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The formalism of Hecke algebras

I G finite group, (ZG, ∗) group ring

I B ⊂ G subgroup, B(ZG)B the B-biinvariant functions,
stable under ∗ and under ∗B := ∗/|B|

I H = H(G,B) := (B(ZG)B, ∗B) the Hecke algebra

I Unit element characteristic function B = 1H the of B

I Z-basis of H are the characteristic functions D for D
runnig over all double cosets

I For V a G-module V B is an H-module



The algebra of Hecke operators

I G = GL(2;R)+ acts on the upper half plane H+

I G = GL(2;R)+ acts on Oan(H+)(dz)⊗k

I Take B = SL(2;Z)

I H(G,B) acts on
(
Oan(H+)(dz)⊗k

)SL(2;Z)

I These are the classical Hecke operators acting on
modular functions

I Sure these groups are infinite. Then should use the
more general definition

H(G,B) := EndG
Z (prodG

B Z)opp



Towards the Iwahori-Matumoto Hecke algebras

I Take G = GL(n;Fq) and B upper triangular matrices

I Bruhat decomposition G =
⊔

x∈W BxB for W = Sn the
permutation matrices

I The Tx := BxB form a basis of the Hecke algebra



For s ∈ S := {(i , i + 1) transposition | 1 ≤ i < n} know
B t BsB := Ps ⊂ G is a subgroup and |Ps/B| = q + 1
For example here is P(2,3):



Towards generators and relations of Hecke algebras

I For s ∈ S know B tBsB := Ps ⊂ G is a subgroup and
|Ps/B| = q + 1

I Deduce (Ts + 1)2 = (q + 1)(Ts + 1) and thus
T 2

s = (q − 1)Ts + q for s ∈ S

I Let l(x) number of Fehlstände of x

I BxB ×B ByB ∼→ BxyB if l(x) + l(y) = l(xy)

I Deduce TxTy = Txy if l(x) + l(y) = l(xy)

I Deduce TxTy =
∑

z cz
x ,y (q)Tz with cz

x ,y polynomial in q



Generic Hecke algebra

I Generic Hecke algebra H :=
⊕

x∈W Z[q]Tx with
T 2

s = (q − 1)Ts + q for s ∈ S and TxTy = Txy if
l(x) + l(y) = l(xy)

I Called Iwahori-Matsumoto Hecke algebra

I Specializes to group ring ZSn for q 7→ 1

I H might be thought of as quantization of ZSn

I We want to discuss the categorification of H
I One application is to refine knot polynomials to knot

homology



Coxeter System

I A Coxeter System (W ,S) is a group W with a finite
subset S ⊂W such that W is generated by S subject
to the only relations

(st)m(s,t) = e

for some symmetric matrix m : S × S → Z≥1 t {∞}
which is 1 on the diagonal and > 1 off the diagonal

I For x ∈W put l(x) minimal number of s ∈ S needed
to express x

I Any finite group W generated by reflections is always
part of a Coxeter system (W ,S)



I For any Coxeter System (W ,S) there is a Hecke
algebra H = H(W ,S) :=

⊕
x∈W Z[q]Tx with

T 2
s = (q − 1)Ts + q for s ∈ S

TxTy = Txy if l(x) + l(y) = l(xy)

I Called Iwahori-Matsumoto Hecke algebra

I Specializes to group ring ZW for q 7→ 1



Alternative description of the Hecke algebra H(W ,S) as
Z[q]-ringalgebra with generators Ts for s ∈ S subject to
the relations T 2

s = (q − 1)Ts + q and braid relations

TsTt . . . = TtTs . . .

with m(s, t) factors on both sides



Categorification of Hecke algebra H(W ,S) by bimodules

I Let (W ,S) be a Coxeter system
I Choose a representation W # V wich is

I finite dimensional

I over an infinite field k with char k 6= 2

I exactly the conjugates t = wsw−1 of elements of
s ∈ S have fixed point spaces of codimension one

I Call such a representation reflection faithful

I Typical example: Symmetric group Sn permuting the
coordinates of kn



Categorification of Hecke algebra H(W ,S) by bimodules

I Choose W # V reflection faithful representation

I Put R := O(V ) a polynomial ring

I Let R -ModZ- R be the category of Z-graded
R-bimodules or more precisely R ⊗k R-modules

I Let
R -ModbfZ- R

be the subcategory of graded bifinite bimodules

I Bifinite means finitely generated from the left and
from the right



Categorification of Hecke algebra H(W ,S) by bimodules

I Let 〈R -ModbfZ- R〉 be the split Grothendieck group

I It becomes a ring under ⊗R

I Categorification Theorem: There is exactly one ring
homomorphism

E : H → 〈R -ModbfZ- R〉

such that we have E(Ts + 1) = 〈R ⊗Rs R〉 ∀s ∈ S and
E(q) = 〈R〈−1〉〉

I Notation (M〈n〉)i = Mi+n for grading shift



Sketch of proof of bimodule-categorification

I Recall quadratic relation T 2
s = (q − 1)Ts + q

I Rewrite to (Ts + 1)2 = (q + 1)(Ts + 1)

I Need 〈R ⊗Rs R〉2 = 〈R〈−1〉 ⊕ R〉〈R ⊗Rs R〉
I (R ⊗Rs R)⊗R (R ⊗Rs R) ∼= (R〈−1〉 ⊕ R)⊗R (R ⊗Rs R)

I R ⊗Rs R ⊗Rs R ∼= (R ⊗Rs R)〈−1〉 ⊕ (R ⊗Rs R)

I Follows from recalling in the middle left
R = αRs ⊕ Rs ∼= Rs〈−1〉 ⊕ Rs

with α ∈ V ∗ equation of V s

I So only need to check braid relations for bimodules

I Need only to argue for dihedral groups. Omitted.



Categorification of Kazhdan-Lusztig basis

I Extend scalars in Hecke algebra H from Z[q] to
Z[v , v−1] by q = v−2

I Kazhdan-Lusztig constructed a canonical basis
(Cx )x∈W of Hv as a Z[v , v−1]-module

I Regrade R to sit only in even degrees to get
categorification map E : Hv → 〈R -ModbfZ- R〉

I Indecomposable Bimodule Theorem: There exist
indecomposable bimodules Bx ∈ R -ModbfZ- R such
that E(Cx ) = 〈Bx〉

I In words: The elements of the Kazhdan-Lusztig
canonical basis correspond under the categorification
theorem to indecomposable bimodules



Definition of Kazhdan-Lusztig basis

I Put Hx = v l(x)Tx

I Cx ∈ Hx +
∑

y vZ[v ]Hy and d(Cx ) = Cx is selfdual,
uniquely determines the canonical basis element Cx

I Duality d : Hv → Hv the unique ring automorphism,
which fixes Hs + v for s ∈ S and maps d : v 7→ v−1

I In particular Cs = Hs + v for s ∈ S a simple reflection



Discussion of categorification of KL-basis
I Take simple reflections s, t , . . . ,u ∈ S

I Form the bimodules R ⊗Rs R ⊗Rt R . . .⊗Ru R

I Krull-Schmid decompose those bimodules: Get very
special indecomposable bimodules Bx categorifying
the Kazhdan-Lusztig basis

I Call the graded bimodules R ⊗Rs R ⊗Rt R . . .⊗Ru R
and all you get from them by taking finite direct sums,
direct summands and grading shifts special
bimodules and denote the monoidal category of
those

R -SModZ- R

Its indecomposables are precisely the Bx〈n〉.



Positivity Corollaries of categorification

I CxCy ∈
∑

z N[v , v−1]Cz since Bx ⊗R By is an actual
bimodule, decomposes as

Bx ⊗R By =
⊕
z,n

Bz〈n〉m(z,n)

I Cx =
∑

y Px ,y (v)Hy with Px ,y (v) ∈ Z[v ] the
Kazhdan-Lusztig polynomials

I Coefficients of Kazhdan-Lusztig-Polynomials are
non-negative, since they can be interpreted as
rk HomR−R(O(Γ(x)),By )

I Here Γ(x) ⊂ V × V is the graph of x and O(Γ(x)) the
regular functions on Γ(x), a quotient of
O(V × V ) = R ⊗ R. Put another way, O(Γ(x)) = R as
left R-module with the right R-action twisted by x



I Example: w◦ ∈W longest element of finite reflection
group. Cw◦ = v l(w◦)

∑
x∈W Tx =

∑
x∈W v l(w◦)−l(x)Hx

Bw◦ = O

(⋃
x∈W

Γ(x)

)

is the bimodule of all regular functions on the union of
the graphs of all Weyl group elements Γ(x) ⊂ V × V

I In general Bx is still supported on
⋃

y≤x Γ(y)

I If Cx =
∑

y≤x v l(x)−l(y)Hy , then Bx = O
(⋃

y≤x Γ(y)
)



Application to representation theory

I g a semisimple complex Lie algebra, Z ⊂ U(g) the
center of its enveloping algebra

I M⊂ g -Mod the category of all representations of g
locally finite under Z

I P the category of all functorsM→M isomorphic to
a direct summand of some functor E⊗C for E finite
dimensional representation, so-called projective
functors

I Equivalence of categories between {indecomposable
projective functors starting and ending with the trivial
central character} and {B̂x | x ∈W} ⊂ R̂ -Mod- R̂



Application to representation theory, variant

I O◦ ⊂ g -Mod principal block of BGG-category O
I Equivalence of categories between {indecomposable

projectives of O◦} and {Bx ⊗R C | x ∈W} ⊂ R -Mod

I Gives new proof of KL-conjecture on Jordan-Hölder
multiplicities of Verma modules

I

Derb(O◦) ∼= Hotb(projO◦) ∼= Hotb(R -SMod)

for R -SMod ⊂ R -Mod the subcategory of all B ⊗R C
for B ∈ R -SMod- R

I Can define graded version OZ
◦ of O◦ formally such

that projOZ
◦ = R -SModZ



Categorification of N
I k a field

I dim : Modfk → N “decategorification”

I Multiplication corresponds to tensor product

dim(V ⊗W ) = (dim V )(dim W )



Categorification of Ens(X ,N) = Maps(X ,N) for X a set
I k a field and Modk /X ⊃ Modfk /X sheaves on the

discrete set X alias families (Fx )x∈X of vector spaces
respectively finitely generated vector spaces

I Dim : Modfk /X → Ens(X ,N) “decategorification”

I Multiplication corresponds to tensor product

Dim(F ⊗ G) = (DimF)(DimG)



Categorification of maps
I f : X → Y map of finite sets leads to morphisms

Ens(X ,N)
f!−→
←−
f ∗

Ens(Y ,N)

called pull-back and integration along the fibres

I |X |1 = c!c∗1 for c : X → pt constant map



I f : X → Y map of finite sets leads to functors

Modfk /X
f!−→
←−
f ∗

Modfk /Y

called pull-back and integration along the fibres

I (f ∗G)x := Gf (x) and (f!F)y :=
⊕

x∈f−1(y)Fx

I Commutative diagrams

Modfk /X
f!−→
←−
f ∗

Modfk /Y

Dim ↓ ↓ Dim

Ens(X ,N)
f!−→
←−
f ∗

Ens(Y ,N)



Grothendieck function-sheaf correspondence
I To X◦ variety over Fq and ` prime 6= charFq associate

Derc(X◦;Ql) triangulated Q`-category

I Called ”cohomologically constructible complexes of
étale sheaves on X◦“

I Define map

Tr : Derc(X◦;Ql)→ Ens(X◦(Fq),Ql)

I Tr(F◦) : x 7→
∑

i(−1)i Tr(F∗g | HiFx ) with F := F◦ ×Fq F
sheaf on X := X◦ ×Fq F and Fg Frobenius



Grothendieck function-sheaf correspondence
I To f : X◦ → Y◦ morphism of varieties over Fq

associate triangulated functors f!, f ∗ fitting into a
commutative diagram

Derc(X◦;Ql)
f!−→
←−
f ∗

Derc(Y◦;Ql)

Tr ↓ ↓ Tr

Ens(X◦(Fq),Ql)
f!−→
←−
f ∗

Ens(Y◦(Fq),Ql)

I For c : X◦ → pt◦ this specializes to
|X◦(Fq)|1 = c!c∗1 = c!c∗ Tr(Ql) = Tr(c!c∗Ql) =

=
∑

i(−1)i tr(Fg |Hi
c(X ;Ql)) Grothendieck-Lefschetz



I Let G be a finite group. The multiplication in the group
ring could for f ,g ∈ Ens(G,Z) be written as

f ∗ g = mult!((pr∗1 f )(pr∗2 g))

with pr1,pr2,mult : G ×G→ G the projections and
the multiplication.

I A natural candidate for the categorification of the
group ring in case G = G◦(Fq) is thus Derc(G◦;Ql)
with the convolution functor

F ∗ G := mult!((pr∗1F)⊗ (pr∗2 G))



I Recall G = GL(n;Fq) and B upper triangular matrices
and

Hq = (BEns(G,Z)B, ∗/|B|)

functions on the group, B-invariant from both sides

I So a natural categorification ought to be some both
sides equivariant derived category of étale sheaves

Derc
B◦×B◦(G◦;Ql)

I Let’s be a bit less perfect and try for the usual
topology version of the equivariant derived category

Derc
B×B(G;Q)

with G = GL(n;C) and metric topology



First discuss equivariant cohomology
I G# X topological group acting on topological space

I H∗(X/G) not a good concept

I For f : X → Y is a morphism of G-spaces, which is a
fibration with contractible fibers, need not have
H∗(Y/G)

∼→ H∗(X/G)

I Example: R� pt with Z-action

I Better concept H∗G(X ) := H∗(EG ×G X ) equivariant
cohomology

I EG contractible with topologially free G-action, the
universal bundle over the classifying space



Examples for equivariant cohomology
I H∗G(X ) := H∗(EG ×G X )

I G# X topological group acting freely on topological
space, then H∗G(X ) = H∗(X/G)

I H∗G(pt) = H∗(EG ×G pt) = H∗(EG/G) = H∗(BG) the
ring of characteristic classes

I H∗C×(pt) = H∗(P∞C) = Z[t ] with deg t = 2

I H∗B(pt) = Z[t1, . . . , tn] with deg ti = 2 for B ⊂ GL(n;C)
upper triangular matrices

I For P → X a principal G-bundle, pullback
H∗G(pt)→ H∗G(P) = H∗(P/G) = H∗(X ) gives its
characteristic classes



Derived category for X a topological space
I Der(X ) = Der(Ab /X ) derived category of abelian

sheaves on X

I f : X → Y continous map of locally compact
Hausdorff spaces gives triangulated functors
f! : Der(X )→ Der(Y ) and f ∗ : Der(Y )→ Der(X )

I For c : X → pt constant map, get c!c∗Z = H∗c(X )

I c∗Z =: X the constant sheaf on X

I DerX (X ,X [∗]) = H∗(X ) the cohomology ring of X

I DerX (X ,F [∗]) = H∗(X ;F) = HF (hyper)cohomology
of the sheaf(complex) F

I HF is a H∗(X )-module



Equivariant derived category
I G# X topological space with G-action

I DerG(X ) = {F ∈ Der(EG ×G X )| ∃G ∈ Der(X ) such
that p∗F ∼= q∗G}

with EG ×G X p← EG × X q→ X

I For F ∈ DerG(X ) get HGF ∈ H∗G(X ) -Mod

I f ∗ and f! for equivariant maps of locally compact
Hausdorff spaces

I DerG(X ) = Der(X/G) in the case of a topologically
free action

I DerG(pt) ⊂ dgDer-(H∗G(pt),d = 0) for G a complex
connected algebraic group

I DerB(pt) ⊂ dgDer-Z[t1, . . . , tn]



The natural categorification of the Hecke algebra
I Again G = GL(n;C) with B the upper triangular

matrices

I The natural categorification of the Hecke algebra
H = (B(ZG)B, ∗B) is the constructible equivariant
derived category with convolution

(Derc
B×B(G), ∗B)

I The convolution is

F ∗B G := mult! desc((pr∗1F)⊗ (pr∗2 G))

pri : G ×G→ G
desc : Derc

B×B×B×B(G ×G)→ Derc
B×B(G ×B G)

mult : G ×B G→ G



Now need intersection cohomology
I For X ⊂∧ PnC a smooth irreducible complex projective

algebraic variety the cohomology H∗(X ) has
remarkable properties:

I Poincaré duality
I Hard Lefschetz
I Hodge Diamond
I Positivities

I For X ⊂∧ PnC an non-smooth irreducible complex
projective algebraic variety intersection
cohomology IH∗(X ) continues to have these
properties

I For X smooth, IH∗(X ) = H∗(X )

I In general IH∗(X ) is an H∗(X )-module



Intersection cohomology complex
I For X irreducible complex algebraic variety can still

define intersection cohomology IH∗(X )

I Formally IH∗(X ) = HICX for ICX ∈ Der(X ) the
intersection cohomology complex

I Aside: For D-modules have the Riemann-Hilbert
correspondence, a fully faithful triangulated functor

RH : Derb
hol,reg(DX -Modqc) ↪→ Der(X )

I The unique simple DX -module restricting to OU on
any open smooth subset U ⊂◦ X gets mapped by RH
to ICX



I Back to G = GL(n;C) ⊃ B with G =
⊔

x∈W BxB for
W = Sn the permutation matrices

I Consider ICx =: ix!ICBxB for ix : BxB ↪→ G
intersection cohomology complex of Schubert variety

I All finite direct sums of shifts of ICx form an additive
subcategory Derss

B×B(G) ⊂ DerB×B(G) of “perversely
semisimple complexes”

I This subcategory is even stable under convolution,
due to the so-called decomposition theorem

I Theorem: The functor of hypercohomology gives an
equivalence of monoidal categories

HB×B : (Derss
B×B(G), ∗B)

≈→ (R -SModZ- R,⊗R)

ICx 7→ Bx [dim B]



Here HB×B : (Derss
B×B(G), ∗B)

≈→ (R -SModZ- R,⊗R) is
defined using the identifications

H∗B×B(pt) � H∗B×B(G)

o ↓ ↓ o
O(V × V ) � O

(⋃
x∈W Γ(x)

)
o ↓ ↓ o

R ⊗ R � R ⊗RW R

for V = Lie T and T ⊂ B a maximal torus and degrees on
O doubled to match cohomological degrees.



COMMERCIAL FOR TWO THEOREMS 6
I in [S, Universelle. . ., Math. Ann. 284 (1989)] tdo-case
I in [S, The prime. . . , Math. Z. 204 (1990)] general

G be a connected complex affine algebraic group,
B a closed subgroup, X = G/B the homogeneous space,
n = dim X its dimension, x ∈ G/B the natural base point,
V ,W finite dimensional rational representations of B,
V ,W the sheaves of sections of the associated bundles.

Then the action leads to an G-equivariant isomorphism

Γ(X ; Dif(V ,W))
∼→ HomC(Hn

x (X ;V),Hn
x (X ;W))G -alg

B

I Have U(g)⊗U(b)

(
V ⊗C

∧max(g/b)
) ∼→ Hn

x (X ;V)

I Can replace G -alg by g -finite if G is simply connected
I B-compatibility is automatic for B connected



Summing up:

〈Derss
B×B(G), ∗B〉

∼→ 〈R -SModZ- R,⊗R〉
∼← Hv

ICx [−dim B] 7→ Bx ←[ Cx

intersection special canonical
cohomology bimodule basis

Original motivation: Sheaf-function-correspondence

(DerB◦×B◦(G◦;Q`), ∗B◦) → Hq

ICx 7→ v ?Cx

This was the starting point of Kazhdan-Lusztig



More categorification of the Hecke algebra
I Given X a complex algebraic variety can define

variant MDer(X ) of Der(X ) with functors f ∗, f! as
before such that MDer(pt) = Der(C -ModfZ)

I Joint with Matthias Wendt, Rahbar Virk, work in
progress

I Based on new progress in motives by Ayoub,
Cisinski-Deglise, Drew,. . .

I Variant of Hodge theory



Our old equivalence can be upgraded further to

(Derss
B×B(G), ∗B)

≈→ (R -SModZ- R,⊗R)

o ↓ ↓
(MDerB×B(G)w=0, ∗B) ↓

↓ ↓

(MDerB×B(G), ∗B)
≈→ (Hotb(R -SModZ- R),⊗R)



Back to knot invariants (variation on Webster-Williamson)

is!BsB := T !
s is∗BsB := T ∗s

I Take s = (a + 1,a + 2) ∈ Sn = W the transposition
I T !

s,T ∗s ∈ MDerB×B(G)

I Recall BsB 7→ s under H 7→ ZW given by q 7→ 1



I Given a braid Z , scan it from the top and convolve
corresponding T !

s,T ∗s with ∗ := ∗B to get an object
M(Z ) ∈ MDerB×B(G)

I For M(Z ) to be well-defined, use braid relations
T !

s ∗ T !
t ∗ T !

s
∼= T !

t ∗ T !
s ∗ T !

t for sts = tst and similarly for
st = ts and ! replaced by ∗

I These are geometrically clear, since
BsB ×B BtB ×B BsB ∼→ BstsB by multiplication, so
T !

s ∗ T !
t ∗ T !

s
∼= ists!BstsB = itst!BtstB ∼= T !

t ∗ T !
s ∗ T !

t etc
I Also need T !

s ∗ T ∗s ∼= T ∗s ∗ T !
s
∼= ie!B = ie∗B unit object

Calculation, but not so hard: only on P1C



Calculation in bimodules
I MDerB×B(G)

≈→ Hotb(R -SModZ- R)

I T !
s maps to . . .→ 0→ R ⊗Rs R � R → 0→ . . .

multiplication map
I T ∗s maps to . . .→ 0→ R ↪→ R ⊗Rs R → 0→ . . .

I Geometrically, need O(Γ(e)) ↪→ O(Γ(e) ∪ Γ(s))
I Given by choosing linear function on V × V , whose

zero set intersects Γ(e) ∪ Γ(s) precisely in Γ(s)
I Multiply a function on Γ(e) with this linear function

and extend by zero to Γ(e) ∪ Γ(s)

I M(Z ) corresponds to B(Z ) ∈ Hotb(R -SModZ- R) the
tensor product of these elementary complexes



To get an invariant of the knot K (Z ) obtained closing the
braid Z procede as follows:
I Take at each stage of the bimodule complex
. . .→ B(Z )q → B(Z )q+1 → . . . of bimodules the
Hochschild homology

I Get for each j a complex of (graded) vector spaces
. . .→ HHj(B(Z )q)→ HHj B(Z )q+1)→ . . .

I Take its cohomology groups Hq(HHj(B(Z )∗)

I This is Khovanov’s triply graded knot homology:
I Choosen and fixed degree j of Hochschild homology
I Degree q of cohomology of the resulting complex
I Internal degree, the bimodules beeing graded

I It categorifies the HOMFLYPT polynomial, which can
be gotten as some Euler characteristic



I am still lacking full geometric understanding of why this
has to give a knot invariant. Webster-Williamson seem to
understand it better. And the construction of MDer is very
recent.



Recall relation to representation theory

I g a semisimple complex Lie algebra, Z ⊂ U(g) the
center of its enveloping algebra

I M⊂ g -Mod the category of all representations of g
locally finite under Z

I P the category of all functorsM→M with split
embedding in some functor E⊗C for dimC E <∞

I M =
d
χ∈Max ZMχ and P =

d
χ,ψ∈Max Z ψPχ

I Equivalence of monoidal categories for χ = AnnZ C

V̂ : χPχ
≈→ Ŝ -SMod- Ŝ

I g ⊃ b ⊃ h as usual, S := U(h) polynomial ring



Construction of V̂ : χPχ
≈→ Ŝ -SMod- Ŝ

I Abbreviate U := U(g), recall χ = Z+ = AnnZ C
I U/Uχn form an inverse system inMχ

I They also are of finite length as a U-bimodules
I For P ∈ χPχ still P(U/Uχn) naturally is a bimodule
I The P(U/Uχn) are Harish-Chandra bimodules:

By definition, these are the bimodules of finite length,
which are in addition locally finite for the adjoint
action of g.

I Call HCH the category of Harish-Chandra bimodules
I χHCHχ has a unique simple object L of maximal

Gelfand-Kirillov dimension
I There is an exact functor V : χHCHχ → C -Modf with

L 7→ C and killing the other simples. It is essentially
unique.



Construction of V̂ : χPχ
≈→ Ŝ -SMod- Ŝ, continued

I By functoriality, our exact functor V is even a functor
V : χHCHχ → Z -Modf- Z

I Looking closer, our exact functor V is even a functor
V : χHCHχ → Ẑ -Modf- Ẑ for Ẑ = Z∧χ

I Set
V̂P := lim←−

n
V(P(U/Uχn))

I Use natural isomorphism Ẑ ∼→ Ŝ induced by
unnormalized Harish-Chandra isomorphism
Z ∼→ S(W ·) ⊂ S with S = O(h∗) and W -action shifted
to fix −ρ determined by C−2ρ

∼=
∧max(g/b) over h. . .



I Consider χHCHn
χ := {M ∈ χHCHχ | Mχn = 0}

I Has enough projectives: The P(U/Uχn) for P ∈ χPχ
I Get by the above also equivalence

V : proj(χHCHn
χ)
≈→ S -SMod- S/(S+)n

I In the case n = 1 have χHCH1
χ
≈→ O◦ equivalence

with principal block of BGG-category by tensoring
with dominant Verma ⊗U∆(0)

I Proof of KL-conjectures using bimodules:

Px 7→ Bx ⊗S C ←[ Bx

Q ∈ proj(O◦)
≈→ S -SMod ← S -SModZ- S 3 Bx

↓ ↓ ↓ ↓∑
y (Q : ∆y )y ∈ Z[W ] ←− v=1←− ←− Hv 3 Cx

⇒
∑

y

(Px : ∆y )y = Cx (1) ⇒ [∆y : Lx ] = (Px : ∆y ) = Pyx (1)



Graded versions and Koszul duality
I Construct Z-graded version OZ

◦ of O◦ by declaring
proj(OZ

◦ ) = S -SModZ

I Then
∑

i [∆
Z
y : LZ

x 〈i〉]v i =
∑

i(P
Z
x : ∆Z

y 〈i〉)v i = Pyx (v)

I Characterization in joint recent work with Rottmaier:
OZ
◦ is “the essentially unique Z-graded version of the

artinian category O◦ compatible with the action of the
center”

I Deduce Hotb(proj(OZ
◦ )) = Hotb(S -SModZ)

I Thus get Koszul duality K triangulated functor

Derb(OZ
◦ )

≈→ Hotb(S -SModZ)
≈→ MDerN×B(G)

K ↓ ↓ o
Derb(OZ

◦ )
∼← ∼← ∼← MDerN(G/B)

↓ ↓
Derb(O◦)

∼← Derb
N(DG/B -Modqc)

∼← DerN(G/B)



Kozsul duality K preceded by O-duality d , properties:
I Kd : Derb(OZ

◦ )→ Derb(OZ
◦ ) triangulated contravariant

I ∆Z
x 7→ ∆Z

w◦x

I LZ
x 7→ PZ

w◦x

I PZ
x 7→ LZ

w◦x

I Kd(M[n]) ∼= (KdM)[−n]

I Kd(M〈n〉) ∼= (KdM)[n]〈n〉
I Funny formulas

∑
i dim ExtiO(∆x ,Ly ) = [∆w◦x : Lw◦y ]

I Kd gives Der(∆Z
x ,LZ

y [i ]〈j〉) = Der(PZ
w◦y [−i + j ]〈j〉,∆Z

w◦x )

I This explains these funny formulas



Other things on Koszul duality
I Variant exchanging parabolic and singular category O
I Variant from parabolic-singular to singular-parabolic
I BGG-resolution of simple Verma corresponds to

Verma flag of antidominant projective
I More natural from Langlands philosophy point of view



Variant for Harish-Chandra modules
I Consider HCH the category of U-bimodules M such

that every vector is killed by some χn from right and
left and {v ∈ M | χv = 0} is of finite length

I Has enough injectives and finite homological
dimension

I Using V and some duality get contravariant
equivalence inj HCH ≈→ S -SMod- S

I Define Z-graded version HCHZ of HCH by declaring
inj HCHZ := (S -SModZ- S)opp

I Deduce Hotb(inj HCHZ)
≈→ Hotb(S -SModZ- S)opp

I Get Derb(HCHZ)
≈→ MDerB∨×B∨(G∨)opp Koszul duality

I Need dual group G∨ since S = O(h∗) but R = O(h)


