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The title

We present a new way of defining conformal symmetry breaking
differential operators

DN(λ) : C∞(Rn)→ C∞(Rn−1),

which are the residues of

Conformal symmetry breaking operators
=

2-parameter families of integral operators

A±λ,ν(x ′, xn) : C∞(Rn)→ C∞(Rn−1)

(A±λ,ν(x ′, xn)f )(y ′) := (K±λ,ν(x ′, xn) ∗ f )(y ′, 0)

for any f ∈ C∞(Rn).
As application we find a recursive structure for DN(λ).
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My way to that subject

In summer 2016 I visited P. Somberg in Prague. He asked me
about the origin of a (non-constant coefficient) second-order
differential operator Q(λ), [PS15], shifting the polynomial degree
of Gegenbauer polynomials CN(λ) up.

He got no help from me, BUT he got my attension.

Generating all Gegenbauer polynomials out of the 1 was a
facinating fact to me, because Gegenbauer polynomials correspond
via F-method to conformal symmetry breaking differential
operators DN(λ), [J09, KØSS15, KS15], (CSBDO) which I was
studying in those times.

CSBO correspond to compositions of Fourier transformed
Q(λ)’s.
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My way to that subject

Back in Aarhus:

CN(λ) ' residues of a hypergeoemtric function 2F1

K±λ,ν ' Fourier transform of 2F1

Here K±λ,ν are distributional kernels studied [KS15]. Those kernels
correspond to conformal symmetry breaking operators (integral
operators with residues given by DN(λ)). This is how Bent Ørsted
came on board, as expert on integral operators.
WANTED: Extend the action of the Fourier transform of Q(λ) to
K±λ,ν . With success:

Q(λ)CN(λ) ' CN+1(λ)→ QF (λ)K±λ,ν ' K∓λ,ν+1
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My way to that subject

BUT:

QF (λ) is a third-order differential operator with non-constant
coefficients. It has no conceptional definition, since it was
found by hand.

Bent asked: Can we find the meromorphic extension of K±λ,ν
which is holomorphically well-defined with respect to λ, ν ∈ C
such that <(λ− ν) > 0 and <(λ+ ν) > n − 1. Answer: NO

So let us do something else, but similar:
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Distributional kernels

We consider Rn with the Euclidian metric. A point x ∈ Rn is
decomposed as x = (x ′, xn) for x ′ ∈ Rn−1. We define

K+
λ,ν(x ′, xn) := |xn|λ+ν−n(|x ′|2 + x2

n )−ν ,

K−λ,ν(x ′, xn) := xnK
+
λ−1,ν(x ′, xn).

These are the distributional kernels which by convolution and
restriction to xn = 0 define conformal symmetry operators.
Their residues are the conformal symmetry breaking operators

DN(λ) : C∞(Rn)→ C∞(Rn−1).

They are polynomial of degree N in ∆′ and ∂n, and coefficients are
given by Gegenbauer coefficients.
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Why to study such operators?

They are the flat version of so-called residue families
Dres
N (h;λ). A family of differential operators attached to any

Riemannian manifold (M, h), [J09]

Residue families carry at special family-parameter the
GJMS-operators P2N(h), [GJMS92], on (M, h).

Residue families recover Branson’s Q-curvature, [B93].

Last but not least residue families lead to the holographic
Laplacian, [J13], which itself has a very interesting spectral
theory.
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The shift operator

We define a non-constant coefficient differential operator

P(λ) := xn∆− (2λ− n − 2)∂n

when acting on C∞(Rn). It is of second-order for xn 6= 0 while it is
of first order for xn = 0.
This operator is not new at all:

xnP(λ) is, up to an additive constant, a Casimir operator,
[MØZ16].

P(λ) correspond to an operator introduced by
Graham-Zworski, [GZ01].

P(λ) corresponds to a version of degenerate Laplacian,
[GW15].

P(λ) is the conjugation of xn· by appropriate Knapp-Stein
intertwining operators on Rn, [C17].
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The shift property

The operators P(λ) and Mxn := xn· shift the λ-parameter in the
distributional kernels K±λ,ν(x ′, xn) and change the ±-parity, i.e.,

P(λ)K±λ,ν(x ′, xn) = (λ+ ν − n)(ν − λ+ 1)K∓λ−1,ν(x ′, xn),

MxnK
±
λ,ν(x ′, xn) = K∓λ+1,ν(x ′, xn).

This results fits the philosophy of Gelfand-Bernstein-Sato; They
studied the problem of finding the meromorphic continuation of a
given distribution defined in some region in the complex plane.
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CSBDO vs. shift-family

We introduce the family

PN(λ) := P(λ− N + 1) ◦ · · · ◦ P(λ)

of differential operators on C∞(Rn). This a of order 2N away from
xn = 0 and of order N along xn = 0. Then it holds:

PN(λ)|xn=0 ' DN(n − λ).

This gives a new structural formula for CSBDO’s.
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Recursive structure for CSBDO

By definition and previous result it holds

DN(n − λ) ' DN−1(n − λ+ 1) ◦ P(λ).
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The spinor and differential form case

The operator P(λ) has analogs in the spinor and differential form
case with applications to conformal symmetry breaking operators
for spinors and differential forms.
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The curved case

We extend the notion of shift operator P(λ) to the curved setting.
It has impact into new structural results concerning residue
families. Furthermore, it allows to study a set of second-order
differential operators attached to any Riemannian manifold. Those
second-order operators are the coefficients of the holographic
Laplacian introduced in [J13].
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