naturally commutes with the action of \mathcal{P}

Theorem. [M.-Stroppel]
These two categorifications are indeed equivalent (using derived completion functors).

Comparison

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
Question. Are categorifications of \mathcal{S}^{λ} via $\mathcal{X}_{\lambda}^{\prime}$ and $\mathcal{Y}_{\lambda^{t}} / \mathcal{Y}_{\lambda^{t}}^{\prime}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of \mathcal{P}

Theorem. [M.-Stroppel]
These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]
Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Comparison

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
Question. Are categorifications of \mathcal{S}^{λ} via $\mathcal{X}_{\lambda}^{\prime}$ and $\mathcal{Y}_{\lambda^{t}} / \mathcal{Y}_{\lambda^{t}}^{\prime}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of \mathcal{P}

Theorem. [M.-Stroppel]
These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]
Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Comparison

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)-$ partition of n
Question. Are categorifications of \mathcal{S}^{λ} via $\mathcal{X}_{\lambda}^{\prime}$ and $\mathcal{Y}_{\lambda^{t}} / \mathcal{Y}_{\lambda^{t}}^{\prime}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of \mathcal{P}

Theorem. [M.-Stroppel]
These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]
Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Further categorifications using \mathcal{P}

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}
Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_{0}

Note. Permutation and induced sign modules are special cases

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}
Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell
Note. Uses combinatorially defined subquotients of \mathcal{O}_{0}
\qquad

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}
Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell
Note. Uses combinatorially defined subquotients of \mathcal{O}_{0}
Note. Permutation and induced sign modules are special cases

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}
Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell
Note. Uses combinatorially defined subquotients of \mathcal{O}_{0}
Note. Permutation and induced sign modules are special cases
Wedderburn's basis for $\mathbb{Q}\left[S_{n}\right]$

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}
Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell
Note. Uses combinatorially defined subquotients of \mathcal{O}_{0}
Note. Permutation and induced sign modules are special cases
Wedderburn's basis for $\mathbb{Q}\left[S_{n}\right]$
Schur-Weyl duality

Further categorifications using \mathcal{P}

Kazhdan-Lusztig's cell modules for S_{n}
Note. This requires a generalization of parabolic category \mathcal{O}
Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell
Note. Uses combinatorially defined subquotients of \mathcal{O}_{0}
Note. Permutation and induced sign modules are special cases
Wedderburn's basis for $\mathbb{Q}\left[S_{n}\right]$
Schur-Weyl duality

Summary of bonuses provided by categorification

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}\left[S_{n}\right]$ and in other categorified modules

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}\left[S_{n}\right]$ and in other categorified modules
Different submodules in $\mathbb{Z}\left[S_{n}\right]$

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}\left[S_{n}\right]$ and in other categorified modules
Different submodules in $\mathbb{Z}\left[S_{n}\right]$
Filtration of $\mathbb{Z}\left[S_{n}\right]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Explicit knowledge of categorification provides
information on the underlying category

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}\left[S_{n}\right]$ and in other categorified modules
Different submodules in $\mathbb{Z}\left[S_{n}\right]$
Filtration of $\mathbb{Z}\left[S_{n}\right]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}
Uniqueness of categorification allows to compare different categories of \mathfrak{g}-modules

Explicit knowledge of categorification provi
information on the underlying category
(e.g. quiver and relations for blocks of \mathcal{O})

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}\left[S_{n}\right]$ and in other categorified modules
Different submodules in $\mathbb{Z}\left[S_{n}\right]$
Filtration of $\mathbb{Z}\left[S_{n}\right]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}
Uniqueness of categorification allows to compare different categories of \mathfrak{g}-modules

Explicit knowledge of categorification provides explicit (partial) information on the underlying category (e.g. quiver and relations for blocks of \mathcal{O})

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}\left[S_{n}\right]$ and in other categorified modules
Different submodules in $\mathbb{Z}\left[S_{n}\right]$
Filtration of $\mathbb{Z}\left[S_{n}\right]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}
Uniqueness of categorification allows to compare different categories of \mathfrak{g}-modules

Explicit knowledge of categorification provides explicit (partial) information on the underlying category (e.g. quiver and relations for blocks of \mathcal{O})

THANK YOU!!!

