The Hecke Algebra and its Categorification

Wolfgang Soergel

Mathematisches Institut Universität Freiburg

Januar 2015

(ロ) (同) (三) (三) (三) (○) (○)

The formalism of Hecke algebras

- *G* finite group, $(\mathbb{Z}G, *)$ group ring
- B ⊂ G subgroup, ^B(ZG)^B the B-biinvariant functions, stable under * and under *_B := */|B|
- $\mathcal{H} = \mathcal{H}(G, B) := ({}^{B}(\mathbb{Z}G)^{B}, *_{B})$ the Hecke algebra
- Unit element characteristic function $\underline{B} = 1_{\mathcal{H}}$ the of B
- Z-basis of H are the characteristic functions <u>D</u> for D runnig over all double cosets

For V a G-module V^B is an \mathcal{H} -module

The algebra of Hecke operators

- $G = GL(2; \mathbb{R})^+$ acts on the upper half plane \mathbb{H}^+
- $G = \operatorname{GL}(2; \mathbb{R})^+$ acts on $\mathcal{O}^{\operatorname{an}}(\mathbb{H}^+)(\mathrm{d} z)^{\otimes k}$
- ► Take B = SL(2; Z)
- $\mathcal{H}(G,B)$ acts on $(\mathcal{O}^{an}(\mathbb{H}^+)(\mathsf{d} z)^{\otimes k})^{\mathrm{SL}(2;\mathbb{Z})}$
- These are the classical Hecke operators acting on modular functions
- Sure these groups are infinite. Then should use the more general definition

$$\mathcal{H}(G,B) \mathrel{\mathop:}= \mathsf{End}^G_{\mathbb{Z}}(\mathsf{prod}^G_B \mathbb{Z})^{\mathsf{opp}}$$

Towards the Iwahori-Matumoto Hecke algebras

- Take $G = GL(n; \mathbb{F}_q)$ and *B* upper triangular matrices
- ► Bruhat decomposition $G = \bigsqcup_{x \in W} BxB$ for $W = S_n$ the permutation matrices

• The $T_x := \underline{BxB}$ form a basis of the Hecke algebra

For $s \in S := \{(i, i + 1) \text{ transposition } | 1 \le i < n\}$ know $B \sqcup BsB := P_s \subset G \text{ is a subgroup and } |P_s/B| = q + 1$ For example here is $P_{(2,3)}$:

ヘロト 人間 とくほ とくほ とう

ъ

Towards generators and relations of Hecke algebras

- ▶ For $s \in S$ know $B \sqcup BsB := P_s \subset G$ is a subgroup and $|P_s/B| = q + 1$
- Deduce $(T_s + 1)^2 = (q + 1)(T_s + 1)$ and thus $T_s^2 = (q 1)T_s + q$ for $s \in S$
- Let I(x) number of Fehlstände of x
- ► $BxB \times_B ByB \xrightarrow{\sim} BxyB$ if I(x) + I(y) = I(xy)
- Deduce $T_x T_y = T_{xy}$ if l(x) + l(y) = l(xy)
- Deduce $T_x T_y = \sum_z c_{x,y}^z(q) T_z$ with $c_{x,y}^z$ polynomial in q

Generic Hecke algebra

- Generic Hecke algebra $\mathcal{H} := \bigoplus_{x \in W} \mathbb{Z}[q] T_x$ with $T_s^2 = (q-1)T_s + q$ for $s \in S$ and $T_x T_y = T_{xy}$ if l(x) + l(y) = l(xy)
- Called Iwahori-Matsumoto Hecke algebra
- Specializes to group ring $\mathbb{Z}S_n$ for $q \mapsto 1$
- \mathcal{H} might be thought of as quantization of $\mathbb{Z}S_n$
- We want to discuss the categorification of H
- One application is to refine knot polynomials to knot homology

Coxeter System

A Coxeter System (W, S) is a group W with a finite subset S ⊂ W such that W is generated by S subject to the only relations

$$(st)^{m(s,t)} = e$$

for some symmetric matrix $m: S \times S \rightarrow \mathbb{Z}_{\geq 1} \sqcup \{\infty\}$ which is 1 on the diagonal and > 1 off the diagonal

- For x ∈ W put I(x) minimal number of s ∈ S needed to express x
- Any finite group W generated by reflections is always part of a Coxeter system (W, S)

For any Coxeter System (W, S) there is a Hecke algebra H = H(W, S) := ⊕_{x∈W} ℤ[q]T_x with

$$T_s^2 = (q-1)T_s + q$$
 for $s \in S$

$$T_x T_y = T_{xy}$$
 if $I(x) + I(y) = I(xy)$

(日) (日) (日) (日) (日) (日) (日)

- Called Iwahori-Matsumoto Hecke algebra
- Specializes to group ring $\mathbb{Z}W$ for $q \mapsto 1$

Alternative description of the Hecke algebra $\mathcal{H}(W, S)$ as $\mathbb{Z}[q]$ -ringalgebra with generators T_s for $s \in S$ subject to the relations $T_s^2 = (q-1)T_s + q$ and braid relations

$$T_s T_t \ldots = T_t T_s \ldots$$

(日) (日) (日) (日) (日) (日) (日)

with m(s, t) factors on both sides

Categorification of Hecke algebra $\mathcal{H}(W, S)$ by bimodules

- Let (W, S) be a Coxeter system
- Choose a representation $W \hookrightarrow V$ wich is
 - finite dimensional
 - over an infinite field k with char $k \neq 2$
 - ► exactly the conjugates t = wsw⁻¹ of elements of s ∈ S have fixed point spaces of codimension one
- Call such a representation reflection faithful
- Typical example: Symmetric group S_n permuting the coordinates of kⁿ

(日) (日) (日) (日) (日) (日) (日)

Categorification of Hecke algebra $\mathcal{H}(W, S)$ by bimodules

- Choose $W \hookrightarrow V$ reflection faithful representation
- Put R := O(V) a polynomial ring
- Let R-Mod_Z- R be the category of Z-graded R-bimodules or more precisely R ⊗_k R-modules
- Let

R-Modbf_{\mathbb{Z}}-R

(ロ) (同) (三) (三) (三) (○) (○)

be the subcategory of graded bifinite bimodules

 Bifinite means finitely generated from the left and from the right Categorification of Hecke algebra $\mathcal{H}(W, S)$ by bimodules

- Let $\langle R$ -Modbf_Z- $R \rangle$ be the split Grothendieck group
- It becomes a ring under \otimes_R
- Categorification Theorem: There is exactly one ring homomorphism

$$\mathcal{E}:\mathcal{H} \to \langle R\operatorname{\mathsf{-Modbf}}_{\mathbb{Z}}\operatorname{\mathsf{-}} R\rangle$$

such that we have $\mathcal{E}(T_s + 1) = \langle R \otimes_{R^s} R \rangle \ \forall s \in S$ and $\mathcal{E}(q) = \langle R \langle -1 \rangle \rangle$

• Notation $(M\langle n \rangle)_i = M_{i+n}$ for grading shift

Sketch of proof of bimodule-categorification

- Recall quadratic relation $T_s^2 = (q-1)T_s + q$
- Rewrite to $(T_s + 1)^2 = (q + 1)(T_s + 1)$
- $\blacktriangleright \text{ Need } \langle R \otimes_{R^s} R \rangle^2 = \langle R \langle -1 \rangle \oplus R \rangle \langle R \otimes_{R^s} R \rangle$
- $\blacktriangleright \ (R \otimes_{R^{\mathfrak{s}}} R) \otimes_{R} (R \otimes_{R^{\mathfrak{s}}} R) \cong (R \langle -1 \rangle \oplus R) \otimes_{R} (R \otimes_{R^{\mathfrak{s}}} R)$
- $\blacktriangleright \ R \otimes_{R^{\mathfrak{s}}} R \otimes_{R^{\mathfrak{s}}} R \cong (R \otimes_{R^{\mathfrak{s}}} R) \langle -1 \rangle \oplus (R \otimes_{R^{\mathfrak{s}}} R)$
- Follows from recalling in the middle left
 R = αR^s ⊕ R^s ≅ R^s ⟨−1⟩ ⊕ R^s
 with α ∈ V^{*} equation of V^s
- So only need to check braid relations for bimodules
- Need only to argue for dihedral groups. Omitted.

Categorification of Kazhdan-Lusztig basis

- ► Extend scalars in Hecke algebra H from Z[q] to Z[v, v⁻¹] by q = v⁻²
- ► Kazhdan-Lusztig constructed a canonical basis (C_x)_{x∈W} of H_v as a Z[v, v⁻¹]-module
- ► Regrade R to sit only in even degrees to get categorification map E : H_v → ⟨R-Modbf_Z-R⟩
- Indecomposable Bimodule Theorem: There exist indecomposable bimodules B_x ∈ R-Modbf_Z- R such that E(C_x) = ⟨B_x⟩
- In words: The elements of the Kazhdan-Lusztig canonical basis correspond under the categorification theorem to indecomposable bimodules

Definition of Kazhdan-Lusztig basis

• Put
$$H_x = v^{I(x)} T_x$$

- $C_x \in H_x + \sum_y v\mathbb{Z}[v]H_y$ and $d(C_x) = C_x$ is selfdual, uniquely determines the canonical basis element C_x
- Duality *d* : *H_v* → *H_v* the unique ring automorphism, which fixes *H_s* + *v* for *s* ∈ *S* and maps *d* : *v* → *v*⁻¹
- In particular $C_s = H_s + v$ for $s \in S$ a simple reflection

A D F A 同 F A E F A E F A Q A

Discussion of categorification of KL-basis

- Take simple reflections $s, t, \ldots, u \in S$
- Form the bimodules $R \otimes_{R^s} R \otimes_{R^t} R \dots \otimes_{R^u} R$
- Krull-Schmid decompose those bimodules: Get very special indecomposable bimodules B_x categorifying the Kazhdan-Lusztig basis
- Call the graded bimodules R ⊗_{R^s} R ⊗_{R^t} R ... ⊗_{R^u} R and all you get from them by taking finite direct sums, direct summands and grading shifts **special bimodules** and denote the monoidal category of those

R-SMod_{\mathbb{Z}}-R

Its indecomposables are precisely the $B_x \langle n \rangle$.

Positivity Corollaries of categorification

C_xC_y ∈ ∑_z ℕ[v, v⁻¹]C_z since B_x ⊗_B B_y is an actual bimodule, decomposes as

$$B_x \otimes_R B_y = \bigoplus_{z,n} B_z \langle n \rangle^{m(z,n)}$$

- $C_x = \sum_y P_{x,y}(v)H_y$ with $P_{x,y}(v) \in \mathbb{Z}[v]$ the Kazhdan-Lusztig polynomials
- Coefficients of Kazhdan-Lusztig-Polynomials are non-negative, since they can be interpreted as rk Hom_{*R*-*R*}(*O*(Γ(*x*)), *B_y*)
- Here Γ(x) ⊂ V × V is the graph of x and O(Γ(x)) the regular functions on Γ(x), a quotient of O(V × V) = R ⊗ R. Put another way, O(Γ(x)) = R as left *R*-module with the right *R*-action twisted by x

► Example: w_o ∈ W longest element of finite reflection group. C_{w_o} = v^{l(w_o)} ∑_{x∈W} T_x = ∑_{x∈W} v^{l(w_o)-l(x)}H_x

$$B_{w_{\circ}} = \mathcal{O}\left(\bigcup_{x \in W} \Gamma(x)\right)$$

is the bimodule of all regular functions on the union of the graphs of all Weyl group elements $\Gamma(x) \subset V \times V$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ In general B_x is still supported on $\bigcup_{y < x} \Gamma(y)$

• If
$$C_x = \sum_{y \leq x} v^{l(x) - l(y)} H_y$$
, then $B_x = \mathcal{O}\left(\bigcup_{y \leq x} \Gamma(y)\right)$

Application to representation theory

- g a semisimple complex Lie algebra, Z ⊂ U(g) the center of its enveloping algebra
- M ⊂ g-Mod the category of all representations of g locally finite under Z
- *P* the category of all functors *M* → *M* isomorphic to a direct summand of some functor *E*⊗_C for *E* finite dimensional representation, so-called **projective functors**
- Equivalence of categories between {indecomposable projective functors starting and ending with the trivial central character} and {Â_x | x ∈ W} ⊂ Â-Mod-Â

Application to representation theory, variant

- $\mathcal{O}_{\circ} \subset \mathfrak{g}$ -Mod principal block of BGG-category \mathcal{O}
- ► Equivalence of categories between {indecomposable projectives of O_o} and {B_x ⊗_R C | x ∈ W} ⊂ R-Mod
- Gives new proof of KL-conjecture on Jordan-Hölder multiplicities of Verma modules

$$\mathsf{Der}^{\mathsf{b}}(\mathcal{O}_{\circ}) \cong \mathsf{Hot}^{\mathsf{b}}(\mathsf{proj}\,\mathcal{O}_{\circ}) \cong \mathsf{Hot}^{\mathsf{b}}(R\operatorname{-SMod})$$

for R-SMod $\subset R$ -Mod the subcategory of all $B \otimes_R \mathbb{C}$ for $B \in R$ -SMod-R

► Can define graded version O^Z_o of O_o formally such that proj O^Z_o = R-SMod_Z

Categorification of $\ensuremath{\mathbb{N}}$

- k a field
- dim : $Modf_k \rightarrow \mathbb{N}$ "decategorification"
- Multiplication corresponds to tensor product

 $\dim(V \otimes W) = (\dim V)(\dim W)$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Categorification of $Ens(X, \mathbb{N}) = Maps(X, \mathbb{N})$ for X a set

- k a field and Mod_k /X ⊃ Modf_k /X sheaves on the discrete set X alias families (F_x)_{x∈X} of vector spaces respectively finitely generated vector spaces
- Dim : Modf_k / X → Ens(X, ℕ) "decategorification"
- Multiplication corresponds to tensor product

 $\mathsf{Dim}(\mathcal{F}\otimes\mathcal{G})=(\mathsf{Dim}\,\mathcal{F})(\mathsf{Dim}\,\mathcal{G})$

Categorification of maps

• $f: X \rightarrow Y$ map of finite sets leads to morphisms

$$\mathsf{Ens}(X,\mathbb{N}) \xrightarrow{f_!} \mathsf{Ens}(Y,\mathbb{N})$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

called pull-back and integration along the fibres

• $|X| = c_! c^* 1$ for $c : X \to pt$ constant map

• $f: X \rightarrow Y$ map of finite sets leads to functors

$$\operatorname{Modf}_k / X \xrightarrow{f_!} \operatorname{Modf}_k / Y$$

called pull-back and integration along the fibres

•
$$(f^*\mathcal{G})_x := \mathcal{G}_{f(x)}$$
 and $(f_!\mathcal{F})_y := \bigoplus_{x \in f^{-1}(y)} \mathcal{F}_x$

Commutative diagrams

$$\begin{array}{ccc} \operatorname{Modf}_{k}/X & \stackrel{f_{!}}{\xleftarrow{f^{*}}} & \operatorname{Modf}_{k}/Y \\ & & & \downarrow & \downarrow & \downarrow \\ \operatorname{Dim} \downarrow & & & \downarrow & \downarrow & \downarrow \\ \operatorname{Ens}(X, \mathbb{N}) & \stackrel{f_{!}}{\xleftarrow{f^{*}}} & \operatorname{Ens}(Y, \mathbb{N}) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Grothendieck function-sheaf correspondence

- To X_◦ variety over F_q and ℓ prime ≠ char F_q associate Der^c(X_◦; Q_l) triangulated Q_ℓ-category
- Called "cohomologically constructible complexes of étale sheaves on X_o"
- Define map

$$\mathsf{Tr}:\mathsf{Der}^c(X_\circ;\mathbb{Q}_l) o\mathsf{Ens}(X_\circ(\mathbb{F}_q),\mathbb{Q}_l)$$

▶ $\operatorname{Tr}(\mathcal{F}_{\circ}) : x \mapsto \sum_{i} (-1)^{i} \operatorname{Tr}(\mathsf{F}_{g}^{*} | \mathcal{H}^{i}\mathcal{F}_{x}) \text{ with } \mathcal{F} := \mathcal{F}_{\circ} \times_{\mathbb{F}_{q}} \mathbb{F}$ sheaf on $X := X_{\circ} \times_{\mathbb{F}_{q}} \mathbb{F}$ and F_{g} Frobenius

(日) (日) (日) (日) (日) (日) (日)

Grothendieck function-sheaf correspondence

► To f : X_o → Y_o morphism of varieties over F_q associate triangulated functors f₁, f* fitting into a commutative diagram

$$\begin{array}{ccc} \mathsf{Der}^c(X_\circ;\mathbb{Q}_l) & \stackrel{f_!}{\xleftarrow{f^*}} & \mathsf{Der}^c(Y_\circ;\mathbb{Q}_l) \\ & & & \downarrow & \downarrow & \uparrow \\ & & & \downarrow & \uparrow & \uparrow \\ \mathsf{Ens}(X_\circ(\mathbb{F}_q),\mathbb{Q}_l) & \stackrel{f_!}{\xleftarrow{f^*}} & \mathsf{Ens}(Y_\circ(\mathbb{F}_q),\mathbb{Q}_l) \end{array}$$

► For $c: X_{\circ} \to \text{pt}_{\circ}$ this specializes to $|X_{\circ}(\mathbb{F}_q)| 1 = c_! c^* 1 = c_! c^* \operatorname{Tr}(\mathbb{Q}_l) = \operatorname{Tr}(c_! c^* \mathbb{Q}_l) =$ $= \sum_i (-1)^i \operatorname{tr}(\mathbb{F}_g | H_c^i(X; \mathbb{Q}_l))$ Grothendieck-Lefschetz Let G be a finite group. The multiplication in the group ring could for f, g ∈ Ens(G, Z) be written as

 $f * g = \operatorname{mult}_{!}((\operatorname{pr}_{1}^{*} f)(\operatorname{pr}_{2}^{*} g))$

with $pr_1, pr_2, mult : G \times G \rightarrow G$ the projections and the multiplication.

A natural candidate for the categorification of the group ring in case G = G_◦(𝔽_q) is thus Der^c(G_◦; ℚ_l) with the convolution functor

$$\mathcal{F} * \mathcal{G} := \mathsf{mult}_!((\mathsf{pr}_1^* \mathcal{F}) \otimes (\mathsf{pr}_2^* \mathcal{G}))$$

► Recall G = GL(n; F_q) and B upper triangular matrices and

$$\mathcal{H}_q = ({}^B\mathsf{Ens}(G,\mathbb{Z})^B,*/|B|)$$

functions on the group, *B*-invariant from both sides

 So a natural categorification ought to be some both sides equivariant derived category of étale sheaves

$$\mathsf{Der}^c_{B_\circ \times B_\circ}(G_\circ; \mathbb{Q}_l)$$

 Let's be a bit less perfect and try for the usual topology version of the equivariant derived category

 $\operatorname{\mathsf{Der}}^c_{B\times B}(G;\mathbb{Q})$

(ロ) (同) (三) (三) (三) (○) (○)

with $G = GL(n; \mathbb{C})$ and metric topology

First discuss equivariant cohomology

- $G \hookrightarrow X$ topological group acting on topological space
- $H^*(X/G)$ not a good concept
- For f : X → Y is a morphism of G-spaces, which is a fibration with contractible fibers, need not have H^{*}(Y/G) → H^{*}(X/G)
- Example: $\mathbb{R} \rightarrow$ pt with \mathbb{Z} -action
- ► Better concept H^{*}_G(X) := H^{*}(EG ×_G X) equivariant cohomology
- EG contractible with topologially free G-action, the universal bundle over the classifying space

Examples for equivariant cohomology

- $\blacktriangleright \ \mathsf{H}^*_G(X) := \mathsf{H}^*(\mathsf{E}G \times_G X)$
- G ↔ X topological group acting freely on topological space, then H^{*}_G(X) = H^{*}(X/G)
- ► H^{*}_G(pt) = H^{*}(EG ×_G pt) = H^{*}(EG/G) = H^{*}(BG) the ring of characteristic classes
- $H^*_{\mathbb{C}^{\times}}(\mathsf{pt}) = H^*(\mathbb{P}^{\infty}\mathbb{C}) = \mathbb{Z}[t]$ with deg t = 2
- ► $H^*_B(pt) = \mathbb{Z}[t_1, ..., t_n]$ with deg $t_i = 2$ for $B \subset GL(n; \mathbb{C})$ upper triangular matrices
- For P → X a principal G-bundle, pullback H^{*}_G(pt) → H^{*}_G(P) = H^{*}(P/G) = H^{*}(X) gives its characteristic classes

Derived category for X a topological space

- Der(X) = Der(Ab / X) derived category of abelian sheaves on X
- *f* : *X* → *Y* continous map of locally compact Hausdorff spaces gives triangulated functors
 *f*₁ : Der(*X*) → Der(*Y*) and *f*^{*} : Der(*Y*) → Der(*X*)
- For $c: X \to \text{pt}$ constant map, get $c_! c^* \mathbb{Z} = H^*_c(X)$
- $c^*\mathbb{Z} =: \underline{X}$ the constant sheaf on X
- $\operatorname{Der}_X(\underline{X}, \underline{X}[*]) = \operatorname{H}^*(X)$ the cohomology ring of X
- ▶ Der_X(X, F[*]) = H^{*}(X; F) = ℍF (hyper)cohomology of the sheaf(complex) F

• $\mathbb{H}\mathcal{F}$ is a $H^*(X)$ -module

Equivariant derived category

- $G \hookrightarrow X$ topological space with *G*-action
- ► $\mathsf{Der}_G(X) = \{\mathcal{F} \in \mathsf{Der}(\mathsf{E}G \times_G X) | \exists \mathcal{G} \in \mathsf{Der}(X) \text{ such } that p^*\mathcal{F} \cong q^*\mathcal{G} \}$

with $\mathsf{E}G \times_G X \stackrel{\rho}{\leftarrow} \mathsf{E}G \times X \stackrel{q}{\rightarrow} X$

- $\blacktriangleright \ \, {\sf For} \ \, {\cal F} \in {\sf Der}_G(X) \ \, {\sf get} \ \, {\mathbb H}_G {\cal F} \in {\sf H}^*_G(X) \, {\sf -Mod}$
- f* and f₁ for equivariant maps of locally compact Hausdorff spaces
- Der_G(X) = Der(X/G) in the case of a topologically free action
- Der_G(pt) ⊂ dgDer-(H^{*}_G(pt), d = 0) for G a complex connected algebraic group
- $\text{Der}_B(\text{pt}) \subset \text{dgDer-} \mathbb{Z}[t_1, \dots, t_n]$

The natural categorification of the Hecke algebra

- ► Again G = GL(n; C) with B the upper triangular matrices
- The natural categorification of the Hecke algebra *H* = (^B(ZG)^B, *_B) is the constructible equivariant derived category with convolution

$$(\mathsf{Der}^c_{B \times B}(G), *_B)$$

The convolution is

 $\mathcal{F} \ast_B \mathcal{G} := \text{mult}_! \text{desc}((\text{pr}_1^* \mathcal{F}) \otimes (\text{pr}_2^* \mathcal{G}))$

 $\begin{array}{l} \mathsf{pr}_i : G \times G \to G \\ \mathsf{desc} : \mathsf{Der}^c_{B \times B \times B \times B}(G \times G) \to \mathsf{Der}^c_{B \times B}(G \times_B G) \\ \mathsf{mult} : G \times_B G \to G \end{array}$

Now need intersection cohomology

- For X ∉ ℙⁿC a smooth irreducible complex projective algebraic variety the cohomology H^{*}(X) has remarkable properties:
 - Poincaré duality
 - Hard Lefschetz
 - Hodge Diamond
 - Positivities
- For X ∉ ℙⁿC an non-smooth irreducible complex projective algebraic variety intersection cohomology IH^{*}(X) continues to have these properties
- For X smooth, $H^*(X) = H^*(X)$
- ▶ In general $H^*(X)$ is an $H^*(X)$ -module

Intersection cohomology complex

- For X irreducible complex algebraic variety can still define intersection cohomology IH*(X)
- Formally IH^{*}(X) = ℍℒC_X for ℒC_X ∈ Der(X) the intersection cohomology complex
- Aside: For D-modules have the Riemann-Hilbert correspondence, a fully faithful triangulated functor

$$\mathsf{RH}:\mathsf{Der}^\mathsf{b}_{\mathsf{hol},\mathsf{reg}}(\mathcal{D}_X\operatorname{\mathsf{-Mod}^{\mathsf{qc}}})\hookrightarrow\mathsf{Der}(X)$$

The unique simple D_X-module restricting to O_U on any open smooth subset U ⊚ X gets mapped by RH to IC_X

- ► Back to $G = GL(n; \mathbb{C}) \supset B$ with $G = \bigsqcup_{x \in W} BxB$ for $W = S_n$ the permutation matrices
- ► Consider $\mathcal{IC}_x =: i_{x!}\mathcal{IC}_{\overline{BxB}}$ for $i_x : \overline{BxB} \hookrightarrow G$ intersection cohomology complex of Schubert variety
- All finite direct sums of shifts of *IC_x* form an additive subcategory Der^{ss}_{B×B}(G) ⊂ Der_{B×B}(G) of "perversely semisimple complexes"
- This subcategory is even stable under convolution, due to the so-called decomposition theorem
- Theorem: The functor of hypercohomology gives an equivalence of monoidal categories

$$\mathbb{H}_{B imes B} : (\mathsf{Der}^{ss}_{B imes B}(G), *_B) \stackrel{pprox}{ o} (R\operatorname{-SMod}_{\mathbb{Z}^-} R, \otimes_R) \ \mathcal{IC}_x \quad \mapsto \quad B_x[\dim B]$$

・ロト・日本・日本・日本・日本

Here $\mathbb{H}_{B \times B}$: $(\text{Der}_{B \times B}^{ss}(G), *_B) \xrightarrow{\approx} (R-\text{SMod}_{\mathbb{Z}^-}R, \otimes_R)$ is defined using the identifications

$$\begin{array}{cccc} \mathsf{H}^*_{B\times B}(\mathsf{pt}) & \twoheadrightarrow & \mathsf{H}^*_{B\times B}(G) \\ \wr \downarrow & & \downarrow \wr \\ \mathcal{O}(V \times V) \twoheadrightarrow & \mathcal{O}\left(\bigcup_{x \in W} \Gamma(x)\right) \\ \wr \downarrow & & \downarrow \wr \\ R \otimes R & \twoheadrightarrow & R \otimes_{B^W} R \end{array}$$

for V = Lie T and $T \subset B$ a maximal torus and degrees on O doubled to match cohomological degrees.

COMMERCIAL FOR TWO THEOREMS 6

- ▶ in [S, *Universelle*..., Math. Ann. **284** (1989)] tdo-case
- ▶ in [S, The prime..., Math. Z. 204 (1990)] general

G be a connected complex affine algebraic group, *B* a closed subgroup, X = G/B the homogeneous space, $n = \dim X$ its dimension, $x \in G/B$ the natural base point, *V*, *W* finite dimensional rational representations of *B*, \mathcal{V}, \mathcal{W} the sheaves of sections of the associated bundles.

Then the action leads to an G-equivariant isomorphism

 $\Gamma(X; \mathsf{Dif}(\mathcal{V}, \mathcal{W})) \xrightarrow{\sim} \mathsf{Hom}_{\mathbb{C}}(\mathsf{H}^n_x(X; \mathcal{V}), \mathsf{H}^n_x(X; \mathcal{W}))^{G-\mathsf{alg}}_B$

- ▶ Have $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (V \otimes_{\mathbb{C}} \bigwedge^{\max}(\mathfrak{g}/\mathfrak{b})) \xrightarrow{\sim} H^n_x(X; \mathcal{V})$
- Can replace G-alg by \mathfrak{g} -finite if G is simply connected
- B-compatibility is automatic for B connected

Summing up:

 $\begin{array}{lll} \langle \mathsf{Der}^{ss}_{B\times B}(G),\ast_B\rangle \xrightarrow{\sim} \langle R\operatorname{-SMod}_{\mathbb{Z}^-} R,\otimes_R\rangle \xleftarrow{\sim} & \mathcal{H}_\nu\\ \mathcal{IC}_x[-\dim B] &\mapsto & B_x & \leftrightarrow & C_x\\ \text{intersection} & \text{special} & \text{canonical}\\ \text{cohomology} & \text{bimodule} & \text{basis} \end{array}$

Original motivation: Sheaf-function-correspondence

$$egin{aligned} (\mathsf{Der}_{B_\circ imes B_\circ}(G_\circ;\mathbb{Q}_\ell), *_{B_\circ}) & o & \mathcal{H}_q \ & \mathcal{IC}_x &\mapsto v^? C_x \end{aligned}$$

This was the starting point of Kazhdan-Lusztig

More categorification of the Hecke algebra

- Given X a complex algebraic variety can define variant MDer(X) of Der(X) with functors f^{*}, f₁ as before such that MDer(pt) = Der(ℂ-Modf_ℤ)
- Joint with Matthias Wendt, Rahbar Virk, work in progress

- Based on new progress in motives by Ayoub, Cisinski-Deglise, Drew,...
- Variant of Hodge theory

Our old equivalence can be upgraded further to

 $\begin{array}{cccc} (\mathsf{Der}^{ss}_{B\times B}(G),\ast_B) & \stackrel{\approx}{\to} & (R\operatorname{-SMod}_{\mathbb{Z}}\operatorname{-} R,\otimes_R) \\ & & \downarrow & & \downarrow \\ (\mathsf{MDer}_{B\times B}(G)_{w=0},\ast_B) & & \downarrow \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ (\mathsf{MDer}_{B\times B}(G),\ast_B) & \stackrel{\approx}{\to} (\mathsf{Hot}^{\mathsf{b}}(R\operatorname{-SMod}_{\mathbb{Z}}\operatorname{-} R),\otimes_R) \end{array}$

Back to knot invariants (variation on Webster-Williamson)

- Take $s = (a + 1, a + 2) \in S_n = W$ the transposition
- $T_s^!, T_s^* \in \mathsf{MDer}_{B \times B}(G)$
- Recall $\underline{BsB} \mapsto s$ under $\mathcal{H} \mapsto \mathbb{Z}W$ given by $q \mapsto 1$

- Given a braid Z, scan it from the top and convolve corresponding T[!]_s, T^{*}_s with ∗ := ∗_B to get an object M(Z) ∈ MDer_{B×B}(G)
- For M(Z) to be well-defined, use braid relations T[!]_s ∗ T[!]_t ∗ T[!]_s ≅ T[!]_t ∗ T[!]_s ∗ T[!]_t for sts = tst and similarly for st = ts and ! replaced by ∗
- ► These are geometrically clear, since BsB×_B BtB×_B BsB → BstsB by multiplication, so T[!]_s * T[!]_t * T[!]_s ≃ i_{sts!}BstsB = i_{tst!}BtstB ≃ T[!]_t * T[!]_s * T[!]_t etc
- ► Also need $T_s^! * T_s^* \cong T_s^* * T_s^! \cong i_{e!}\underline{B} = i_{e*}\underline{B}$ unit object Calculation, but not so hard: only on $\mathbb{P}^1\mathbb{C}$

Calculation in bimodules

- ▶ $\mathsf{MDer}_{B \times B}(G) \xrightarrow{\approx} \mathsf{Hot}^{\mathsf{b}}(R\operatorname{-SMod}_{\mathbb{Z}^{-}} R)$
- $T_s^!$ maps to $\ldots \to 0 \to R \otimes_{R^s} R \twoheadrightarrow R \to 0 \to \ldots$ multiplication map
- T^*_s maps to $\ldots \to 0 \to R \hookrightarrow R \otimes_{R^s} R \to 0 \to \ldots$
 - Geometrically, need $\mathcal{O}(\Gamma(e)) \hookrightarrow \mathcal{O}(\Gamma(e) \cup \Gamma(s))$
 - Given by choosing linear function on V × V, whose zero set intersects Γ(e) ∪ Γ(s) precisely in Γ(s)
 - Multiply a function on Γ(e) with this linear function and extend by zero to Γ(e) ∪ Γ(s)
- M(Z) corresponds to B(Z) ∈ Hot^b(R-SMod_Z-R) the tensor product of these elementary complexes

To get an invariant of the knot K(Z) obtained closing the braid *Z* procede as follows:

- Take at each stage of the bimodule complex $\ldots \rightarrow B(Z)^q \rightarrow B(Z)^{q+1} \rightarrow \ldots$ of bimodules the Hochschild homology
- ► Get for each *j* a complex of (graded) vector spaces ... \rightarrow HH_{*j*}($B(Z)^q$) \rightarrow HH_{*j*} $B(Z)^{q+1}$) \rightarrow ...
- Take its cohomology groups $\mathcal{H}^q(HH_j(B(Z)^*))$
- This is Khovanov's triply graded knot homology:
 - Choosen and fixed degree j of Hochschild homology
 - Degree q of cohomology of the resulting complex
 - Internal degree, the bimodules beeing graded
- It categorifies the HOMFLYPT polynomial, which can be gotten as some Euler characteristic

I am still lacking full geometric understanding of why this has to give a knot invariant. Webster-Williamson seem to understand it better. And the construction of MDer is very recent.

Recall relation to representation theory

- g a semisimple complex Lie algebra, Z ⊂ U(g) the center of its enveloping algebra
- M ⊂ g-Mod the category of all representations of g locally finite under Z
- *P* the category of all functors *M* → *M* with split embedding in some functor *E*⊗_C for dim_C *E* < ∞
 </p>

•
$$\mathcal{M} = \prod_{\chi \in \text{Max } Z} \mathcal{M}_{\chi}$$
 and $\mathcal{P} = \prod_{\chi, \psi \in \text{Max } Z} {}_{\psi} \mathcal{P}_{\chi}$

• Equivalence of monoidal categories for $\chi = \operatorname{Ann}_{Z} \mathbb{C}$

$$\hat{\mathbb{V}}: {}_{\chi}\mathcal{P}_{\chi} \stackrel{pprox}{ o} \hat{S} extsf{-SMod-} \hat{S}$$

• $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$ as usual, $S := U(\mathfrak{h})$ polynomial ring

Construction of $\hat{\mathbb{V}}: {}_{\chi}\mathcal{P}_{\chi} \xrightarrow{\approx} \hat{S}$ -SMod- \hat{S}

- Abbreviate $U := U(\mathfrak{g})$, recall $\chi = Z^+ = \operatorname{Ann}_Z \mathbb{C}$
- $U/U\chi^n$ form an inverse system in \mathcal{M}_{χ}
- They also are of finite length as a U-bimodules
- ▶ For $P \in {}_{\chi}P_{\chi}$ still $P(U/U\chi^n)$ naturally is a bimodule
- The P(U/Uχⁿ) are Harish-Chandra bimodules: By definition, these are the bimodules of finite length, which are in addition locally finite for the adjoint action of g.
- Call HCH the category of Harish-Chandra bimodules
- _{\chi}HCH_{\chi} has a unique simple object *L* of maximal Gelfand-Kirillov dimension
- There is an exact functor V : _xHCH_x → C-Modf with L → C and killing the other simples. It is essentially unique.

Construction of $\hat{\mathbb{V}}: {}_{\chi}\mathcal{P}_{\chi} \xrightarrow{\approx} \hat{S}$ -SMod- \hat{S} , continued

- ▶ By functoriality, our exact functor \mathbb{V} is even a functor \mathbb{V} : $_{\chi}$ HCH $_{\chi} \rightarrow Z$ -Modf-Z
- ► Looking closer, our exact functor \mathbb{V} is even a functor \mathbb{V} : $_{\chi}\mathsf{HCH}_{\chi} \rightarrow \hat{Z}$ -Modf- \hat{Z} for $\hat{Z} = Z_{\chi}^{\wedge}$

Set

$$\widehat{\mathbb{V}}\boldsymbol{P} := \varprojlim_{n} \mathbb{V}(\boldsymbol{P}(\boldsymbol{U}/\boldsymbol{U}\chi^{n}))$$

Use natural isomorphism Ẑ → Ŝ induced by unnormalized Harish-Chandra isomorphism Z → S^(W.) ⊂ S with S = O(𝔥*) and W-action shifted to fix −ρ determined by C_{−2ρ} ≅ Λ^{max}(𝑔/𝔥) over 𝔥...

- Consider $_{\chi}$ HCH $_{\chi}^{n} := \{M \in _{\chi}$ HCH $_{\chi} \mid M\chi^{n} = 0\}$
- ► Has enough projectives: The $P(U/U\chi^n)$ for $P \in {}_{\chi}P_{\chi}$
- Get by the above also equivalence
 V : proj(_χHCHⁿ_χ) [≈]→ S-SMod- S/(S⁺)ⁿ
- In the case n = 1 have ¹_χHCH¹_χ → O₀ equivalence with principal block of BGG-category by tensoring with dominant Verma ⊗_UΔ(0)
- Proof of KL-conjectures using bimodules:

Graded versions and Koszul duality

- ► Construct Z-graded version O^Z_o of O_o by declaring proj(O^Z_o) = S-SMod_Z
- Then $\sum_{i} [\Delta_{y}^{\mathbb{Z}} : L_{x}^{\mathbb{Z}} \langle i \rangle] v^{i} = \sum_{i} (P_{x}^{\mathbb{Z}} : \Delta_{y}^{\mathbb{Z}} \langle i \rangle) v^{i} = P_{yx}(v)$
- ► Characterization in joint recent work with Rottmaier: *O*^ℤ_o is "the essentially unique ℤ-graded version of the artinian category *O*_o compatible with the action of the center"
- Deduce $\operatorname{Hot}^{\mathsf{b}}(\operatorname{proj}(\mathcal{O}^{\mathbb{Z}}_{\circ})) = \operatorname{Hot}^{\mathsf{b}}(S\operatorname{-SMod}_{\mathbb{Z}})$
- Thus get Koszul duality K triangulated functor

Kozsul duality K preceded by \mathcal{O} -duality d, properties:

- $Kd : Der^{b}(\mathcal{O}^{\mathbb{Z}}_{\circ}) \rightarrow Der^{b}(\mathcal{O}^{\mathbb{Z}}_{\circ})$ triangulated contravariant
- $\blacktriangleright \ \Delta^{\mathbb{Z}}_{x} \mapsto \Delta^{\mathbb{Z}}_{w_{\circ}x}$
- $L^{\mathbb{Z}}_{x} \mapsto P^{\mathbb{Z}}_{w_{\circ}x}$
- $\blacktriangleright P_x^{\mathbb{Z}} \mapsto L_{w_\circ x}^{\mathbb{Z}}$
- $Kd(M[n]) \cong (KdM)[-n]$
- $Kd(M\langle n \rangle) \cong (KdM)[n]\langle n \rangle$
- ► Funny formulas $\sum_{i} \dim \operatorname{Ext}_{\mathcal{O}}^{i}(\Delta_{x}, L_{y}) = [\Delta_{w_{\circ}x} : L_{w_{\circ}y}]$
- $\blacktriangleright \ \textit{Kd} \ \text{gives} \ \mathsf{Der}(\Delta_x^{\mathbb{Z}}, L_y^{\mathbb{Z}}[i]\langle j \rangle) = \mathsf{Der}(\textit{P}_{w_\circ y}^{\mathbb{Z}}[-i+j]\langle j \rangle, \Delta_{w_\circ x}^{\mathbb{Z}})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This explains these funny formulas

Other things on Koszul duality

- \blacktriangleright Variant exchanging parabolic and singular category ${\cal O}$
- Variant from parabolic-singular to singular-parabolic
- BGG-resolution of simple Verma corresponds to Verma flag of antidominant projective
- More natural from Langlands philosophy point of view

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Variant for Harish-Chandra modules

- Consider HCH the category of U-bimodules M such that every vector is killed by some χⁿ from right and left and {v ∈ M | χv = 0} is of finite length
- Has enough injectives and finite homological dimension
- ► Using V and some duality get contravariant equivalence inj HCH ~ S-SMod-S
- ▶ Define Z-graded version HCH_Z of HCH by declaring inj HCH_Z := (S-SMod_Z-S)^{opp}
- ▶ Deduce $\operatorname{Hot}^{\mathsf{b}}(\operatorname{inj}\overline{\operatorname{HCH}}_{\mathbb{Z}}) \stackrel{\approx}{\to} \operatorname{Hot}^{\mathsf{b}}(S\operatorname{-SMod}_{\mathbb{Z}}\operatorname{-} S)^{\operatorname{opp}}$
- Get $\operatorname{Der}^{\mathsf{b}}(\overline{\operatorname{HCH}}_{\mathbb{Z}}) \xrightarrow{\approx} \operatorname{MDer}_{B^{\vee} \times B^{\vee}}(G^{\vee})^{\operatorname{opp}}$ Koszul duality
- ▶ Need dual group G^{\vee} since $S = O(\mathfrak{h}^*)$ but $R = O(\mathfrak{h})$