Algebraic categorification and its applications, II

Volodymyr Mazorchuł

(Uppfala University)

Winter School "Geometry and physicf" January 17.24, 2015, Srni, Czech Republic

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

Examples:

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

 $\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

Examples:

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \ \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \ \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

\mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \, \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \, \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \, \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \, \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $S^{(1,1,...,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \ \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $\mathcal{S}^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \ldots, \lambda_k) : \lambda_1 \ge \cdots \ge \lambda_k, \ \lambda_1 + \cdots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $S^{(n)}$ is the trivial module
- $\mathcal{S}^{(1,1,\ldots,1)}$ is the sign module
- $\mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

 $\mathcal{O}-\operatorname{BGG}\operatorname{category}\,\mathcal{O}$

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

 $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathrm{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}
- $M(\mu)$ Verma module with highest weight μ
- $L(\mu)$ unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathrm{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}
- $M(\mu)$ Verma module with highest weight μ
- $L(\mu)$ unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}
- $M(\mu)$ Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}
- $M(\mu)$ Verma module with highest weight μ
- $L(\mu)$ unique simple quotient of $M(\mu)$

Theorem. $\{L(w) := L(w \cdot 0) : w \in S_n\}$ is a cross-section of isomorphism classes of simple objects in \mathcal{O}_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Theorem. { $L(w) := L(w \cdot 0) : w \in S_n$ } is a cross-section of isomorphism classes of simple objects in O_0

 $\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$

- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 principal block of \mathcal{O}
- S_n Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Theorem. { $L(w) := L(w \cdot 0) : w \in S_n$ } is a cross-section of isomorphism classes of simple objects in O_0

Corollary. Gr(\mathcal{O}_0) $\cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : $w \in S_n$ } is a basis in Gr(\mathcal{O}_0).

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. {[P(w)] : $w \in S_n$ } is a basis in Gr(\mathcal{O}_0).

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Corollary. $\operatorname{Gr}(\mathcal{O}_0) \cong \mathbb{Z}[S_n].$

Note. $\{[L(w)] : w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)] : w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x) : L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x) : L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $\{[P(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ▶ T(w) is self-dual.
- T(w) tilting module
- Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ▶ T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

• $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;

▶ T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}$?
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.
- T(w) tilting module
- Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{ [P(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{ [P(w)] : w \in S_n \} \}$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \} ?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}\}$
- $\blacktriangleright \{[T(w)]: w \in S_n\}\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

•
$$\{[L(w)]: w \in S_n\}$$
?

- $\blacktriangleright \{ [\Delta(w)] : w \in S_n \}?$
- $\blacktriangleright \{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

•
$$\{[L(w)]: w \in S_n\}$$
?

- $\{[\Delta(w)] : w \in S_n\}$?
- $\blacktriangleright \{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}?$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

•
$$\{[L(w)]: w \in S_n\}$$
?

•
$$\{[\Delta(w)] : w \in S_n\}$$
?

- ▶ ${[P(w)]: w \in S_n}$?
- $\blacktriangleright \{[T(w)]: w \in S_n\}?$

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\{[L(w)]: w \in S_n\}$?
- $\{[\Delta(w)] : w \in S_n\}$?
- ▶ ${[P(w)]: w \in S_n}$?
- ► {[T(w)] : $w \in S_n$ }?

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ► T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)] : w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

- $\{[L(w)]: w \in S_n\}$?
- $\{[\Delta(w)] : w \in S_n\}$?
- ▶ ${[P(w)]: w \in S_n}$?
- ► {[T(w)] : $w \in S_n$ }?

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Theorem. [Bernstein-S. Gelfand]

(a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.

(b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Observation. For s simple reflection and $w \in S_n$ there are s.e.s. $\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$ if ws > w, $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

```
Corollary. \operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]
```

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

 $\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$ if ws > w,

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws) \text{ if } ws < w.$

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

```
Corollary. \operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]
```

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

Observation. For s simple reflection and $w \in S_n$ there are s.e.s. $\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$ if ws > w,

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

```
Corollary. \operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]
```

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

Observation. For s simple reflection and $w \in S_n$ there are s.e.s. $\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$ if ws > w, $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow heta_s \Delta(w) \twoheadrightarrow \Delta(w) ext{ if } ws > w,$$

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

$$\Delta(ws) \hookrightarrow heta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

$$\Delta(ws) \hookrightarrow heta_s \Delta(w) \twoheadrightarrow \Delta(w) ext{ if } ws > w,$$

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w) \text{ if } ws > w,$$

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w) \text{ if } ws > w,$$

 $\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$ if ws < w.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

"Answer": The same as $\{[P(w)], w \in S_n\}$.

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: $\operatorname{Gr}(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a **categorification** of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

500

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a **categorification** of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

500

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: Gr(\mathcal{O}_0) with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $\operatorname{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

Diagrammatically:

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

200

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Sac

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Sac

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

 $\mathbb{C}[x_1, x_2, \ldots, x_n]$ — polynomial algebra

grading: $\deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

 $\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $\deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $\deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

```
grading: deg(x_i) = 2
```

S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

 $\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

Fact. $\mathbf{C} \cong \mathbb{C}[S_n]_{S_n}$ as an S_n -module, in particular, dim $\mathbf{C} = |S_n|$.

Sac

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

Fact. $\mathbf{C} \cong \mathbb{C}[S_n]_{S_n}$ as an S_n -module, in particular, dim $\mathbf{C} = |S_n|$.

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \ldots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree *i*

$$\mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}_+ = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]^{s_n}_i$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

Fact. $\mathbf{C} \cong \mathbb{C}[S_n]_{S_n}$ as an S_n -module, in particular, dim $\mathbf{C} = |S_n|$.

 $s_i = (i, i+1)$ — simple reflection in S_n for $i = 1, 2, \ldots, n-1$

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively **C**-**C**-bimodules B_w , $w \in S_n$ as follows:

- $\blacktriangleright B_e := \mathbf{C}$
- ▶ For w = s_{i1}s_{i2}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively **C**-**C**-bimodules B_w , $w \in S_n$ as follows:

- $\blacktriangleright B_e := \mathbf{C}$
- ▶ For w = s_{i1}s_{i2}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 \mathbf{C}^{s_i} — the algebra of s_i -invariants in \mathbf{C}

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- $\blacktriangleright B_e := \mathbf{C}$
- ▶ For w = s_{i1}s_{i2}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}:S_n\to\mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- $\blacktriangleright B_e := \mathbf{C}$
- ▶ For w = s_{i1}s_{i2}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_{x} , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}:S_n\to\mathbb{Z}$ — the length function

\mathbf{C}^{s_i} — the algebra of s_i -invariants in \mathbf{C}

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

$$\blacktriangleright B_e := \mathbf{C}$$

▶ For w = s_{i1}s_{i2}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 \mathbf{C}^{s_i} — the algebra of s_i -invariants in \mathbf{C}

Definition. [Soergel] Define inductively **C**-**C**-bimodules B_w , $w \in S_n$ as follows:

$$\blacktriangleright B_e := \mathbf{C}$$

▶ For w = s_{i₁}s_{i₂}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 \mathbf{C}^{s_i} — the algebra of s_i -invariants in \mathbf{C}

Definition. [Soergel] Define inductively **C**-**C**-bimodules B_w , $w \in S_n$ as follows:

► B_e := **C**

▶ For w = s_{i1}s_{i2}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where $\mathfrak{l}(x) < \mathfrak{l}(w)$

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 \mathbf{C}^{s_i} — the algebra of s_i -invariants in \mathbf{C}

Definition. [Soergel] Define inductively **C**-**C**-bimodules B_w , $w \in S_n$ as follows:

- ► B_e := **C**
- For w = s_{i₁}s_{i₂}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where l(x) < l(w).

 $s_i = (i, i+1)$ — simple reflection in S_n for i = 1, 2, ..., n-1

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}: S_n \to \mathbb{Z}$ — the length function

 \mathbf{C}^{s_i} — the algebra of s_i -invariants in \mathbf{C}

Definition. [Soergel] Define inductively **C**-**C**-bimodules B_w , $w \in S_n$ as follows:

- ► B_e := **C**
- For w = s_{i₁}s_{i₂}...s_{ik} reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C}\otimes_{\mathsf{C}^{s_{i_1}}}\mathsf{C}\otimes_{\mathsf{C}^{s_{i_2}}}\cdots\otimes_{\mathsf{C}^{s_{i_k}}}\mathsf{C}$$

which is not isomorphic to B_x , where l(x) < l(w).

Note: For s simple reflection, $B_s \otimes_{\mathbb{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbb{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories $\mathcal P$ and $\mathcal S$ are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C**-**C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories $\mathcal P$ and $\mathcal S$ are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C**-**C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories ${\mathcal P}$ and ${\mathcal S}$ are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C**-**C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories $\mathcal P$ and $\mathcal S$ are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C**-**C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C**-**C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C**-**C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description] The categories \mathcal{P} and \mathcal{S} are equivalent as tensor categories.

Categorification of permutation modules

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of *n*

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \text{Long}$ — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

Categorification of permutation modules

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \text{Long}$ — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_{0} generated by L(w), $w
ot\in {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

Categorification of permutation modules

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \text{Long}$ — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \text{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \text{Long}$ — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \text{Long}$ — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \text{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda}$ Long — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \text{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda}$ Long — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \text{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_{\lambda}$ categorifies the permutation module $\operatorname{Ind}_{W_{\lambda}}^{W}$ triv.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda}$ Long — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \text{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W \operatorname{triv}$.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda}$ Long — longest representatives in $W_{\lambda} \setminus W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda} \text{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W \operatorname{triv}$.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of *n*

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of $\mathcal P$ on $\mathcal Y_\lambda$ categorifies the induced sign module $\mathrm{Ind}_{W_\lambda}^W$ sign.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\mathrm{Ind}_{W_{\lambda}}^{W}$ sign.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $Short_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \text{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel] The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}$ sign.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $S^{\lambda^{t}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0 — longest element in W

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $S^{\lambda^{t}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

w_0 — longest element in W

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda} w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $\mathcal{S}^{\lambda^{\dagger}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0 — longest element in W

w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda} w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $S^{\lambda^{\dagger}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0 — longest element in W

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda} w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $\mathcal{S}^{\lambda^{\sharp}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda} w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of ${\cal P}$ on ${\cal Y}_{\lambda}/{\cal Y}'_{\lambda}$ categorifies ${\cal S}^{\lambda^t}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda} w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $\mathcal{S}^{\lambda^{t}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \text{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda} w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $\mathcal{S}^{\lambda^{t}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}Long$, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}Long$, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of *n*

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}$ Long, such that $\operatorname{GKdim}(L(w)) = \operatorname{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of $\ensuremath{\mathcal{P}}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category $\ensuremath{\mathcal{O}}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category $\ensuremath{\mathcal{O}}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category $\ensuremath{\mathcal{O}}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Schur-Weyl duality

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of g-modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of g-modules

Summary of bonuses provided by categorification

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of \mathfrak{g} -modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in $\mathcal O$

Uniqueness of categorification allows to compare different categories of $\mathfrak{g}\text{-}\mathsf{modules}$

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of $\ensuremath{\mathfrak{g}}\xspace$ -modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of $\ensuremath{\mathfrak{g}}\xspace$ -modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of $\ensuremath{\mathfrak{g}}\xspace$ -modules

THANK YOU!!!

∃▶ ∃ ∽Q(~