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The formalism of Hecke algebras

» G finite group, (ZG, x) group ring

v

B c G subgroup, 8(ZG)? the B-biinvariant functions,
stable under * and under g := /| B|

H = H(G, B) .= (B(ZG), «p) the Hecke algebra
Unit element characteristic function B = 14, the of B

v

v

v

Z-basis of H are the characteristic functions D for D
runnig over all double cosets

For V a G-module V& is an #-module

v



The algebra of Hecke operators

» G=GL(2;R)" acts on the upper half plane H"
» G =GL(2;R)" acts on O3"(H*)(dz)

» Take B = SL(2;Z)

H(G, B) acts on (O3"(H™)(dz)®*)

These are the classical Hecke operators acting on
modular functions

SL(2;z)

v

v

v

Sure these groups are infinite. Then should use the
more general definition

H(G, B) := End¢(prod§ 7)o"



Towards the Iwahori-Matumoto Hecke algebras

» Take G = GL(n; F,) and B upper triangular matrices

» Bruhat decomposition G = | |, BxB for W = S, the
permutation matrices

» The T, := BxB form a basis of the Hecke algebra



Fors e S:={(i,i+ 1) transposition | 1 < i < n} know
Bl BsB:= P; C Gis asubgroup and |Ps/B| = q+ 1
For example here is P2 3):
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Towards generators and relations of Hecke algebras

>

For s € Sknow BLI BsB := P; C Gis a subgroup and
|Ps/B| = q+1

Deduce (Ts +1)2 = (g + 1)(Ts + 1) and thus
T2=(q—1)Ts+qforse S

Let /(x) number of Fehlstande of x

BxB x g ByB = BxyB if I(x) + I(y) = I(xy)

Deduce T, T, =T,, ifI(x)+I(y)=I(xy)

Deduce T, T, = >_, ¢5,(q) T; with c5 , polynomial in q



Generic Hecke algebra

>

Generic Hecke algebra H := @, .y Z[q] Tx with
T2=(q—1)Ts+qforse Sand T, T, = T, if
I(x) + I(y) = I(xy)

Called Iwahori-Matsumoto Hecke algebra
Specializes to group ring ZS, for q — 1

‘H might be thought of as quantization of ZS,,
We want to discuss the categorification of ‘H

One application is to refine knot polynomials to knot
homology



Coxeter System

» A Coxeter System (W, S) is a group W with a finite
subset S ¢ W such that W is generated by S subject
to the only relations

(st)MsD — g
for some symmetric matrix m: S x S — Z>q U {o0}

which is 1 on the diagonal and > 1 off the diagonal

» For x € W put /(x) minimal number of s € S needed
to express x

» Any finite group W generated by reflections is always
part of a Coxeter system (W, S)



» For any Coxeter System (W, S) there is a Hecke
algebra H = H(W, S) := @D, Z[q] Tx with
T2=(q—1)Ts+qforsec S

TxTy = lxy if /(X)+/(y) = /(Xy)

» Called Iwahori-Matsumoto Hecke algebra
» Specializes to group ring ZW for q — 1



Alternative description of the Hecke algebra H(W, S) as
Z|q]-ringalgebra with generators T, for s € S subject to
the relations 72 = (q — 1) Ts + g and braid relations

T.T,..=T,Ts...

with m(s, t) factors on both sides



Categorification of Hecke algebra #H(W, S) by bimodules

v

Let (W, S) be a Coxeter system

v

Choose a representation W 3~ V wich is
» finite dimensional

» over an infinite field k with char k # 2

» exactly the conjugates t = wsw~ of elements of
s € S have fixed point spaces of codimension one

Call such a representation reflection faithful

v

v

Typical example: Symmetric group S, permuting the
coordinates of k"



Categorification of Hecke algebra #H(W, S) by bimodules

» Choose W - V reflection faithful representation
» Put R := O(V) a polynomial ring

» Let R-Modz- R be the category of Z-graded
R-bimodules or more precisely R ®, R-modules

» Let
R-Modbf,- R

be the subcategory of graded bifinite bimodules

» Bifinite means finitely generated from the left and
from the right



Categorification of Hecke algebra # (W, S) by bimodules

» Let (R-Modbfz- R) be the split Grothendieck group

» It becomes a ring under ®g

» Categorification Theorem: There is exactly one ring
homomorphism

& : H — (R-Modbf,- R)

such that we have £(Ts+ 1) = (R®ps R) Vs € S and
£(q) = (R{=1))

» Notation (M(n)); = M;,, for grading shift



Sketch of proof of bimodule-categorification

» Recall quadratic relation T2 = (g — 1)Ts +q

» Rewriteto (Ts+1)2 = (q+1)(Ts + 1)

> Need (R @gs R)2 = (R(—1) & R)(R®ps R)

» (R®ps R)®r (R®ps R) = (R(—1)® R) ®r (R ®ps R)
» Rop R®ps R (R@rs R)(—1) @ (R ®p: R)

» Follows from recalling in the middle left
R=aR°®R=ZR(-1) R’
with « € V* equation of V¢

» So only need to check braid relations for bimodules
» Need only to argue for dihedral groups. Omitted.



Categorification of Kazhdan-Lusztig basis

» Extend scalars in Hecke algebra H from Z[q] to
Zlv,v-byqg=v2

» Kazhdan-Lusztig constructed a canonical basis
(Cx)xew Of H, as a Z[v, v~']-module

» Regrade R to sit only in even degrees to get
categorification map £ : H, — (R-Modbfz- R)

» Indecomposable Bimodule Theorem: There exist
indecomposable bimodules B, € R-Modbf;- R such
that £(Cy) = (Bx)

» In words: The elements of the Kazhdan-Lusztig
canonical basis correspond under the categorification
theorem to indecomposable bimodules



Definition of Kazhdan-Lusztig basis

PUt HX - VI(X) TX

Cx € Hx + >, vZ[V]H, and d(Cy) = Cy is selfdual,
uniquely determines the canonical basis element Cy

v

v

v

Duality d : H, — H, the unique ring automorphism,
which fixes Hs + vfors € Sand maps d : v+ v!

v

In particular Cs = Hs + v for s € S a simple reflection



Discussion of categorification of KL-basis
» Take simple reflections s,t,...,ue S

» Form the bimodules R ®ps R®g R... s R

» Krull-Schmid decompose those bimodules: Get very
special indecomposable bimodules B, categorifying
the Kazhdan-Lusztig basis

» Call the graded bimodules R ®prs R®pt R... ®pu R
and all you get from them by taking finite direct sums,
direct summands and grading shifts special
bimodules and denote the monoidal category of
those

R—SMOdz— R

lts indecomposables are precisely the B, (n).



Positivity Corollaries of categorification

» CxCy € >, N|[v,v'|C; since B, ®r B, is an actual
bimodule, decomposes as

B, ®r B, = €P B.(n)™*"

z,n

> Gy =2, Pey(V)H, with Py, (v) € Z[v] the
Kazhdan-Lusztig polynomials

» Coefficients of Kazhdan-Lusztig-Polynomials are
non-negative, since they can be interpreted as
rkHomg_g(O(I'(x)), By)

» Here I'(x) C V x Vis the graph of x and O(I'(x)) the
regular functions on I'(x), a quotient of
O(V x V) = R® R. Put another way, O(I'(x)) = R as
left R-module with the right R-action twisted by x



» Example: w, € W longest element of finite reflection
group. Cu, = VI 3oy T = Xew VU)W H,

By, = O (U F(x))

is the bimodule of all regular functions on the union of
the graphs of all Weyl group elements I'(x) C V x V

> In general B; is still supported on {J, ., ['(y)

> fCe =3, V¥'WH,, then B, = O (Uygx r(y))



Application to representation theory

» g a semisimple complex Lie algebra, Z C U(g) the
center of its enveloping algebra

» M C g-Mod the category of all representations of g
locally finite under Z

» P the category of all functors M — M isomorphic to
a direct summand of some functor E®¢ for E finite
dimensional representation, so-called projective
functors

» Equivalence of categories between {indecomposable
projective functors starting and ending with the trivial
central character} and {Bx | x €¢ W} ¢ R-Mod- R



Application to representation theory, variant

» O, C g-Mod principal block of BGG-category O

» Equivalence of categories between {indecomposable
projectives of O,} and {By g C | x € W} C R-Mod

» Gives new proof of KL-conjecture on Jordan-Hdlder
multiplicities of Verma modules

Der®(0,) = Hot®(proj ©,) = Hot®(R-SMod)

for R-SMod c R-Mod the subcategory of all Bz C
for B R-SMod- R

» Can define graded version O% of O, formally such
that proj O? = R-SMod,



Categorification of N
» k afield

» dim : Modf, — N “decategorification”
» Multiplication corresponds to tensor product

dim(V @ W) = (dim V)(dim W)



Categorification of Ens(X,N) = Maps(X, N) for X a set

» k afield and Mod, /X D Modf, /X sheaves on the
discrete set X alias families (Fx)xex of vector spaces
respectively finitely generated vector spaces

» Dim : Modfx /X — Ens(X,N) “decategorification”
» Multiplication corresponds to tensor product

Dim(F ® G) = (Dim F)(Dim g)



Categorification of maps
» f: X — Y map of finite sets leads to morphisms

fi
Ens(X,N) . Ens(Y,N)
f*
called pull-back and integration along the fibres
» |X|1 = ¢ c*1 for ¢ : X — pt constant map



» f: X — Y map of finite sets leads to functors

f
Modf, /X 7 Modfy /Y
f*

called pull-back and integration along the fibres
> (FG)x = Gnx and (AF)y == Byer1(y) Fx
» Commutative diagrams

fi
Modf, /X <:> Modf, /Y
f*
Dim | J Dim
fi

Ens(X,N) — Ens(Y,N)
f*



Grothendieck function-sheaf correspondence

>

To X; variety over F, and ¢ prime # char[F, associate
Der®(X,; Q) triangulated Q,-category

Called ,cohomologically constructible complexes of
étale sheaves on X.*

Define map

Tr : Der®(X.; Q) — Ens(X,(Fq), Q)

Tr(Fo) - x = >,(=1) Tr(Fy | H'Fy) with F .= F, xg, F
sheaf on X := X, xg, F and F, Frobenius



Grothendieck function-sheaf correspondence

» To f: X, — Y, morphism of varieties over [,
associate triangulated functors f, f* fitting into a
commutative diagram

fi
Der’(X,;Q) — Der(Y,;Q)
f*
™l U
i
Ens(X,(F,), Q) T—: Ens(Y,(Fq), Q)
» For c: X, — pt, this specializes to

I Xo(Fg)|1 =cc*1 =cc*Tr(Q) = Tr(cc*Q)) =
= S (=1)tr(Fg4 |HL(X; Q) Grothendieck-Lefschetz



» Let G be a finite group. The multiplication in the group
ring could for f, g € Ens(G, Z) be written as

f+ g = mult,((pr; f)(prz 9))

with pry, pr,, mult : G x G — G the projections and
the multiplication.

» A natural candidate for the categorification of the
group ring in case G = G,(F,) is thus Der®(G.; Q))
with the convolution functor

F* G = mult,((pr; F) @ (pr; G))



Recall G = GL(n;F,) and B upper triangular matrices

and
Hq = (°Ens(G.Z)®, +/|B))

functions on the group, B-invariant from both sides

So a natural categorification ought to be some both
sides equivariant derived category of étale sheaves

Derg, .5,(Go; Q)

Let’s be a bit less perfect and try for the usual
topology version of the equivariant derived category

Derg, 5(G: Q)

with G = GL(n; C) and metric topology



First discuss equivariant conomology
» G ¢ X topological group acting on topological space

» H*(X/G) not a good concept

» For f: X — Y is a morphism of G-spaces, which is a
fibration with contractible fibers, need not have
H*(Y/G) = H*(X/G)

» Example: R — pt with Z-action
» Better concept Hi(X) := H(EG x g X) equivariant
cohomology

» EG contractible with topologially free G-action, the
universal bundle over the classifying space



Examples for equivariant cohnomology

>

>

Hs(X) := HY(EG xg X)

G ¢ X topological group acting freely on topological
space, then Hg(X) = H*(X/G)

Hg(pt) = H(EG xg pt) = H(EG/G) = H(BG) the
ring of characteristic classes

He« (pt) = H*(P>C) = Z[t] with deg t = 2

Hg(pt) = Z[t, . . ., t)] with deg t; = 2 for B ¢ GL(n; C)
upper triangular matrices

For P — X a principal G-bundle, pullback
Hg(pt) — Hg(P) = H(P/G) = H*(X) gives its
characteristic classes



Derived category for X a topological space

>

Der(X) = Der(Ab /X) derived category of abelian
sheaves on X

f: X — Y continous map of locally compact
Hausdorff spaces gives triangulated functors
fy - Der(X) — Der(Y) and f* : Der(Y) — Der(X)

For ¢ : X — pt constant map, get ¢,c*Z = H(X)
c*Z =: X the constant sheaf on X
Derx(X, X[]) = H"(X) the cohomology ring of X

Derx(X, F[¥]) = H*(X; F) = H.F (hyper)cohomology
of the sheaf(complex) F

HF is a H*(X)-module



Equivariant derived category

>

>

G & X topological space with G-action

Derg(X) = {F € Der(EG x¢ X)| 3G € Der(X) such
that p*F = g*G}

WithEGxg X £ EGx X % X

For F € Derg(X) get HgF € Hg(X)-Mod

f* and f, for equivariant maps of locally compact
Hausdorff spaces

Derg(X) = Der(X/@) in the case of a topologically
free action

Derg(pt) C dgDer-(Hg(pt), d = 0) for G a complex
connected algebraic group

Derg(pt) C dgDer-Z[ty, ..., t)]



The natural categorification of the Hecke algebra
» Again G = GL(n; C) with B the upper triangular
matrices

» The natural categorification of the Hecke algebra
H = (B(ZG)B, x) is the constructible equivariant
derived category with convolution

(Derng(G)7 *B)

» The convolution is
F xg G := mult, desc((pr; F) ® (pr; G))

pr,:GxG— G
mult: GxgG— G



Now need intersection cohomology
» For X & P"C a smooth irreducible complex projective
algebraic variety the cohomology H*(X) has
remarkable properties:
» Poincaré duality
» Hard Lefschetz
» Hodge Diamond
» Positivities
» For X & P"C an non-smooth irreducible complex
projective algebraic variety intersection
cohomology IH*(X) continues to have these
properties

» For X smooth, IH*(X) = H*(X)
» In general IH*(X) is an H*(X)-module



Intersection cohomology complex
» For X irreducible complex algebraic variety can still
define intersection cohomology IH*(X)

» Formally IH*(X) = HZCx for ZCx € Der(X) the
intersection cohomology complex

» Aside: For D-modules have the Riemann-Hilbert
correspondence, a fully faithful triangulated functor

RH : Derpy eq(Px -Mod®) < Der(X)

» The unique simple Dx-module restricting to Oy on
any open smooth subset U € X gets mapped by RH
to ZCx



Back to G = GL(n;C) > Bwith G =| |,.,, BxB for
W = S, the permutation matrices

Consider ZCx =: iy ZCqg for iy : BXB — G
intersection cohomology complex of Schubert variety

All finite direct sums of shifts of ZC, form an additive
subcategory Derg, 5(G) C Derg,s(G) of “perversely
semisimple complexes”

This subcategory is even stable under convolution,
due to the so-called decomposition theorem

Theorem: The functor of hypercohomology gives an
equivalence of monoidal categories
Hpys : (Dergy, 5(G), x8) > (R-SModz- R, ®Rg)
ICy > B,[dim B]



Here Hpg, 5 : (Derg, 5(G), *g) = (R-SModz- R, ®g) is
defined using the identifications

H*BXB(pt) - H*BXB(G)

Ll I
O(V x V) = O (Uyew (X))
0 1

R®R —» R®gwR

for V =Lie T and T C B a maximal torus and degrees on
O doubled to match cohomological degrees.



COMMERCIAL FOR TWO THEOREMS 6

» in [S, Universelle. .., Math. Ann. 284 (1989)] tdo-case
» in [S, The prime. .., Math. Z. 204 (1990)] general

G be a connected complex affine algebraic group,

B a closed subgroup, X = G/B the homogeneous space,
n = dim X its dimension, x € G/B the natural base point,
V, W finite dimensional rational representations of B,

V, W the sheaves of sections of the associated bundles.

Then the action leads to an G-equivariant isomorphism

F(X; Dif(V, W)) = Home(H7(X; V), HI(X; W)) &2

» Have U(g) ®ue) (V @c A™(g/b)) = HY(X: V)
» Can replace G-alg by g-finite if G is simply connected
» B-compatibility is automatic for B connected



Summing up:

<DGFESXB(G), *B> :> <R'SMOdZ‘ Ra ®R> <: Hv
Y

ICx[-dimB] — B, Cx
intersection special canonical
cohomology bimodule basis

Original motivation: Sheaf-function-correspondence
(Ders,xs,(Go; Qr), *8,) — Hqg
IC, — V' Cy
This was the starting point of Kazhdan-Lusztig



More categorification of the Hecke algebra

» Given X a complex algebraic variety can define
variant MDer(X) of Der(X) with functors f*, f, as
before such that MDer(pt) = Der(C-Modfy)

» Joint with Matthias Wendt, Rahbar Virk, work in
progress

» Based on new progress in motives by Ayoub,
Cisinski-Deglise, Drew,. ..

» Variant of Hodge theory



Our old equivalence can be upgraded further to

(DGFESXB(G), *B) E) (R—SMOdz— R, ®R)

L {
(MDergy5(G)w=0, *B) {
{ 1

(MDerg,5(G), xg) = (Hot°(R-SMod;- R), ®g)



Back to knot invariants (variation on Webster-Williamson)

XL LKL

v~/
8 & A
isBsB := T, I« BSB := T
» Take s=(a+1,a+2) € S, = W the transposition

» T:, T: € MDerg,5(G)
» Recall BsB — s under H — ZW given by g — 1



Given a braid Z, scan it from the top and convolve
corresponding T;, T with x := x5 to get an object
M(Z) € MDGFBXB(G)

For M(Z) to be well-defined, use braid relations

Tex T« T = T} % Ty x T, for sts = tst and similarly for
st = ts and ! replaced by x

These are geometrically clear, since

BsB x g BtB x g BsB = BstsB by multiplication, so
Tix T) % T, =~ igaBstsB = sy BtstB = T, x T, T| etc
Also need T, * T; = T; x T, = iy B = s, B unit object
Calculation, but not so hard: only on P'C




Calculation in bimodules
» MDerg,5(G) = Hot°(R-SMody- R)
» Temapsto... 2 0 >R®ps R R—0— ...
multiplication map
» T;mapsto... =0 +>R—Rers R—>0— ...
» Geometrically, need O(I'(e)) — O(I'(e) UT(s))
» Given by choosing linear function on V x V, whose
zero set intersects '(e) U T (s) precisely in I'(s)
» Multiply a function on I'(e) with this linear function
and extend by zero to ['(e) UT(s)
» M(Z) corresponds to B(Z) € Hot°(R-SMody- R) the
tensor product of these elementary complexes



To get an invariant of the knot K(Z) obtained closing the
braid Z procede as follows:
» Take at each stage of the bimodule complex
...— B(Z)7 — B(Z)%*" — ... of bimodules the
Hochschild homology
Get for each j a complex of (graded) vector spaces
... = HH;(B(Z2)9) — HH,; B(Z2)%*") — ...
Take its cohomology groups H9(HH;(B(Z)*)
This is Khovanov'’s triply graded knot homology:
» Choosen and fixed degree j of Hochschild homology
» Degree g of cohomology of the resulting complex
» Internal degree, the bimodules beeing graded
It categorifies the HOMFLYPT polynomial, which can
be gotten as some Euler characteristic

v

v

v

v



| am still lacking full geometric understanding of why this

has to give a knot invariant. Webster-Williamson seem to
understand it better. And the construction of MDer is very
recent.



Recall relation to representation theory

» g a semisimple complex Lie algebra, Z C U(g) the
center of its enveloping algebra

v

M C g-Mod the category of all representations of g
locally finite under Z

v

P the category of all functors M — M with split
embedding in some functor E®¢ for dim¢ E < oo

M = erMaxZMX and P = Hx,weMaxZ wpx
Equivalence of monoidal categories for x = Annz C

v

v

V. P, = 5-SMod- S

v

g O b D hasusual, S:= U(h) polynomial ring



Construction of V : , P, = §-SMod- §

>

>

>

>

Abbreviate U := U(g), recall xy = Z7 = Ann;C
U/Ux" form an inverse system in M,

They also are of finite length as a U-bimodules
For P € , P, still P(U/Ux") naturally is a bimodule

The P(U/Ux") are Harish-Chandra bimodules:

By definition, these are the bimodules of finite length,
which are in addition locally finite for the adjoint
action of g.

Call HCH the category of Harish-Chandra bimodules

+HCH, has a unique simple object L of maximal
Gelfand-Kirillov dimension

There is an exact functor V : ,HCH, — C-Modf with
L — C and killing the other simples. It is essentially
unique.



Construction of V: , P, 5 5-SMod- S, continued

» By functoriality, our exact functor V is even a functor
V:HCH, — Z-Modf-Z

» Looking closer, our exact functor V is even a functor
V:HCH, — Z-Modf-Z for Z = Z

» Set A

VP = I'@V(P(U/UX”))
n

» Use natural isomorphism Z = S induced by
unnormalized Harish-Chandra isomorphism
Z 5 SW) ¢ Swith S = O(h*) and W-action shifted
to fix —p determined by C_,, = A" (g/b) over ...



v

Consider \HCHY := {M € \HCH, | Mx" = 0}

Has enough projectives: The P(U/Ux") for P € , P,
Get by the above also equivalence

V : proj(,HCH?Y) 5 S-SMod- S/(S+)"

In the case n = 1 have XHCH; = 0, equivalence
with principal block of BGG-category by tensoring
with dominant Verma @y A(0)

Proof of KL-conjectures using bimodules:

v

v

v

v

Py — By®sC <« B,
Qc proj(®,) = S-SMod «+ S-SMod;- S > B,
1 4 0 U

v=1

>,(Q:A)ye ZIW] +— < < Hy > Cy

= > (Pc: D))y =Ci(1) = [Ay: L] =(Px:4)) = Pu(1)



Graded versions and Koszul duality

>

Construct Z-graded version OZ of O, by declaring
proj(O%) = S-SModj,

Then 37, [AF : LDV = 32,(Py - AJ())V' = Py(v)
Characterization in joint recent work with Rottmaier:
OZ is “the essentially unique Z-graded version of the
artinian category O, compatible with the action of the
center”

Deduce Hot®(proj(©%)) = Hot’(S-SMody,)
Thus get Koszul duality K triangulated functor

Der’(0%) 5  Hot°(S-SMod;) = MDery,5(G)

K B
Der’(0%) & & < MDeryn(G/B)
1 \J

Der®(0,) < Der}(Dg/s-Mod®) & Dery(G/B)



Kozsul duality K preceded by O-duality d, properties:
» Kd : Der®(O%) — Der®(O%) triangulated contravariant
> A% — A%vox
> L% = Pl%oX
> P% — L%Vox
» Kd(M([n]) = (KdM)[—n]
» Kd(M(n)) = (KdM)[n]{n)
» Funny formulas 3, dim Ext,,(Ax, L) = [Awex © L.yl
» Kd gives Der(AZ, L%[i] ) = Der(PVZVOy[—iJrj] ), A% )
» This explains these funny formulas



Other things on Koszul duality
Variant exchanging parabolic and singular category O
Variant from parabolic-singular to singular-parabolic

BGG-resolution of simple Verma corresponds to
Verma flag of antidominant projective

More natural from Langlands philosophy point of view

v

v

v

v



Variant for Harish-Chandra modules

>

Consider HCH the category of U-bimodules M such
that every vector is killed by some " from right and
left and {v € M | xv = 0} is of finite length

Has enough injectives and finite homological
dimension

Using V and some duality get contravariant
equivalence injHCH = S-SMod- S

Define Z-graded version HCH; of HCH by declaring
injHCHz := (S-SModz- S)°FP

Deduce Hot"(injHCH,) = Hot°(S-SMod;- S)°PP

Get Der°(HCH,) = MDergv 5+ (G")°P Koszul duality
Need dual group GY since S = O(h*) but R = O(h)




