Algebraic categorification and its applications, III

Volodymyr Mazorchuł

(Uppfala University)

Winter School "Geometry and physicf" January 17.24, 2015, Srni, Czech Republic

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k);$
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ► small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- small categories $\mathscr{C}(i, j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in 𝒞(i, j) is called vertical and denoted ◦₁.
- ▶ Composition in *C* is called horizontal and denoted ∘₀

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in Cat are natural transformations.
- ▶ Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

• An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .

- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in *C* is called horizontal and denoted ∘₀

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- ► Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- ▶ Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

nac

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.

▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Definition. A 2-category \mathscr{C} is additive if:

- Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- ▶ composition in [𝒞] is induced from that in 𝒞.

Definition. A 2-category \mathscr{C} is additive if:

- Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- ▶ composition in [𝒞] is induced from that in 𝒞.

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ▶ composition in [𝒞] is induced from that in 𝒞.

Definition. A 2-category \mathscr{C} is additive if:

- Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- ▶ composition in [𝒞] is induced from that in 𝒞.

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- ▶ composition in [°] is induced from that in °C.

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ▶ composition in [C] is induced from that in C.

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- ▶ composition in [𝒞] is induced from that in 𝒞.

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- ▶ composition in [𝒞] is induced from that in 𝒞.

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each 𝒞(i, j) is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of an additive category \mathcal{A} is the quotient of the free abelian group generated by [X], where X is an object of \mathcal{A} , modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- $[\mathscr{C}]$ has the same objects as \mathscr{C} ;
- ▶ $[\mathscr{C}](i,j) := [\mathscr{C}(i,j)]_{\oplus};$
- composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

 \mathscr{C} — additive 2-category

 $[{\mathscr C}]$ — decategorification of ${\mathscr C}$

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

Sac

$\mathscr{C} - \mathsf{additive} \ \mathsf{2}\text{-}\mathsf{category}$

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

Sac

$\mathscr{C}-\operatorname{additive}\operatorname{2-category}$

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

 $[{\mathscr C}]$ — decategorification of ${\mathscr C}$

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

 $[{\mathscr C}]$ — decategorification of ${\mathscr C}$

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

DQC

 $[{\mathscr C}]$ — decategorification of ${\mathscr C}$

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

DQC

 $\mathfrak{g} = \mathfrak{sl}_n$

\mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

• \mathscr{S} has one object **4** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);

- 1-morphisms in S are functors isomorphic to projective functors;
- 2-morphisms in S are natural transformations of functors;
- horizontal composition in S is composition of functors.

Fact. S is an additive 2-category.

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

 $\mathfrak{g}=\mathfrak{sl}_n$

\mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);

- 1-morphisms in S are functors isomorphic to projective functors;
- 2-morphisms in S are natural transformations of functors;
- horizontal composition in S is composition of functors.

```
Fact. \mathscr{S} is an additive 2-category.
```

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

San

 $\mathfrak{g}=\mathfrak{sl}_n$

\mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);

- 1-morphisms in S are functors isomorphic to projective functors;
- 2-morphisms in S are natural transformations of functors;
- horizontal composition in S is composition of functors.

```
Fact. \mathscr{S} is an additive 2-category.
```

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

San

 $\mathfrak{g}=\mathfrak{sl}_n$

\mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on $\mathcal{O}_0,$ that is:

▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);

- 1-morphisms in *S* are functors isomorphic to projective functors;
- 2-morphisms in S are natural transformations of functors;
- horizontal composition in S is composition of functors.

```
Fact. S is an additive 2-category.
```

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

San

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on $\mathcal{O}_0,$ that is:

▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);

1-morphisms in S are functors isomorphic to projective functors;

- 2-morphisms in S are natural transformations of functors;
- horizontal composition in S is composition of functors.

Fact. S is an additive 2-category.

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

200

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on $\mathcal{O}_0,$ that is:

▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);

▶ 1-morphisms in 𝒴 are functors isomorphic to projective functors;

2-morphisms in S are natural transformations of functors;

horizontal composition in S is composition of functors.

```
Fact. S is an additive 2-category.
```

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

200

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on $\mathcal{O}_0,$ that is:

- ▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- ▶ 1-morphisms in 𝒴 are functors isomorphic to projective functors;
- ▶ 2-morphisms in 𝒴 are natural transformations of functors;
- horizontal composition in S is composition of functors.

```
Fact. S is an additive 2-category.
```

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on $\mathcal{O}_0,$ that is:

- ▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- ▶ 1-morphisms in 𝒴 are functors isomorphic to projective functors;
- ▶ 2-morphisms in \mathscr{S} are natural transformations of functors;
- \blacktriangleright horizontal composition in ${\mathscr S}$ is composition of functors.

```
Fact. \mathscr{S} is an additive 2-category.
```

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on $\mathcal{O}_0,$ that is:

- ▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- ▶ 1-morphisms in $\mathscr S$ are functors isomorphic to projective functors;
- ▶ 2-morphisms in \mathscr{S} are natural transformations of functors;
- \blacktriangleright horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

```
Theorem. [\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]
```

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- ▶ 1-morphisms in \mathscr{S} are functors isomorphic to projective functors;
- ▶ 2-morphisms in \mathscr{S} are natural transformations of functors;
- \blacktriangleright horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem. $[\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- ▶ 1-morphisms in \mathscr{S} are functors isomorphic to projective functors;
- ▶ 2-morphisms in \mathscr{S} are natural transformations of functors;
- \blacktriangleright horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem. $[\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

DQC

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object **♣** (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- ▶ 1-morphisms in \mathscr{S} are functors isomorphic to projective functors;
- ▶ 2-morphisms in \mathscr{S} are natural transformations of functors;
- \blacktriangleright horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem. $[\mathscr{S}](\clubsuit, \clubsuit) \cong \mathbb{Z}[S_n]$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

DQC

Definition: An additive k-linear category \mathcal{A} is finitary if

- ► *A* is idempotent split;
- A has finitely many indecomposables;
- ▶ all morphism spaces in \mathcal{A} are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

200

Definition: An additive k-linear category \mathcal{A} is finitary if

► *A* is idempotent split;

- A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

200

Definition: An additive k-linear category \mathcal{A} is finitary if

- ► *A* is idempotent split;
- ► A has finitely many indecomposables;
- ▶ all morphism spaces in \mathcal{A} are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive \Bbbk -linear category \mathcal{A} is finitary if

• \mathcal{A} is idempotent split;

- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive \Bbbk -linear category \mathcal{A} is finitary if

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive \Bbbk -linear category \mathcal{A} is finitary if

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive \Bbbk -linear category \mathcal{A} is finitary if

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive \Bbbk -linear category \mathcal{A} is finitary if

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive \Bbbk -linear category \mathcal{A} is finitary if

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Finitary 2-categories.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Finitary 2-categories.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

▶ *C* has finitely many objects;

- each $\mathscr{C}(i, j)$ is finitary k-linear;
- ▶ composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- ▶ composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

- ▶ *C* has finitely many objects;
- each $\mathscr{C}(i, j)$ is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

- ▶ *C* has finitely many objects;
- each $\mathscr{C}(i, j)$ is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

- ▶ *C* has finitely many objects;
- each $\mathscr{C}(i, j)$ is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Finitary 2-categories are 2-analogues of finite dimensional algebras

nac

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- ► Soergel bimodules over the coinvariant algebra.

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Finitary 2-categories are 2-analogues of finite dimensional algebras

200

- ▶ *C* has finitely many objects;
- ▶ each 𝒞(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Finitary 2-categories are 2-analogues of finite dimensional algebras

200

\Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathcal{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

\Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

\Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

\mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

\mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- ▶ as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- ➤ as 1-morphisms functors in the additive closure of the identity and projective functors;
- as 2-morphisms natural transformations of functors;
- as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- ➤ as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- one object \clubsuit (identified with C);
- ➤ as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ► as horizontal composition composition of functors.

Fact. The 2-category \mathscr{C}_A is finitary.

C — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle \langle \Box \rangle$

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle \langle \Box \rangle$

 \mathscr{C} — finitary 2-category

 $\Sigma({\mathscr C})$ — isoclasses of indecomposable 1-morphisms in ${\mathscr C}$

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle \langle \Box \rangle$

 \mathscr{C} — finitary 2-category

 $\Sigma({\mathscr C})$ — isoclasses of indecomposable 1-morphisms in ${\mathscr C}$

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle \langle \Box \rangle$

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

nac

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $B_{ij} := Ae_i \otimes_k e_j A$ for $i, j = 1, 2, \ldots, n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_{i} := \{ B_{ii} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_{i} := \{ B_{ii} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

 $B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ { extsf{B}}_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ { extsf{B}}_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ { extsf{B}}_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ { extsf{B}}_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_j and $\mathcal{L}_{j'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_j 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_i := \{B_{ij} : i = 1, 2, \dots, n\}$ and $\mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \} \text{ and } \mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_j and $\mathcal{L}_{j'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_j 's

(B) (B) (B)

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $\mathtt{B}_{ij}:=Ae_i\otimes_{\Bbbk}e_jA$ for $i,j=1,2,\ldots,n$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$

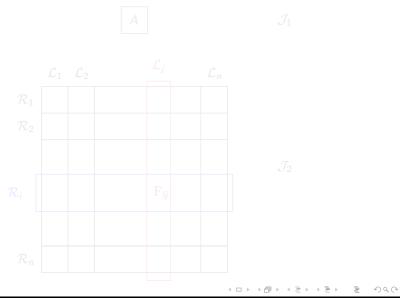
For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

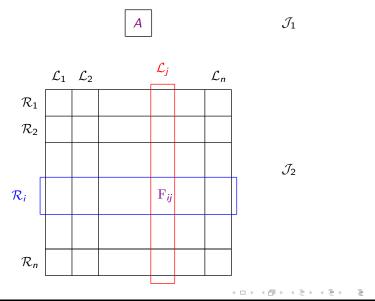
 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

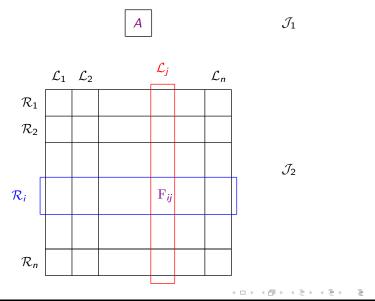
The egg-box diagram



The egg-box diagram



The egg-box diagram



Fiat 2-categories

𝒞 — finitary 2-category

Definition: \mathscr{C} is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

 $F(\beta) \circ_1 \alpha_F = id_F$ and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- *C_A* for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: C is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

 $F(\beta) \circ_1 \alpha_F = id_F$ and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- *C_A* for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: *C* is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

 $F(\beta) \circ_1 \alpha_F = id_F$ and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- C_A for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

 $F(\beta) \circ_1 \alpha_F = id_F$ and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- *C_A* for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: C is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- *C_A* for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: C is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^{\ast} always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- *C_A* for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: *C* is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^{\ast} always biadjoint

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- \mathcal{C}_A for A self-injective and weakly symmetric

 $\mathscr{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: *C* is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

Examples:

- ▶ Soergel bimodules (projective functors on O_0)
- \triangleright \mathscr{C}_A for A self-injective and weakly symmetric

 $\mathscr{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: C is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^{\ast} always biadjoint

Examples:

- ▶ Soergel bimodules (projective functors on *O*₀)
- ▶ *C*_A for A self-injective and weakly symmetric

 $\mathscr{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: C is fiat if

- there is a weak involution $* : \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^{\ast} always biadjoint

Examples:

- ▶ Soergel bimodules (projective functors on *O*₀)
- ▶ *C*_A for A self-injective and weakly symmetric

 \mathfrak{g} — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{\mathrm{U}}_{\mathbb{Z}}$ — the integral form for $\dot{\mathrm{U}}$

There is a number of 2-categories associated to g.

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

nac

$\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{\mathrm{U}}_{\mathbb{Z}}$ — the integral form for $\dot{\mathrm{U}}$

There is a number of 2-categories associated to g.

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

San

- $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$
- $U_q(\mathfrak{g})$ the corresponding quantum group
- $\dot{\mathrm{U}}$ the idempotent completion of $U_q(\mathfrak{g})$
- $\dot{U}_{\mathbb{Z}}$ the integral form for \dot{U}
- There is a number of 2-categories associated to g.
- Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda
- Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

San

- $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$
- $U_q(\mathfrak{g})$ the corresponding quantum group
- $\dot{\mathrm{U}}$ the idempotent completion of $U_q(\mathfrak{g})$
- $\dot{U}_{\mathbb{Z}}$ the integral form for \dot{U}
- There is a number of 2-categories associated to g.
- Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda
- Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

San

- $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$
- $U_q(\mathfrak{g})$ the corresponding quantum group
- $\dot{\mathrm{U}}$ the idempotent completion of $U_q(\mathfrak{g})$
- $\dot{U}_{\mathbb{Z}}$ the integral form for \dot{U}
- There is a number of 2-categories associated to \mathfrak{g} .
- Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda
- Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

200

 $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

- $\dot{\mathrm{U}}$ the idempotent completion of $U_q(\mathfrak{g})$
- $\dot{U}_{\mathbb{Z}}$ the integral form for \dot{U}
- There is a number of 2-categories associated to ${\mathfrak g}.$
- Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda
- Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

200

 $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

nac

 $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

200

 $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

 $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

200

 $\mathfrak{g}-\mathsf{Kac}\operatorname{\mathsf{-Moody}} \mathsf{algebra}$

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.

200

Every simple complex finite-dimensional algebra is isomorphic to $Mat_{n \times n}(\mathbb{C})$ for some *n*.

Theorem. [M.-Miemietz]

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" \mathscr{C}_A for A self-injective and weakly symmetric.

nac

Every simple complex finite-dimensional algebra is isomorphic to $Mat_{n \times n}(\mathbb{C})$ for some *n*.

Theorem. [M.-Miemietz]

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" \mathscr{C}_A for A self-injective and weakly symmetric.

nac

Every simple complex finite-dimensional algebra is isomorphic to $Mat_{n \times n}(\mathbb{C})$ for some *n*.

Theorem. [M.-Miemietz]

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" C_A for A self-injective and weakly symmetric.

Every simple complex finite-dimensional algebra is isomorphic to $Mat_{n \times n}(\mathbb{C})$ for some *n*.

Theorem. [M.-Miemietz]

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" \mathscr{C}_A for A self-injective and weakly symmetric.

Every simple complex finite-dimensional algebra is isomorphic to $Mat_{n \times n}(\mathbb{C})$ for some *n*.

Theorem. [M.-Miemietz]

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" \mathscr{C}_A for A self-injective and weakly symmetric.

Every simple complex finite-dimensional algebra is isomorphic to $Mat_{n \times n}(\mathbb{C})$ for some *n*.

Theorem. [M.-Miemietz]

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" \mathscr{C}_A for A self-injective and weakly symmetric.

2-representations

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of *C* is a functorial action of *C* on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of *C* form a 2-category where

- 1-morphisms are 2-natural transformations
- 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

nac

"Definition": A 2-representation of *C* is a functorial action of *C* on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

▶ 1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

200

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of \mathscr{C} form a 2-category where

1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

200

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of \mathscr{C} form a 2-category where

▶ 1-morphisms are 2-natural transformations

► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

nac

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of \mathscr{C} form a 2-category where

▶ 1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

▶ 1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of \mathscr{C} form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of \mathscr{C} form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

"Definition": A 2-representation of \mathscr{C} is a functorial action of \mathscr{C} on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of \mathscr{C} form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

Cell 2-representations

- 𝒞 finitary 2-category
- \mathcal{L} left cell in \mathscr{C}
- i the source for 1-morphisms in ${\mathscr C}$
- P_i the i-th principal 2-representation
- $\mathbf{Q}_{\mathcal{L}}$ 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$
- I the unique maximal ${\mathscr C}\text{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$
- **Definition:** $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

nac

- \mathscr{C} finitary 2-category
- \mathcal{L} left cell in \mathscr{C}
- i the source for 1-morphisms in ${\mathscr C}$
- P_i the i-th principal 2-representation
- $\mathbf{Q}_{\mathcal{L}}$ 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$
- I the unique maximal ${\mathscr C} ext{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$
- **Definition:** $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

- \mathscr{C} finitary 2-category
- $\mathcal{L} \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$
- i the source for 1-morphisms in ${\mathscr C}$
- **P**_i the i-th principal 2-representation
- $\mathbf{Q}_{\mathcal{L}}$ 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$
- I the unique maximal $\mathscr{C}\text{-invariant}$ ideal in $\mathsf{Q}_\mathcal{L}$
- **Definition:** $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

- \mathscr{C} finitary 2-category
- $\mathcal{L} \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$
- i the source for 1-morphisms in ${\mathscr C}$

 P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal ${\mathscr C} ext{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

- \mathscr{C} finitary 2-category
- $\mathcal{L} \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$
- i the source for 1-morphisms in ${\mathscr C}$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal ${\mathscr C}\text{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

nac

 \mathscr{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$

i — the source for 1-morphisms in ${\mathscr C}$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

 ${\sf I}$ — the unique maximal ${\mathscr C}$ -invariant ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

nac

- \mathscr{C} finitary 2-category
- $\mathcal{L} \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$
- i the source for 1-morphisms in ${\mathscr C}$
- $\mathbf{P}_{\texttt{i}}$ the <code>i-th principal 2-representation</code>
- $\boldsymbol{Q}_{\mathcal{L}}$ 2-subrepresentation of $\boldsymbol{\mathsf{P}}_{\mathtt{i}}$ generated by $\mathrm{F} \geq_{\textit{L}} \mathcal{L}$
- I the unique maximal ${\mathscr C}\text{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_i}$ for any j = 1, 2, ..., n.

nac

 \mathscr{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$

i — the source for 1-morphisms in ${\mathscr C}$

 P_i — the i-th principal 2-representation

 $\boldsymbol{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\boldsymbol{\mathsf{P}}_i$ generated by $F \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal ${\mathscr C}\text{-invariant}$ ideal in ${\boldsymbol Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_i}$ for any j = 1, 2, ..., n.

 \mathscr{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$

i — the source for 1-morphisms in ${\mathscr C}$

 P_i — the i-th principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal ${\mathscr C}\text{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_i}$ for any j = 1, 2, ..., n.

 \mathscr{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \, \mathsf{cell} \, \mathsf{in} \, \mathscr{C}$

i — the source for 1-morphisms in ${\mathscr C}$

 P_i — the i-th principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal ${\mathscr C}\text{-invariant}$ ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_i}$ for any j = 1, 2, ..., n.

Transitive 2-representations

𝒞 — finitary 2-category

 \mathbf{M} — 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Example: Cell 2-representations are simple transitive.

Transitive 2-representations

\mathscr{C} — finitary 2-category

M — 2-representation of \mathscr{C}

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathscr{C} finitary 2-category
- \mathbf{M} 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathscr{C} finitary 2-category
- \mathbf{M} 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Example: Cell 2-representations are simple transitive.

 \mathbf{M} — 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Example: Cell 2-representations are simple transitive.

 \mathbf{M} — 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Example: Cell 2-representations are simple transitive.

 \mathbf{M} — 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

 \mathbf{M} — 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

 \mathbf{M} — 2-representation of ${\mathscr C}$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ▶ Soergel bimodules in type A.
- ► °CA.
- ▶ Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ▶ Soergel bimodules in type A.
- ► C_A.
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ► Soergel bimodules in type *A*.
- ► C_A.
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ► Soergel bimodules in type *A*.
- ▶ \mathcal{C}_A .
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ► Soergel bimodules in type *A*.
- ▶ C_A .
- ► Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ► Soergel bimodules in type *A*.
- ▶ C_A .
- ► Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ► Soergel bimodules in type *A*.
- ▶ C_A .
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

Applies to:

- ► Soergel bimodules in type *A*.
- ▶ C_A .
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

200

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

200

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?

THANK YOU!!!

∃▶ ∃ ∽ ९ ୯ ୯