The Hecke Algebra and its Categorification

Wolfgang Soergel

Mathematisches Institut
Universität Freiburg

Januar 2015

The formalism of Hecke algebras

- G finite group, $(\mathbb{Z} G, *)$ group ring
- $B \subset G$ subgroup, ${ }^{B}(\mathbb{Z} G)^{B}$ the B-biinvariant functions, stable under $*$ and under $*_{B}:=* /|B|$
- $\mathcal{H}=\mathcal{H}(G, B):=\left({ }^{B}(\mathbb{Z} G)^{B},{ }_{B}\right)$ the Hecke algebra
- Unit element characteristic function $\underline{B}=1_{\mathcal{H}}$ the of B
- \mathbb{Z}-basis of \mathcal{H} are the characteristic functions \underline{D} for D runnig over all double cosets
- For V a G-module V^{B} is an \mathcal{H}-module

The algebra of Hecke operators

- $G=G L(2 ; \mathbb{R})^{+}$acts on the upper half plane \mathbb{H}^{+}
- $G=G L(2 ; \mathbb{R})^{+}$acts on $\mathcal{O}^{\text {an }}\left(\mathbb{H}^{+}\right)(\mathrm{dz})^{\otimes k}$
- Take $B=\operatorname{SL}(2 ; \mathbb{Z})$
- $\mathcal{H}(G, B)$ acts on $\left(\mathcal{O}^{\text {an }}\left(\mathbb{H}^{+}\right)(\mathrm{d} z)^{\otimes k}\right)^{\mathrm{SL}(2 ; \mathbb{Z})}$
- These are the classical Hecke operators acting on modular functions
- Sure these groups are infinite. Then should use the more general definition

$$
\mathcal{H}(G, B):=\operatorname{End}_{\mathbb{Z}}^{G}\left(\operatorname{prod}_{B}^{G} \mathbb{Z}\right)^{\mathrm{opp}}
$$

Towards the Iwahori-Matumoto Hecke algebras

- Take $G=\mathrm{GL}\left(n ; \mathbb{F}_{q}\right)$ and B upper triangular matrices
- Bruhat decomposition $G=\bigsqcup_{x \in W} B x B$ for $W=\mathcal{S}_{n}$ the permutation matrices
- The $T_{x}:=\underline{B x} \underline{B}$ form a basis of the Hecke algebra

For $s \in S:=\{(i, i+1)$ transposition $\mid 1 \leq i<n\}$ know $B \sqcup B s B:=P_{s} \subset G$ is a subgroup and $\left|P_{s} / B\right|=q+1$ For example here is $P_{(2,3)}$:

Towards generators and relations of Hecke algebras

- For $s \in S$ know $B \sqcup B s B:=P_{s} \subset G$ is a subgroup and $\left|P_{s} / B\right|=q+1$
- Deduce $\left(T_{s}+1\right)^{2}=(q+1)\left(T_{s}+1\right)$ and thus $T_{s}^{2}=(q-1) T_{s}+q$ for $s \in S$
- Let $l(x)$ number of Fehlstände of x
- $B x B \times_{B} B y B \xrightarrow{\sim} B x y B$ if $I(x)+I(y)=I(x y)$
- Deduce $T_{x} T_{y}=T_{x y} \quad$ if $I(x)+I(y)=I(x y)$
- Deduce $T_{x} T_{y}=\sum_{z} c_{x, y}^{z}(q) T_{z}$ with $c_{x, y}^{z}$ polynomial in q

Generic Hecke algebra

- Generic Hecke algebra $\mathcal{H}:=\bigoplus_{x \in W} \mathbb{Z}[q] T_{x}$ with $T_{s}^{2}=(q-1) T_{s}+q$ for $s \in S$ and $T_{x} T_{y}=T_{x y}$ if $I(x)+I(y)=I(x y)$
- Called Iwahori-Matsumoto Hecke algebra
- Specializes to group ring $\mathbb{Z} \mathcal{S}_{n}$ for $q \mapsto 1$
- \mathcal{H} might be thought of as quantization of $\mathbb{Z} \mathcal{S}_{n}$
- We want to discuss the categorification of \mathcal{H}
- One application is to refine knot polynomials to knot homology

Coxeter System

- A Coxeter System (W, S) is a group W with a finite subset $S \subset W$ such that W is generated by S subject to the only relations

$$
(s t)^{m(s, t)}=e
$$

for some symmetric matrix $m: S \times S \rightarrow \mathbb{Z}_{\geq 1} \sqcup\{\infty\}$ which is 1 on the diagonal and >1 off the diagonal

- For $x \in W$ put $I(x)$ minimal number of $s \in S$ needed to express x
- Any finite group W generated by reflections is always part of a Coxeter system (W, S)
- For any Coxeter System (W, S) there is a Hecke algebra $\mathcal{H}=\mathcal{H}(W, S):=\bigoplus_{x \in W} \mathbb{Z}[q] T_{x}$ with

$$
\begin{gathered}
T_{s}^{2}=(q-1) T_{s}+q \text { for } s \in S \\
T_{x} T_{y}=T_{x y} \text { if } I(x)+I(y)=I(x y)
\end{gathered}
$$

- Called Iwahori-Matsumoto Hecke algebra
- Specializes to group ring $\mathbb{Z} W$ for $q \mapsto 1$

Alternative description of the Hecke algebra $\mathcal{H}(W, S)$ as $\mathbb{Z}[q]$-ringalgebra with generators T_{s} for $s \in S$ subject to the relations $T_{s}^{2}=(q-1) T_{s}+q$ and braid relations

$$
T_{s} T_{t} \ldots=T_{t} T_{s} \ldots
$$

with $m(s, t)$ factors on both sides

Categorification of Hecke algebra $\mathcal{H}(W, S)$ by bimodules

- Let (W, S) be a Coxeter system
- Choose a representation $W \leftrightarrow V$ wich is
- finite dimensional
- over an infinite field k with char $k \neq 2$
- exactly the conjugates $t=w s w^{-1}$ of elements of $s \in S$ have fixed point spaces of codimension one
- Call such a representation reflection faithful
- Typical example: Symmetric group \mathcal{S}_{n} permuting the coordinates of k^{n}

Categorification of Hecke algebra $\mathcal{H}(W, S)$ by bimodules

- Choose $W \leftrightarrow V$ reflection faithful representation
- Put $R:=\mathcal{O}(V)$ a polynomial ring
- Let R - $\operatorname{Mod}_{\mathbb{Z}^{-}} R$ be the category of \mathbb{Z}-graded R-bimodules or more precisely $R \otimes_{k} R$-modules
- Let

$$
R-\operatorname{Modbf}_{\mathbb{Z}^{-}} R
$$

be the subcategory of graded bifinite bimodules

- Bifinite means finitely generated from the left and from the right

Categorification of Hecke algebra $\mathcal{H}(W, S)$ by bimodules

- Let $\left\langle R\right.$-Modbf $\left.\mathbb{Z}_{\mathbb{Z}^{-}} R\right\rangle$ be the split Grothendieck group
- It becomes a ring under \otimes_{R}
- Categorification Theorem: There is exactly one ring homomorphism

$$
\mathcal{E}: \mathcal{H} \rightarrow\left\langle R-\mathrm{Modbf}_{\mathbb{Z}^{-}} R\right\rangle
$$

such that we have $\mathcal{E}\left(T_{s}+1\right)=\left\langle R \otimes_{R^{s}} R\right\rangle \forall s \in \mathcal{S}$ and $\mathcal{E}(q)=\langle R\langle-1\rangle\rangle$

- Notation $(M\langle n\rangle)_{i}=M_{i+n}$ for grading shift

Sketch of proof of bimodule-categorification

- Recall quadratic relation $T_{s}^{2}=(q-1) T_{s}+q$
- Rewrite to $\left(T_{s}+1\right)^{2}=(q+1)\left(T_{s}+1\right)$
- Need $\left\langle R \otimes_{R^{s}} R\right\rangle^{2}=\langle R\langle-1\rangle \oplus R\rangle\left\langle R \otimes_{R^{s}} R\right\rangle$
- $\left(R \otimes_{R^{s}} R\right) \otimes_{R}\left(R \otimes_{R^{s}} R\right) \cong(R\langle-1\rangle \oplus R) \otimes_{R}\left(R \otimes_{R^{s}} R\right)$
- $R \otimes_{R^{s}} R \otimes_{R^{s}} R \cong\left(R \otimes_{R^{s}} R\right)\langle-1\rangle \oplus\left(R \otimes_{R^{s}} R\right)$
- Follows from recalling in the middle left $R=\alpha R^{s} \oplus R^{s} \cong R^{s}\langle-1\rangle \oplus R^{s}$ with $\alpha \in V^{*}$ equation of V^{s}
- So only need to check braid relations for bimodules
- Need only to argue for dihedral groups. Omitted.

Categorification of Kazhdan-Lusztig basis

- Extend scalars in Hecke algebra \mathcal{H} from $\mathbb{Z}[q]$ to $\mathbb{Z}\left[v, v^{-1}\right]$ by $q=v^{-2}$
- Kazhdan-Lusztig constructed a canonical basis $\left(C_{x}\right)_{x \in W}$ of \mathcal{H}_{v} as a $\mathbb{Z}\left[v, v^{-1}\right]$-module
- Regrade R to sit only in even degrees to get categorification map $\mathcal{E}: \mathcal{H}_{v} \rightarrow\left\langle R\right.$ - Modbf $\left._{\mathbb{Z}^{-}} R\right\rangle$
- Indecomposable Bimodule Theorem: There exist indecomposable bimodules $B_{x} \in R$-Modbf $\mathbb{Z}^{-} R$ such that $\mathcal{E}\left(C_{x}\right)=\left\langle B_{x}\right\rangle$
- In words: The elements of the Kazhdan-Lusztig canonical basis correspond under the categorification theorem to indecomposable bimodules

Definition of Kazhdan-Lusztig basis

- Put $H_{x}=v^{\prime(x)} T_{x}$
- $C_{x} \in H_{x}+\sum_{y} v \mathbb{Z}[v] H_{y}$ and $d\left(C_{x}\right)=C_{x}$ is selfdual, uniquely determines the canonical basis element C_{x}
- Duality $d: \mathcal{H}_{v} \rightarrow \mathcal{H}_{v}$ the unique ring automorphism, which fixes $H_{s}+v$ for $s \in S$ and maps $d: v \mapsto v^{-1}$
- In particular $C_{s}=H_{s}+v$ for $s \in S$ a simple reflection

Discussion of categorification of KL-basis

- Take simple reflections $s, t, \ldots, u \in S$
- Form the bimodules $R \otimes_{R^{s}} R \otimes_{R^{t}} R \ldots \otimes_{R^{u}} R$
- Krull-Schmid decompose those bimodules: Get very special indecomposable bimodules B_{x} categorifying the Kazhdan-Lusztig basis
- Call the graded bimodules $R \otimes_{R^{s}} R \otimes_{R^{t}} R \ldots \otimes_{R^{u}} R$ and all you get from them by taking finite direct sums, direct summands and grading shifts special bimodules and denote the monoidal category of those

$$
R-\mathrm{SMod}_{\mathbb{Z}^{-}} R
$$

Its indecomposables are precisely the $B_{x}\langle n\rangle$.

Positivity Corollaries of categorification

- $C_{x} C_{y} \in \sum_{z} \mathbb{N}\left[v, v^{-1}\right] C_{z}$ since $B_{x} \otimes_{R} B_{y}$ is an actual bimodule, decomposes as

$$
B_{x} \otimes_{R} B_{y}=\bigoplus_{z, n} B_{z}\langle n\rangle^{m(z, n)}
$$

- $C_{x}=\sum_{y} P_{x, y}(v) H_{y}$ with $P_{x, y}(v) \in \mathbb{Z}[v]$ the Kazhdan-Lusztig polynomials
- Coefficients of Kazhdan-Lusztig-Polynomials are non-negative, since they can be interpreted as rk $\operatorname{Hom}_{R-R}\left(\mathcal{O}(\Gamma(x)), B_{y}\right)$
- Here $\Gamma(x) \subset V \times V$ is the graph of x and $\mathcal{O}(\Gamma(x))$ the regular functions on $\Gamma(x)$, a quotient of $\mathcal{O}(V \times V)=R \otimes R$. Put another way, $\mathcal{O}(\Gamma(x))=R$ as left R-module with the right R-action twisted by x
- Example: $w_{\circ} \in W$ longest element of finite reflection group. $C_{w_{0}}=v^{\prime\left(w_{0}\right)} \sum_{x \in W} T_{x}=\sum_{x \in W} v^{l\left(w_{0}\right)-l(x)} H_{x}$

$$
B_{W_{o}}=\mathcal{O}\left(\bigcup_{x \in W} \Gamma(x)\right)
$$

is the bimodule of all regular functions on the union of the graphs of all Weyl group elements $\Gamma(x) \subset V \times V$

- In general B_{x} is still supported on $\bigcup_{y \leq x} \Gamma(y)$
- If $C_{x}=\sum_{y \leq x} v^{\prime(x)-l(y)} H_{y}$, then $B_{x}=\mathcal{O}\left(\bigcup_{y \leq x} \Gamma(y)\right)$

Application to representation theory

- \mathfrak{g} a semisimple complex Lie algebra, $Z \subset U(\mathfrak{g})$ the center of its enveloping algebra
- $\mathcal{M} \subset \mathfrak{g}$-Mod the category of all representations of \mathfrak{g} locally finite under Z
- \mathcal{P} the category of all functors $\mathcal{M} \rightarrow \mathcal{M}$ isomorphic to a direct summand of some functor $E \otimes_{\mathbb{C}}$ for E finite dimensional representation, so-called projective functors
- Equivalence of categories between \{indecomposable projective functors starting and ending with the trivial central character $\}$ and $\left\{\hat{B}_{x} \mid x \in W\right\} \subset \hat{R}$-Mod- \hat{R}

Application to representation theory, variant

- \mathcal{O} 。 $\subset \mathfrak{g}$-Mod principal block of BGG-category \mathcal{O}
- Equivalence of categories between \{indecomposable projectives of $\left.\mathcal{O}_{0}\right\}$ and $\left\{B_{x} \otimes_{R} \mathbb{C} \mid x \in W\right\} \subset R$-Mod
- Gives new proof of KL-conjecture on Jordan-Hölder multiplicities of Verma modules

$$
\operatorname{Der}^{\mathrm{b}}\left(\mathcal{O}_{\circ}\right) \cong \operatorname{Hot}^{\mathrm{b}}\left(\operatorname{proj} \mathcal{O}_{\circ}\right) \cong \operatorname{Hot}^{\mathrm{b}}(R-\mathrm{SMod})
$$

for R-SMod $\subset R$-Mod the subcategory of all $B \otimes_{R} \mathbb{C}$ for $B \in R$-SMod- R

- Can define graded version $\mathcal{O}_{\circ}^{\mathbb{Z}}$ of \mathcal{O}_{\circ} formally such that proj $\mathcal{O}_{o}^{\mathbb{Z}}=R-\mathrm{SMod}_{\mathbb{Z}}$

Categorification of \mathbb{N}

- k a field
- $\operatorname{dim}: \operatorname{Modf}_{k} \rightarrow \mathbb{N}$ "decategorification"
- Multiplication corresponds to tensor product

$$
\operatorname{dim}(V \otimes W)=(\operatorname{dim} V)(\operatorname{dim} W)
$$

Categorification of $\operatorname{Ens}(X, \mathbb{N})=\operatorname{Maps}(X, \mathbb{N})$ for X a set

- k a field and $\operatorname{Mod}_{k} / X \supset \operatorname{Modf}_{k} / X$ sheaves on the discrete set X alias families $\left(\mathcal{F}_{X}\right)_{x \in X}$ of vector spaces respectively finitely generated vector spaces
- Dim : $\operatorname{Modf}_{k} / X \rightarrow \operatorname{Ens}(X, \mathbb{N})$ "decategorification"
- Multiplication corresponds to tensor product

$$
\operatorname{Dim}(\mathcal{F} \otimes \mathcal{G})=(\operatorname{Dim} \mathcal{F})(\operatorname{Dim} \mathcal{G})
$$

Categorification of maps

- $f: X \rightarrow Y$ map of finite sets leads to morphisms

$$
\operatorname{Ens}(X, \mathbb{N}) \underset{f^{*}}{\stackrel{f_{1}}{\leftrightarrows}} \operatorname{Ens}(Y, \mathbb{N})
$$

called pull-back and integration along the fibres

- $|X| 1=c_{!} c^{*} 1$ for $c: X \rightarrow$ pt constant map
- $f: X \rightarrow Y$ map of finite sets leads to functors

$$
\operatorname{Modf}_{k} / X \underset{f^{*}}{\stackrel{f_{1}}{\leftrightarrows}} \operatorname{Modf}_{k} / Y
$$

called pull-back and integration along the fibres

- $\left(f^{*} \mathcal{G}\right)_{x}:=\mathcal{G}_{f(x)}$ and $\left(f_{!} \mathcal{F}\right)_{y}:=\bigoplus_{x \in f^{-1}(y)} \mathcal{F}_{x}$
- Commutative diagrams

$$
\begin{gathered}
\operatorname{Modf}_{k} / X \underset{f^{*}}{\stackrel{f_{1}}{\leftrightarrows}} \operatorname{Modf}_{k} / Y \\
\operatorname{Dim} \downarrow \\
\operatorname{Ens}(X, \mathbb{N}) \underset{f^{*}}{\stackrel{f_{!}}{\leftrightarrows}} \operatorname{Ens}(Y, \mathbb{N})
\end{gathered}
$$

Grothendieck function-sheaf correspondence

- To X_{\circ} variety over \mathbb{F}_{q} and ℓ prime \neq char \mathbb{F}_{q} associate $\operatorname{Der}^{c}\left(X_{0} ; \mathbb{Q}_{l}\right)$ triangulated \mathbb{Q}_{ℓ}-category
- Called „cohomologically constructible complexes of étale sheaves on $X_{\text {。" }}$
- Define map

$$
\operatorname{Tr}: \operatorname{Der}^{c}\left(X_{\circ} ; \mathbb{Q}_{I}\right) \rightarrow \operatorname{Ens}\left(X_{\circ}\left(\mathbb{F}_{q}\right), \mathbb{Q}_{I}\right)
$$

- $\operatorname{Tr}\left(\mathcal{F}_{0}\right): x \mapsto \sum_{i}(-1)^{i} \operatorname{Tr}\left(\mathrm{~F}_{g}^{*} \mid \mathcal{H}^{i} \mathcal{F}_{x}\right)$ with $\mathcal{F}:=\mathcal{F}_{0} \times_{\mathbb{F}_{q}} \mathbb{F}$ sheaf on $X:=X_{\circ} \times_{\mathbb{F}_{q}} \mathbb{F}$ and F_{g} Frobenius

Grothendieck function-sheaf correspondence

- To $f: X_{\circ} \rightarrow Y_{\circ}$ morphism of varieties over \mathbb{F}_{q} associate triangulated functors $f_{!}, f *$ fitting into a commutative diagram

$$
\begin{gathered}
\operatorname{Der}^{c}\left(X_{\circ} ; \mathbb{Q}_{l}\right) \stackrel{\stackrel{f_{1}}{\leftrightarrows}}{\stackrel{f^{*}}{\leftrightarrows}} \\
\operatorname{Der}^{c}\left(Y_{\circ} ; \mathbb{Q}_{l}\right) \\
\operatorname{Tr} \downarrow \\
\operatorname{Ens}\left(X_{\circ}\left(\mathbb{F}_{q}\right), \mathbb{Q}_{l}\right) \stackrel{\downarrow \pi}{\stackrel{f_{l}}{\leftrightarrows}} \operatorname{Ens}\left(Y_{\circ}\left(\mathbb{F}_{q}\right), \mathbb{Q}_{l}\right)
\end{gathered}
$$

- For $c: X_{\circ} \rightarrow \mathrm{pt}_{0}$ this specializes to $\left|X_{\circ}\left(\mathbb{F}_{q}\right)\right| 1=c_{!} c^{*} 1=c_{!} c^{*} \operatorname{Tr}\left(\mathbb{Q}_{l}\right)=\operatorname{Tr}\left(c_{!} c^{*} \mathbb{Q}_{l}\right)=$ $=\sum_{i}(-1)^{i} \operatorname{tr}\left(\mathrm{~F}_{g} \mid \mathrm{H}_{c}^{i}\left(X ; \mathbb{Q}_{l}\right)\right)$ Grothendieck-Lefschetz
- Let G be a finite group. The multiplication in the group ring could for $f, g \in \operatorname{Ens}(G, \mathbb{Z})$ be written as

$$
f * g=\operatorname{mult}_{t}\left(\left(\operatorname{pr}_{1}^{*} f\right)\left(\operatorname{pr}_{2}^{*} g\right)\right)
$$

with $\mathrm{pr}_{1}, \mathrm{pr}_{2}$, mult : $G \times G \rightarrow G$ the projections and the multiplication.

- A natural candidate for the categorification of the group ring in case $G=G_{o}\left(\mathbb{F}_{q}\right)$ is thus $\operatorname{Der}^{c}\left(G_{0} ; \mathbb{Q}_{l}\right)$ with the convolution functor

$$
\mathcal{F} * \mathcal{G}:=\operatorname{mult}_{!}\left(\left(\mathrm{pr}_{1}^{*} \mathcal{F}\right) \otimes\left(\mathrm{pr}_{2}^{*} \mathcal{G}\right)\right)
$$

- Recall $G=\mathrm{GL}\left(n ; \mathbb{F}_{q}\right)$ and B upper triangular matrices and

$$
\mathcal{H}_{q}=\left({ }^{B} \operatorname{Ens}(G, \mathbb{Z})^{B}, * /|B|\right)
$$

functions on the group, B-invariant from both sides

- So a natural categorification ought to be some both sides equivariant derived category of étale sheaves

$$
\operatorname{Der}_{B_{0} \times B_{0}}^{c}\left(G_{0} ; \mathbb{Q}_{l}\right)
$$

- Let's be a bit less perfect and try for the usual topology version of the equivariant derived category

$$
\operatorname{Der}_{B \times B}^{c}(G ; \mathbb{Q})
$$

with $G=\mathrm{GL}(n ; \mathbb{C})$ and metric topology

First discuss equivariant cohomology

- $G \leftrightarrow X$ topological group acting on topological space
- $\mathrm{H}^{*}(X / G)$ not a good concept
- For $f: X \rightarrow Y$ is a morphism of G-spaces, which is a fibration with contractible fibers, need not have $\mathrm{H}^{*}(Y / G) \xrightarrow{\sim} \mathrm{H}^{*}(X / G)$
- Example: $\mathbb{R} \rightarrow$ pt with \mathbb{Z}-action
- Better concept $\mathrm{H}_{G}^{*}(X):=\mathrm{H}^{*}\left(E G \times{ }_{G} X\right)$ equivariant cohomology
- EG contractible with topologially free G-action, the universal bundle over the classifying space

Examples for equivariant cohomology

- $\mathrm{H}_{G}^{*}(X):=\mathrm{H}^{*}\left(E G \times{ }_{G} X\right)$
- $G \leftrightarrow X$ topological group acting freely on topological space, then $\mathrm{H}_{G}^{*}(X)=\mathrm{H}^{*}(X / G)$
- $\mathrm{H}_{G}^{*}(\mathrm{pt})=\mathrm{H}^{*}\left(\mathrm{E} G \times{ }_{G} \mathrm{pt}\right)=\mathrm{H}^{*}(\mathrm{E} G / G)=\mathrm{H}^{*}(\mathrm{~B} G)$ the ring of characteristic classes
- $\mathrm{H}_{\mathbb{C} \times}^{*}(\mathrm{pt})=\mathrm{H}^{*}\left(\mathbb{P}^{\infty} \mathbb{C}\right)=\mathbb{Z}[t]$ with $\operatorname{deg} t=2$
- $\mathrm{H}_{B}^{*}(\mathrm{pt})=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ with deg $t_{i}=2$ for $B \subset \mathrm{GL}(n ; \mathbb{C})$ upper triangular matrices
- For $P \rightarrow X$ a principal G-bundle, pullback $\mathrm{H}_{G}^{*}(\mathrm{pt}) \rightarrow \mathrm{H}_{G}^{*}(P)=\mathrm{H}^{*}(P / G)=\mathrm{H}^{*}(X)$ gives its characteristic classes

Derived category for X a topological space

- $\operatorname{Der}(X)=\operatorname{Der}(\mathrm{Ab} / X)$ derived category of abelian sheaves on X
- $f: X \rightarrow Y$ continous map of locally compact Hausdorff spaces gives triangulated functors $f_{!}: \operatorname{Der}(X) \rightarrow \operatorname{Der}(Y)$ and $f^{*}: \operatorname{Der}(Y) \rightarrow \operatorname{Der}(X)$
- For $c: X \rightarrow$ pt constant map, get $c_{1} c^{*} \mathbb{Z}=\mathrm{H}_{c}^{*}(X)$
- $c^{*} \mathbb{Z}=: X$ the constant sheaf on X
- $\operatorname{Der}_{x}(\underline{X}, \underline{X}[*])=\mathrm{H}^{*}(X)$ the cohomology ring of X
- $\operatorname{Der}_{x}(\underline{X}, \mathcal{F}[*])=\mathrm{H}^{*}(X ; \mathcal{F})=\mathbb{H} \mathcal{F}$ (hyper)cohomology of the sheaf(complex) \mathcal{F}
- $\mathbb{H} \mathcal{F}$ is a $\mathrm{H}^{*}(X)$-module

Equivariant derived category

- $G \leftrightarrow X$ topological space with G-action
- $\operatorname{Der}_{G}(X)=\left\{\mathcal{F} \in \operatorname{Der}\left(E G \times{ }_{G} X\right) \mid \exists \mathcal{G} \in \operatorname{Der}(X)\right.$ such that $\left.p^{*} \mathcal{F} \cong q^{*} \mathcal{G}\right\}$
with $\mathrm{EG} \times \times_{G} X \stackrel{p}{\stackrel{p}{\leftarrow} \mathrm{E} G \times X \xrightarrow{q} X}$
- For $\mathcal{F} \in \operatorname{Der}_{G}(X)$ get $\mathbb{H}_{G} \mathcal{F} \in \mathrm{H}_{G}^{*}(X)$-Mod
- f^{*} and $f_{!}$for equivariant maps of locally compact Hausdorff spaces
- $\operatorname{Der}_{G}(X)=\operatorname{Der}(X / G)$ in the case of a topologically free action
- $\operatorname{Der}_{G}(\mathrm{pt}) \subset \operatorname{dgDer}^{(}\left(\mathrm{H}_{G}^{*}(\mathrm{pt}), d=0\right)$ for G a complex connected algebraic group
- $\operatorname{Der}_{B}(\mathrm{pt}) \subset \operatorname{dgDer}-\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$

The natural categorification of the Hecke algebra

- Again $G=\operatorname{GL}(n ; \mathbb{C})$ with B the upper triangular matrices
- The natural categorification of the Hecke algebra $\mathcal{H}=\left({ }^{B}(\mathbb{Z} G)^{B},{ }_{B}\right)$ is the constructible equivariant derived category with convolution

$$
\left(\operatorname{Der}_{B \times B}^{c}(G), *_{B}\right)
$$

- The convolution is

$$
\mathcal{F} *_{B} \mathcal{G}:=\operatorname{mult} \operatorname{desc}\left(\left(\operatorname{pr}_{1}^{*} \mathcal{F}\right) \otimes\left(\mathrm{pr}_{2}^{*} \mathcal{G}\right)\right)
$$

$\mathrm{pr}_{i}: G \times G \rightarrow G$
desc : $\operatorname{Der}_{B \times B \times B \times B}^{c}(G \times G) \rightarrow \operatorname{Der}_{B \times B}^{c}\left(G \times{ }_{B} G\right)$ mult : $G \times{ }_{B} G \rightarrow G$

Now need intersection cohomology

- For $X \mathbb{A} \mathbb{P}^{n} \mathbb{C}$ a smooth irreducible complex projective algebraic variety the cohomology $\mathrm{H}^{*}(X)$ has remarkable properties:
- Poincaré duality
- Hard Lefschetz
- Hodge Diamond
- Positivities
- For $X \mathbb{A} \mathbb{P}^{n} \mathbb{C}$ an non-smooth irreducible complex projective algebraic variety intersection cohomology $\mathrm{IH}^{*}(X)$ continues to have these properties
- For X smooth, $\mathrm{IH}^{*}(X)=\mathrm{H}^{*}(X)$
- In general $\mathrm{IH}^{*}(X)$ is an $\mathrm{H}^{*}(X)$-module

Intersection cohomology complex

- For X irreducible complex algebraic variety can still define intersection cohomology $\mathrm{IH}^{*}(X)$
- Formally $\mathrm{IH}^{*}(X)=\mathbb{H} \mathcal{I} \mathcal{C}_{X}$ for $\mathcal{I C}_{X} \in \operatorname{Der}(X)$ the intersection cohomology complex
- Aside: For \mathcal{D}-modules have the Riemann-Hilbert correspondence, a fully faithful triangulated functor

$$
\mathrm{RH}: \operatorname{Der}_{\text {hol, reg }}^{\mathrm{b}}\left(\mathcal{D}_{X}-\operatorname{Mod}^{q \mathrm{c}}\right) \hookrightarrow \operatorname{Der}(X)
$$

- The unique simple \mathcal{D}_{X}-module restricting to \mathcal{O}_{U} on any open smooth subset $U \Subset X$ gets mapped by RH to $\mathcal{I C}_{X}$
- Back to $G=G L(n ; \mathbb{C}) \supset B$ with $G=\bigsqcup_{x \in W} B x B$ for $W=\mathcal{S}_{n}$ the permutation matrices
- Consider $\mathcal{I C}_{x}=: i_{x} \boldsymbol{I} \mathcal{C}_{\overline{B x B}}$ for $i_{x}: \overline{B x B} \hookrightarrow G$ intersection cohomology complex of Schubert variety
- All finite direct sums of shifts of $\mathcal{I C}_{x}$ form an additive subcategory $\operatorname{Der}_{B \times B}^{s s}(G) \subset \operatorname{Der}_{B \times B}(G)$ of "perversely semisimple complexes"
- This subcategory is even stable under convolution, due to the so-called decomposition theorem
- Theorem: The functor of hypercohomology gives an equivalence of monoidal categories

$$
\begin{aligned}
\mathbb{H}_{B \times B}:\left(\operatorname{Der}_{B \times B}^{s S}(G), *_{B}\right) & \underset{\rightarrow}{\approx}\left(R-\operatorname{SMod}_{\mathbb{Z}^{-}} R, \otimes_{R}\right) \\
\mathcal{I C}_{x} & \mapsto
\end{aligned} B_{x}[\operatorname{dim} B]
$$

Here $\mathbb{H}_{B \times B}:\left(\operatorname{Der}_{B \times B}^{S s}(G), *_{B}\right) \xrightarrow{\approx}\left(R-\operatorname{SMod}_{\mathbb{Z}^{-}} R, \otimes_{R}\right)$ is defined using the identifications

$$
\begin{array}{ccc}
\mathrm{H}_{B \times B}^{*}(\mathrm{pt}) & \rightarrow & \mathrm{H}_{B \times B}^{*}(G) \\
2 \downarrow & & \downarrow 2 \\
\mathcal{O}(V \times V) & \rightarrow & \mathcal{O} \\
\left(\bigcup_{x \in W} \Gamma(x)\right) \\
2 \downarrow & & \downarrow 2 \\
R \otimes R & \rightarrow & R \otimes_{R^{w}} R
\end{array}
$$

for $V=$ Lie T and $T \subset B$ a maximal torus and degrees on \mathcal{O} doubled to match cohomological degrees.

COMMERCIAL FOR TWO THEOREMS 6

- in [S, Universelle. . ., Math. Ann. 284 (1989)] tdo-case
- in [S, The prime. . . , Math. Z. 204 (1990)] general
G be a connected complex affine algebraic group,
B a closed subgroup, $X=G / B$ the homogeneous space, $n=\operatorname{dim} X$ its dimension, $x \in G / B$ the natural base point, V, W finite dimensional rational representations of B, \mathcal{V}, \mathcal{W} the sheaves of sections of the associated bundles.
Then the action leads to an G-equivariant isomorphism

$$
\Gamma(X ; \operatorname{Dif}(\mathcal{V}, \mathcal{W})) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}\left(\mathrm{H}_{x}^{n}(X ; \mathcal{V}), \mathrm{H}_{x}^{n}(X ; \mathcal{W})\right)_{B}^{G-a l g}
$$

- Have $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(V \otimes_{\mathbb{C}} \Lambda^{\max }(\mathfrak{g} / \mathfrak{b})\right) \xrightarrow{\sim} H_{x}^{n}(X ; \mathcal{V})$
- Can replace G-alg by \mathfrak{g}-finite if G is simply connected
- B-compatibility is automatic for B connected

Summing up:

\[

\]

Original motivation: Sheaf-function-correspondence

$$
\begin{aligned}
\left(\operatorname{Der}_{B_{0} \times B_{0}}\left(G_{0} ; \mathbb{Q}_{\ell}\right), *_{B_{0}}\right) & \rightarrow \mathcal{H}_{q} \\
\mathcal{I C}_{x} & \mapsto v^{?} C_{x}
\end{aligned}
$$

This was the starting point of Kazhdan-Lusztig

More categorification of the Hecke algebra

- Given X a complex algebraic variety can define variant $\operatorname{MDer}(X)$ of $\operatorname{Der}(X)$ with functors $f^{*}, f_{!}$as before such that $\operatorname{MDer}(\mathrm{pt})=\operatorname{Der}\left(\mathbb{C}-\operatorname{Modf}_{\mathbb{Z}}\right)$
- Joint with Matthias Wendt, Rahbar Virk, work in progress
- Based on new progress in motives by Ayoub, Cisinski-Deglise, Drew,...
- Variant of Hodge theory

Our old equivalence can be upgraded further to
$\left(\operatorname{Der}_{B \times B}^{s S}(G), *_{B}\right) \quad \underset{\rightarrow}{\approx} \quad\left(R-\operatorname{SMod}_{\mathbb{Z}^{-}} R, \otimes_{R}\right)$

て \downarrow
$\left(\operatorname{MDer}_{B \times B}(G)_{\left.w=0, *_{B}\right)}\right.$

\downarrow
\downarrow
\downarrow
$\left(\operatorname{MDer}_{B \times B}(G), *_{B}\right) \quad \underset{\rightarrow}{\approx}\left(\operatorname{Hot}^{\mathrm{b}}\left(R-\mathrm{SMod}_{\mathbb{Z}^{-}} R\right), \otimes_{R}\right)$

Back to knot invariants (variation on Webster-Williamson)

$$
i_{s!} \underline{B s B}:=T_{s}^{!}
$$

$i_{s *} B s B:=T_{s}^{*}$

- Take $s=(a+1, a+2) \in \mathcal{S}_{n}=W$ the transposition
- $T_{s}^{!}, T_{s}^{*} \in \operatorname{MDer}_{B \times B}(G)$
- Recall $\underline{B s B} \mapsto s$ under $\mathcal{H} \mapsto \mathbb{Z} W$ given by $q \mapsto 1$
- Given a braid Z, scan it from the top and convolve corresponding $T_{s}^{!}, T_{s}^{*}$ with $*:=*_{B}$ to get an object $M(Z) \in \operatorname{MDer}_{B \times B}(G)$
- For $M(Z)$ to be well-defined, use braid relations $T_{s}^{!} * T_{t}^{!} * T_{s}^{!} \cong T_{t}^{!} * T_{s}^{!} * T_{t}^{!}$for sts $=$tst and similarly for $s t=t s$ and $!$ replaced by *
- These are geometrically clear, since $B s B \times{ }_{B} B t B \times{ }_{B} B s B \xrightarrow{\sim}$ Bsts B by multiplication, so $T_{s}^{!} * T_{t}^{!} * T_{s}^{!} \cong i_{s t s!} B s t s B=i_{t s t!} B t s t B \cong T_{t}^{!} * T_{s}^{!} * T_{t}^{!}$etc
- Also need $T_{s}^{!} * T_{s}^{*} \cong T_{s}^{*} * T_{s}^{!} \cong i_{e!} \underline{B}=i_{e * *} \underline{B}$ unit object Calculation, but not so hard: only on $\mathbb{P}^{1} \mathbb{C}$

Calculation in bimodules

- $\operatorname{MDer}_{B \times B}(G) \xrightarrow{\approx} \operatorname{Hot}^{\mathrm{b}}\left(R-\mathrm{SMod}_{\mathbb{Z}^{-}} R\right)$
- $T_{s}^{!}$maps to $\ldots \rightarrow 0 \rightarrow R \otimes_{R^{s}} R \rightarrow R \rightarrow 0 \rightarrow \ldots$ multiplication map
- T_{s}^{*} maps to $\ldots \rightarrow 0 \rightarrow R \hookrightarrow R \otimes_{R^{s}} R \rightarrow 0 \rightarrow \ldots$
- Geometrically, need $\mathcal{O}(\Gamma(e)) \hookrightarrow \mathcal{O}(\Gamma(e) \cup \Gamma(s))$
- Given by choosing linear function on $V \times V$, whose zero set intersects $\Gamma(e) \cup \Gamma(s)$ precisely in $\Gamma(s)$
- Multiply a function on $\Gamma(e)$ with this linear function and extend by zero to $\Gamma(e) \cup \Gamma(s)$
- $M(Z)$ corresponds to $B(Z) \in \operatorname{Hot}^{\mathrm{b}}\left(R-\mathrm{SMod}_{\mathbb{Z}^{-}} R\right)$ the tensor product of these elementary complexes

To get an invariant of the knot $K(Z)$ obtained closing the braid Z procede as follows:

- Take at each stage of the bimodule complex $\ldots \rightarrow B(Z)^{q} \rightarrow B(Z)^{q+1} \rightarrow \ldots$ of bimodules the Hochschild homology
- Get for each j a complex of (graded) vector spaces $\left.\ldots \rightarrow \mathrm{HH}_{j}\left(B(Z)^{q}\right) \rightarrow \mathrm{HH}_{j} B(Z)^{q+1}\right) \rightarrow \ldots$
- Take its cohomology groups $\mathcal{H}^{q}\left(\mathrm{HH}_{j}\left(B(Z)^{*}\right)\right.$
- This is Khovanov's triply graded knot homology:
- Choosen and fixed degree j of Hochschild homology
- Degree q of cohomology of the resulting complex
- Internal degree, the bimodules beeing graded
- It categorifies the HOMFLYPT polynomial, which can be gotten as some Euler characteristic

I am still lacking full geometric understanding of why this has to give a knot invariant. Webster-Williamson seem to understand it better. And the construction of MDer is very recent.

Recall relation to representation theory

- \mathfrak{g} a semisimple complex Lie algebra, $Z \subset U(\mathfrak{g})$ the center of its enveloping algebra
- $\mathcal{M} \subset \mathfrak{g}$-Mod the category of all representations of \mathfrak{g} locally finite under Z
- \mathcal{P} the category of all functors $\mathcal{M} \rightarrow \mathcal{M}$ with split embedding in some functor $E \otimes_{\mathbb{C}}$ for $\operatorname{dim}_{\mathbb{C}} E<\infty$
- $\mathcal{M}=\Pi_{\chi \in \operatorname{Maxz}} \mathcal{M}_{\chi}$ and $\mathcal{P}=\Pi_{\chi, \psi \in \operatorname{Maxz}} \psi_{\psi} \mathcal{P}_{\chi}$
- Equivalence of monoidal categories for $\chi=\mathrm{Ann}_{z} \mathbb{C}$

$$
\hat{\mathbb{V}}:{ }_{\chi} \mathcal{P}_{\chi} \xrightarrow{\approx} \hat{S}-\text { SMod- } \hat{S}
$$

- $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$ as usual, $S:=U(\mathfrak{h})$ polynomial ring

Construction of $\hat{\mathbb{V}}:{ }_{\chi} \mathcal{P}_{\chi} \xrightarrow{\approx} \hat{S}$-SMod- \hat{S}

- Abbreviate $U:=U(\mathfrak{g})$, recall $\chi=Z^{+}=\operatorname{Ann}_{z} \mathbb{C}$
- $U / U \chi^{n}$ form an inverse system in \mathcal{M}_{χ}
- They also are of finite length as a U-bimodules
- For $P \in{ }_{\chi} \mathcal{P}_{\chi}$ still $P\left(U / U \chi^{n}\right)$ naturally is a bimodule
- The $P\left(U / U \chi^{n}\right)$ are Harish-Chandra bimodules: By definition, these are the bimodules of finite length, which are in addition locally finite for the adjoint action of \mathfrak{g}.
- Call HCH the category of Harish-Chandra bimodules
- ${ }_{\chi} \mathrm{HCH}_{\chi}$ has a unique simple object L of maximal Gelfand-Kirillov dimension
- There is an exact functor $\mathbb{V}:{ }_{\chi} \mathrm{HCH}_{\chi} \rightarrow \mathbb{C}$-Modf with $L \mapsto \mathbb{C}$ and killing the other simples. It is essentially unique.

Construction of $\hat{\mathbb{V}}:{ }_{\chi} \mathcal{P}_{\chi} \xrightarrow{\approx} \hat{S}$-SMod- \hat{S}, continued

- By functoriality, our exact functor \mathbb{V} is even a functor $\mathbb{V}:{ }_{\chi} \mathrm{HCH}_{\chi} \rightarrow Z$-Modf- Z
- Looking closer, our exact functor \mathbb{V} is even a functor $\mathbb{V}:{ }_{\chi} \mathrm{HCH}_{\chi} \rightarrow \hat{Z}$-Modf- \hat{Z} for $\hat{Z}=Z_{\chi}^{\hat{\wedge}}$
- Set

$$
\hat{\mathbb{V}} P:={\underset{\mathrm{lim}}{n}}^{\mathbb{V}}\left(P\left(U / U \chi^{n}\right)\right)
$$

- Use natural isomorphism $\hat{Z} \xrightarrow{\sim} \hat{S}$ induced by unnormalized Harish-Chandra isomorphism $Z \xrightarrow{\sim} S^{(W \cdot)} \subset S$ with $S=\mathcal{O}\left(\mathfrak{h}^{*}\right)$ and W-action shifted to fix $-\rho$ determined by $\mathbb{C}_{-2 \rho} \cong \Lambda^{\max }(\mathfrak{g} / \mathfrak{b})$ over $\mathfrak{h} \ldots$
- Consider ${ }_{\chi} \mathrm{HCH}_{\chi}^{n}:=\left\{M \in{ }_{\chi} \mathrm{HCH}_{\chi} \mid M \chi^{n}=0\right\}$
- Has enough projectives: The $P\left(U / U \chi^{n}\right)$ for $P \in{ }_{\chi} \mathcal{P}_{\chi}$
- Get by the above also equivalence $\mathbb{V}: \operatorname{proj}\left({ }_{\chi} \mathrm{HCH}_{\chi}^{n}\right) \underset{\rightarrow}{\rightarrow} S$-SMod- $S /\left(S^{+}\right)^{n}$
- In the case $n=1$ have ${ }_{\chi} \mathrm{HCH}_{\chi}^{1} \xrightarrow{\approx} \mathcal{O}_{\circ}$ equivalence with principal block of BGG-category by tensoring with dominant Verma $\otimes_{u} \Delta(0)$
- Proof of KL-conjectures using bimodules:

$$
\begin{aligned}
& P_{x} \mapsto B_{x} \otimes_{S} \mathbb{C} \leftrightarrow \quad B_{x} \\
& Q \in \quad \operatorname{proj}\left(\mathcal{O}_{\circ}\right) \xrightarrow{\approx} S-S M o d \leftarrow S-\operatorname{SMod}_{\mathbb{Z}^{-}} S \ni B_{x} \\
& \sum_{y}\left(Q: \Delta_{y}\right) y \in \mathbb{Z}[W] \longleftarrow \mathcal{H}_{v} \longleftarrow \ni C_{x} \\
& \Rightarrow \sum_{y}\left(P_{x}: \Delta_{y}\right) y=C_{x}(1) \Rightarrow\left[\Delta_{y}: L_{x}\right]=\left(P_{x}: \Delta_{y}\right)=P_{y x}(1)
\end{aligned}
$$

Graded versions and Koszul duality

- Construct \mathbb{Z}-graded version $\mathcal{O}_{\circ}^{\mathbb{Z}}$ of \mathcal{O} 。 by declaring $\operatorname{proj}\left(\mathcal{O}_{\circ}^{\mathbb{Z}}\right)=S-$ SMod $_{\mathbb{Z}}$
- Then $\sum_{i}\left[\Delta_{y}^{\mathbb{Z}}: L_{x}^{\mathbb{Z}}\langle i\rangle\right] v^{i}=\sum_{i}\left(P_{x}^{\mathbb{Z}}: \Delta_{y}^{\mathbb{Z}}\langle i\rangle\right) v^{i}=P_{y x}(v)$
- Characterization in joint recent work with Rottmaier: $\mathcal{O}_{o}^{\mathbb{Z}}$ is "the essentially unique \mathbb{Z}-graded version of the artinian category \mathcal{O}_{\circ} compatible with the action of the center"
- Deduce $\operatorname{Hot}^{\mathrm{b}}\left(\operatorname{proj}\left(\mathcal{O}_{o}^{\mathbb{Z}}\right)\right)=\operatorname{Hot}^{\mathrm{b}}\left(S-\operatorname{SMod}_{\mathbb{Z}}\right)$
- Thus get Koszul duality K triangulated functor

$$
\begin{aligned}
& \operatorname{Der}^{\mathrm{b}}\left(\mathcal{O}_{0}^{\mathbb{Z}}\right) \xrightarrow{\approx} \operatorname{Hot}^{\mathrm{b}}\left(S-\operatorname{SMod}_{\mathbb{Z}}\right) \xrightarrow{\approx} \operatorname{MDer}_{N \times B}(G) \\
& K \downarrow \\
& \operatorname{Der}^{\mathrm{b}}\left(\mathcal{O}_{0}^{\mathbb{Z}}\right) \leftleftarrows \quad \underset{\leftarrow}{\leftarrow} \operatorname{MDer}_{N}(G / B) \\
& \downarrow \\
& \operatorname{Der}^{\mathrm{b}}\left(\mathcal{O}_{0}\right) \leftleftarrows \operatorname{Der}_{N}^{\mathrm{b}}\left(\mathcal{D}_{G / B}-\operatorname{Mod}^{a \mathrm{c}}\right) \underset{\leftarrow}{ } \operatorname{Der}_{N}(G / B)
\end{aligned}
$$

Kozsul duality K preceded by \mathcal{O}-duality d, properties:

- Kd : $\operatorname{Der}^{\mathrm{b}}\left(\mathcal{O}_{\circ}^{\mathbb{Z}}\right) \rightarrow \operatorname{Der}^{\mathrm{b}}\left(\mathcal{O}_{\circ}^{\mathbb{Z}}\right)$ triangulated contravariant
- $\Delta_{x}^{\mathbb{Z}} \mapsto \Delta_{w_{0} x}^{\mathbb{Z}}$
- $L_{x}^{\mathbb{Z}} \mapsto P_{w_{0} x}^{\mathbb{Z}}$
- $P_{x}^{\mathbb{Z}} \mapsto L_{w_{0} x}^{\mathbb{Z}}$
- $K d(M[n]) \cong(K d M)[-n]$
- $K d(M\langle n\rangle) \cong(K d M)[n]\langle n\rangle$
- Funny formulas $\sum_{i} \operatorname{dim}^{\operatorname{Ext}}{ }_{\mathcal{O}}^{i}\left(\Delta_{x}, L_{y}\right)=\left[\Delta_{w_{o} x}: L_{w_{o} y}\right]$
- Kd gives $\operatorname{Der}\left(\Delta_{x}^{\mathbb{Z}}, L_{y}^{\mathbb{Z}}[i]\langle j\rangle\right)=\operatorname{Der}\left(P_{w_{o} y}^{\mathbb{Z}}[-i+j]\langle j\rangle, \Delta_{w_{o} x}^{\mathbb{Z}}\right)$
- This explains these funny formulas

Other things on Koszul duality

- Variant exchanging parabolic and singular category \mathcal{O}
- Variant from parabolic-singular to singular-parabolic
- BGG-resolution of simple Verma corresponds to Verma flag of antidominant projective
- More natural from Langlands philosophy point of view

Variant for Harish-Chandra modules

- Consider HCH the category of U-bimodules M such that every vector is killed by some χ^{n} from right and left and $\{v \in M \mid \chi v=0\}$ is of finite length
- Has enough injectives and finite homological dimension
- Using \mathbb{V} and some duality get contravariant equivalence inj $\overline{\mathrm{HCH}} \xrightarrow{\approx} S$-SMod- S
- Define \mathbb{Z}-graded version $\overline{\mathrm{HCH}}_{\mathbb{Z}}$ of $\overline{\mathrm{HCH}}$ by declaring inj $\overline{\mathrm{HCH}}_{\mathbb{Z}}:=\left(S-\mathrm{SMod}_{\mathbb{Z}^{-}} S\right)^{\text {opp }}$
- Deduce $\operatorname{Hot}^{\mathrm{b}}\left(\mathrm{inj} \overline{\mathrm{HCH}}_{\mathbb{Z}}\right) \xrightarrow{\widetilde{\rightarrow}} \operatorname{Hot}^{\mathrm{b}}\left(S-\mathrm{SMod}_{\mathbb{Z}^{-}} S\right)^{\text {opp }}$
- Get $\operatorname{Der}^{\mathrm{b}}\left(\overline{\mathrm{HCH}}_{\mathbb{Z}}\right) \stackrel{\approx}{\rightarrow} \mathrm{MDer}_{B^{\vee} \times B^{\vee}}\left(G^{\vee}\right)^{\text {opp }}$ Koszul duality
- Need dual group G^{\vee} since $S=\mathcal{O}\left(\mathfrak{h}^{*}\right)$ but $R=\mathcal{O}(\mathfrak{h})$

