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Introduction

In quantum mechanics of single N-level systems in Hilbert spaces
of finite dimension N , the basic operators are the generalized
Pauli matrices. They generate the finite Weyl-Heisenberg group
as a subgroup of the unitary group U(N).

Its automorphism group within the unitary group U(N), i.e. the
largest subgroup of U(N) having the Weyl-Heisenberg group as a
normal subgroup, is in quantum information conventionally called
the Clifford group.

Since this normalizer necessarily contains the continuous group
U(1) of phase factors, some authors adopt an alternative defini-
tion of the Clifford group as the quotient of the normalizer with
respect to U(1). We call it the Clifford quotient group.



I am going to show that our comprehensive work on symmetries
of the Pauli gradings of quantum operator algebras involves just
these Clifford quotient groups and, moreover, covers all single as
well as composite finite quantum systems.

Weyl-Heisenberg groups of single N-level systems

In finite-dimensional quantum mechanics of a single N-level sys-
tem the N-dimensional Hilbert space HN = CN has an orthonor-
mal basis B = {|0 〉, |1 〉, . . . |N − 1 〉}. The basic unitary opera-
tors QN , PN are defined by their action on the basis (Weyl,
Schwinger)

QN |j 〉 = ω
j
N |j 〉,

PN |j 〉 = |j − 1 (mod N )〉,
where j = 0,1, . . . , N − 1, ωN = exp(2πi/N).
This is the well-known clock-and-shift representation of the basic
operators QN , PN .



In the standard basis B the operators QN and PN are represented
by the generalized Pauli matrices

QN = diag
(
1, ωN , ω

2
N , · · · , ω

N−1
N

)
and

PN =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
... . . .
0 0 0 · · · 0 1
1 0 0 · · · 0 0


Their commutation relation

PNQN = ωNQNPN
expresses the minimal non-commutativity of the operators PN
and QN . Further, they are of the order N ,

PNN = QNN = I, ωNN = 1.



Weyl H 1931 The Theory of Groups and Quantum Mechanics
(New York: Dover) pp 272–280

J. Schwinger, Unitary operator bases, Proc. Nat. Acad. Sci.
(U.S.A.) 46, 570-579, (1960);
reprinted in J. Schwinger, Quantum Kinematics and Dynamics,
Benjamin, New York (1970), pp 63–72

Šťov́ıček P and Tolar J 1984 Quantum mechanics in a discrete
space-time Rep. Math. Phys. 20 157–170



Elements of ZN = {0,1, . . . N − 1} label the vectors of the stan-
dard basis B with the physical interpretation that |j 〉 is the (nor-
malized) eigenvector of position at j ∈ ZN . In this sense the
cyclic group ZN plays the role of the configuration space of an
N-level quantum system.

The Pauli group of order N3 is generated by ωN , QN and PN

ΠN =
{
ωlNQ

i
NP

j
N |l, i, j = 0,1,2, . . . , N − 1

}
.

Now the Clifford group as a matrix subgroup of U(N) should
contain the Weyl-Heisenberg group as its subgroup. The phase
factors emerging in the Clifford group lead to the necessity to
define the Weyl-Heisenberg groups H(N) in even dimensions N
by doubling the Pauli group so that H(N) for even N contains
the Pauli group ΠN as a subgroup.



For this purpose the phase factor is introduced

τN = −e
πi
N

such that τ2
N = ωN . Then the Weyl-Heisenberg groups

H(N) = ΠN =
{
τ lNQ

i
NP

j
N |l, i, j = 0,1, . . . , N − 1

}
for odd N,

H(N) =
{
τ lNQ

i
NP

j
N |i, j = 0,1, . . . , N − 1, l = 0,1, . . . ,2N − 1

}
for even N

are of orders N3, 2N3, respectively.

For example

H(2) = 〈τ2I2, Q2, P2〉,
where τ2 = −i, Q2 = σz, P2 = σx, is of order 16.



The center Z(H(N)) of the Weyl-Heisenberg group is the set of
all those elements of H(N) which commute with all elements in
H(N).
For odd N :

Z(H(N)) = {ωN , ω2
N , · · · , ω

N
N = 1} = {τN , τ2

N , · · · , τ
N
N = 1},

for even N :

Z(H(N)) = {τN , τ2
N , · · · , τ

2N
N = 1}.



Since the center is a normal subgroup, one can go over to the
quotient group

PN = H(N)/Z(H(N)),

usually identified with the finite phase space ZN × ZN .

Here the cosets
{
τ lNQ

i
NP

j
N |∀l

}
, are labeled by points (i, j) ∈ ZN ×

ZN of the phase space, i, j = 0,1, . . . , N − 1 and we denote them
shortly by QiP j (without subscripts N). The correspondence

Φ : H(N)/Z(H(N))→ ZN × ZN : QiP j 7→ (i, j),

is clearly an isomorphism of Abelian groups.



Clifford groups of single N-level quantum systems

The term Clifford group means the group of symmetries of the
Weyl-Heisenberg group in the following sense:

Definition
The Clifford group comprises all unitary operators X ∈ U(N) for
which the Ad-action preserves the subgroup H(N) in U(N), i.e.
the Clifford group is the normalizer NU(N)(H(N)).

Gottesman D 1998 Theory of fault-tolerant quantum computa-
tion Phys. Rev. A 57 127–137

Appleby D M 2005 SIC-POVMs and the extended Clifford group
J. Math. Phys. 46 052107



In this sense the Clifford group consists of all those X ∈ U(N)
such that their Ad-action leaves H(N) invariant,

AdXH(N) = XH(N)X−1 = H(N).

But H(N) is generated by τN , QN and PN , so the Clifford group
consists of all X ∈ U(N) such that

AdXQN = XQNX
−1 ∈ H(N) and AdXPN = XPNX

−1 ∈ H(N).

Since the subgroup H(N) is a normal subgroup of the normal-
izer, one can formally write a short exact sequence of group
homomorphisms

1→ H(N)→ NU(N)(H(N))→ NU(N)(H(N))/H(N)→ 1.

But the full structure of the normalizer NU(N)(H(N)) for arbi-
trary N is complicated by phase factors and rather difficult to
describe in general.



In order to get insight into the structure of the normalizer up to
arbitrary phase factors we turn to the definition of the Clifford
quotient group C(N) as the quotient

C(N) = NU(N)(H(N))/U(1).

Its elements are the cosets {eiαX}. The following lemma is
crucial for our alternative view of the Clifford quotient group.

Lemma
Let X,Y ∈ U(N). Then the equality AdXA = AdYA holds for all
A ∈ H(N) if and only if X = eiαY .

The proof of the converse implication is trivial. For the proof of the direct
implication one writes down the first identity in the form Y −1XA = AY −1X,
i.e. Y −1X commutes with all A ∈ H(N). But the elements of H(N) form
an irreducible set, hence by Schur’s lemma Y −1X is proportional to the unit
matrix, Y −1X = eiαIN .2



Hence instead of the cosets {eiαX} one equivalently considers
Ad-actions induced by the elements X of the normalizer.
In general, the mappings

AdX : A→ XAX−1,

where A ∈ GL(N,C), are inner automorphisms of GL(N,C) in-
duced by elements X ∈ GL(N,C).

In our case, if inner automorphisms AdX should transform unitary
operators A in unitary operators A′ = XAX−1, then to each
X ∈ GL(N,C) there exists a unitary operator U ∈ U(N) such
that AdU = AdX, and U is unique up to a phase factor.
The subgroup of Int(GL(N,C)) generated by unitary operators
will be denoted

MN = {AdX |X ∈ U(N)}.



Now the Clifford quotient group C(N) can be studied as a sub-
group of MN – the subgroup of those Ad-actions which preserve
the Weyl-Heisenberg group H(N).
But C(N), consisting of the cosets {eiαX} leaving H(N) invari-
ant, contains the cosets {eiαA} of operators A ∈ H(N) as a
subgroup, and this subgroup is isomorphic to the group of Ad-
actions AdA, A ∈ H(N).
In this picture the subgroup of Ad-actions AdA, A ∈ H(N), is
generated by the commuting Ad-actions AdQN and AdPN ,

{Ad
QiNP

j
N
|i, j = 0,1, . . . , N − 1} ∼= ZN × ZN ∼= PN .

Proposition
The Clifford quotient group C(N) is isomorphic to the subgroup
of those unitary inner automorphisms in MN which preserve PN ,
i.e. C(N) is the normalizer of PN in MN ,

C(N) ∼= NMN
(PN).



The corresponding short exact sequence of homomorphisms of
subgroups of MN

1→ PN → NMN
(PN)→ NMN

(PN)/PN → 1

can be shown to be fully decoded.

Obviously, Ad-actions of elements of PN leave PN invariant.
Then the elements of the quotient group NMN

(PN)/PN are the
cosets corresponding to possibly non-trivial transformations of
PN forming a symmetry (or Weyl) group. Let us consider the Ad-
actions AdX(A) = XAX−1, where X ∈ U(N), on elements A ∈
H(N), which induce permutations of cosets in H(N)/Z(H(N).
We consider them to be equivalent if, for each pair (i, j) ∈ ZN ×
ZN , they define the same transformation of cosets in H(N)/Z(H(N)):

AdY ∼ AdX ⇔ Y QiP jY −1 = XQiP jX−1.



Since the group PN has two generators, AdQN and AdPN , cor-
responding to the cosets Q and P , then for each AdY inducing
a permutation of elements in PN there must exist a, b, c, d ∈ ZN
such that

Y QY −1 = QaP b and Y PY −1 = QcP d,

i.e., to each equivalence class of Ad-actions AdY a quadruple
(a, b, c, d) ∈ ZN is assigned.

In matrix notation

AdY

(
1
0

)
=

(
a
b

)
=

(
a c
b d

)(
1
0

)
,

AdY

(
0
1

)
=

(
c
d

)
=

(
a c
b d

)(
0
1

)
.



Now inserting the relations

AdYQN = µQaNP
b
N , AdY PN = νQcNP

d
N ,

into the basic commutation condition

AdY (PNQN) = ωNAdY (QNPN),

we find ωad−1
N = ωbcN , i.e.

ad− bc = det

(
a c
b d

)
= 1 (mod N).



Theorem
For integer N ≥ 2 there is an isomorphism Ψ between the set of
equivalence classes of Ad−actions AdY which induce permuta-
tions of cosets, and the group SL(2,ZN) of 2× 2 matrices with
determinant equal to 1 (mod N),

Ψ(AdY ) =

(
a c
b d

)
, a, b, c, d ∈ ZN . (1)

The action of these automorphisms on PN is given by left action
of SL(2,ZN) on elements (i, j)T of the phase space PN = ZN ×
ZN ,

AdY

(
i
j

)
=

(
i′

j′

)
=

(
a c
b d

)(
i
j

)
. (2)

Havĺıček M, Patera J, Pelantová E and Tolar J 2002 Automorphisms of the
fine grading of sl(n,C) associated with the generalized Pauli matrices J. Math.
Phys. 43 1083-1094; arXiv: math-ph/0311015



Returning to the short exact sequence of group homomorphisms

1→ PN → NM(PN)→ NM(PN)/PN → 1,

it follows from the above results that the entering groups are
isomorphic to

PN ∼= ZN × ZN ,
NMN

(PN)/PN ∼= SL(2,ZN),

C(N) ∼= NMN
(PN) ∼= (ZN × ZN) o SL(2,ZN).

Summarizing, the Clifford quotient group C(N) is isomorphic to
the normalizer of the Abelian subgroup PN in the group of unitary
inner automorphisms MN . Since it contains all inner automor-
phisms transforming the phase space into itself, it necessarily
contains PN as an Abelian semidirect factor. The symmetry (or
Weyl) group is then isomorphic to the quotient group of the
normalizer with respect to PN .



The generators of the normalizer NMN (PN) are AdQN , AdPN
as generators of PN , and the two generators AdSN , AdDN of
SL(2,ZN).

The unitary Sylvester matrix SN is the matrix of the discrete
Fourier transformation (for N = 2 the Hadamard gate):

(SN)jk =
ω
jk
N√
N
.

It acts on QN and PN according to

SNQNS
−1
N = P−1

N SNPNS
−1
N = QN ,



The unitary phase operator DN (for N = 2 the phase gate) is
diagonal,

DN = diag (d0, d1, . . . , dN−1),

where dj = τ
j(1−j)
N if N is odd, dj = τ

j(N−j)
N if N is even. It acts

on QN and PN according to

DNQND
−1
N = QN , DNPND

−1
N = αNQNPN

where αN = 1 for N odd and αN = τN+1
N for N even.

Given the prime decomposition of N =
r∏

i=1
p
ki
i , the general for-

mula for the number of elements of SL(2,ZN) is the following
multiplicative function of number theory:

|SL(2,ZN)| = N3
r∏

i=1

(
1−

1

p2
i

)
.



Example N = 2 (N.J.A. Sloane): The phase space consists
of 4 elements (0,0), (1,0), (0,1), (1,1). The group SL(2,Z2)
has 6 elements(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
,

and acts transitively on the orbit {(1,0), (0,1), (1,1)}. Unitary
operators S2 and D2 are

S2 =
1√
2

(
1 1
1 −1

)
, D2 =

(
1 0
0 −i

)
.

This finite Clifford group is generated by S2 and D2, and has
24× 8 = 192 elements, since (S2D2)3 = ηI2 is of order 8:(

1 0
0 α

)
,

(
0 1
α 0

)
,

1√
2

(
1 β
α −αβ

)
, ην

(
1 0
0 1

)
,

where η = exp(iπ4), ν = 0,1, . . . ,7, α, β ∈ {1, i,−1,−i}.



Clifford quotient groups for multipartite systems

Our further results concern detailed description of groups of sym-
metries of finite Weyl-Heisenberg groups for finitely composed
quantum systems consisting of subsystems with arbitrary dimen-
sions. We have fully described these symmetries on the level of
Ad-actions. In our notation the symmetry (or Weyl) groups are
Sp[n1,...,nk], where the indices denote arbitrary dimensions of the
constituent Hilbert spaces.

Korbelá̌r M and Tolar J 2012 Symmetries of finite Heisenberg
groups for multipartite systems J. Phys. A: Math. Theor. 45
285305 (18pp); arXiv: 1210.0328 [quant-ph]

Korbelá̌r M and Tolar J 2010 Symmetries of the finite Heisenberg
group for composite systems J. Phys. A: Math. Theor. 43
375302 (15pp); arXiv: 1006.0328 [quant-ph]



More in detail, let the Hilbert space of a composite system be
the tensor product Hn1 ⊗ · · · ⊗ Hnk of dimension N = n1 . . . nk,
where n1, . . . , nk ∈ N. For the composite system, quantum phase
space is the Abelian subgroup of Int(GL(N,C)) defined by

P(n1,...,nk) = {AdM1⊗···⊗Mk
| Mi ∈ H(ni), i = 1, . . . , k}.

The Clifford quotient group, or the normalizer of this Abelian
subgroup in the group of unitary inner automorphisms of GL(N,C),
contains all unitary inner automorphisms transforming the phase
space into itself, hence necessarily contains P(n1,...,nk) as an Abelian

semidirect factor. The symmetry (or Weyl) group is then given
by the quotient group of the normalizer with respect to this
Abelian subgroup.



The generating elements of P(n1,...,nk) are the inner automor-
phisms

ej := AdAj for j = 1, . . . ,2k,

where (for i = 1, . . . , k)

A2i−1 := In1···ni−1⊗Pni⊗Ini+1···nk, A2i := In1···ni−1⊗Qni⊗Ini+1···nk.

The normalizer of P(n1,...,nk) in Int(GL(n1 · · ·nk,C)) will be de-
noted

N (P(n1,...,nk)) := NInt(GL(n1···nk,C))(P(n1,...,nk)),

We need also the normalizer of Pn in Int(GL(n,C)),

N (Pn) := NInt(GL(n,C))(Pn),

and

N (Pn1)× · · · × N (Pnk) ⊆ N (P(n1,...,nk)) ⊂ Int(GL(N,C)).



Now the symmetry group Sp[n1,...,nk] is defined in several steps.

First let S[n1,...,nk] be a set consisting of k×k matrices H of 2×2
blocks

Hij =
ni

gcd(ni, nj)
Aij

where Aij ∈M2(Zni) for i, j = 1, . . . , k.

Then S[n1,...,nk] is (with the usual matrix multiplication) a monoid.



Next, for a matrix H ∈ S[n1,...,nk], we define its adjoint H∗ ∈
S[n1,...,nk] by

(H∗)ij =
ni

gcd(ni, nj)
ATji.

Further, we need a skew-symmetric matrix

J = diag(J2, . . . , J2) ∈ S[n1,...,nk]

where

J2 =

(
0 1
−1 0

)
.

Then the symmetry group is defined as

Sp[n1,...,nk] := {H ∈ S[n1,...,nk]| H
∗JH = J}

and is a finite subgroup of the monoid S[n1,...,nk].



Our theorems state group isomorphism and generating elements:

Theorem 1

N (P(n1,...,nk))/P(n1,...,nk)
∼= Sp[n1,...,nk].

Theorem 2

The normalizer N (P(n1,...,nk)) is generated by

N (Pn1)× · · · × N (Pnk) and {AdRij},

where (for 1 ≤ i < j ≤ k)

Rij = In1···ni−1 ⊗ diag(Ini+1···nj , Tij, . . . , T
ni−1
ij )⊗ Inj+1···nk

and

Tij = Ini+1···nj−1 ⊗Q
nj

gcd(ni,nj)
nj .



Corollary

If n1 = · · · = nk = n, i.e. N = nk, the symmetry group is
Sp[n,...,n]

∼= Sp2k(Zn).

These cases are of particular interest, since they uncover sym-
plectic symmetry of k-partite systems composed of subsystems
with the same dimensions. This circumstance was found, to our
knowledge, first by PST 2006 for k = 2 under additional as-
sumption that n = p is prime, leading to Sp(4,Fp) over the field
Fp.

Pelantová E, Svobodová M and Tremblay J 2006 Fine grading of sl(p2,C)
generated by tensor product of generalized Pauli matrices and its symmetries
J. Math. Phys. 47 5341–5357

Han G 2010 The symmetries of the fine gradings of sl(nk,C) associated with
direct product of Pauli groups J. Math. Phys. 51 092104 (15 pages)



Illustrative examples

For simplicity let a bipartite system be created by coupling two
single multi-level subsystems with arbitrary dimensions n, m, i.e.

G = Zn × Zm and H = Hn ⊗Hm.
The corresponding finite Weyl-Heisenberg group is embedded
in GL(N,C), N = nm. Via inner automorphisms it induces an
Abelian subgroup in Int(GL(N,C)).

The Clifford group or the normalizer of this Abelian subgroup in
the group of inner automorphisms of GL(N,C) contains all inner
automorphisms transforming the phase space into itself, hence
necessarily contains P(n,m) as an Abelian semidirect factor.
The symmetry group is then given by the quotient group of the
normalizer with respect to this Abelian subgroup.



Special attention should be paid to the independent building
blocks of finite quantum systems - quantal degrees of freedom.
In special cases the symmetry groups are reducible to standard
types SL(2,Zn), Sp(2k,Zn), but in general these standard types
do not exhaust the obtained class of symmetry groups, e.g.
Sp[pk,pl,... ].

The case of n = m, N = n2, corresponds to the symmetry group

Sp[n,n]
∼= Sp(4,Zn).

If N = nm, n,m coprime, the symmetry group is

Sp[n,m]
∼= SL(2,Zn)× SL(2,Zm) ∼= SL(2,Znm).



Further, if d = gcd(n,m), n = ad, m = bd, the finite configuration
space can be further decomposed under the condition that a, b
are both coprime to d,

G = Zn × Zm = Zad × Zbd ∼= (Za × Zd)× (Zb × Zd).
Thus the symmetry group is reduced to the direct product

Sp[n,m]
∼= Sp[a,b] × Sp(4,Zd)

For instance, if n = 15, m = 12, then d = 3 is coprime to
both a = 5 and b = 4, and also a and b are coprime, hence the
symmetry group is reduced to the standard types SL and Sp,

Sp[n,m]
∼= SL(2,Za)× SL(2,Zb)× Sp(4,Zd).



It is clear that the general situation may be more complicated.
For instance, let n = 180 and m = 150. Then d = 30, a =
180/30 = 6 and b = 150/30 = 5, hence a divides d and also b
divides d. In this case reduction to standard groups Sp and SL is
not possible. One has to break down the composite system con-
sisting of two single systems into its elementary building blocks.
We decompose each of the finite configuration spaces

Z180 × Z150 = (Z22 × Z32 × Z5)× (Z2 × Z3 × Z52),

and take notice of coprime factors 2.22, 3.32 and 5.52 leading to
the factorization of the symmetry group in agreement with the
elementary divisor decomposition

Sp[180,150]
∼= Sp[2,22] × Sp[3,32] × Sp[5,52].

One sees that symmetry groups like Sp[pk,pl] with indices given

by different powers of the same prime p deserve to be added to
the standard types Sp and SL.



Concluding remarks

The term Clifford group was introduced in 1998 by D. Gottes-
mann in his investigation of quantum error-correcting codes.
The simplest Clifford group in multi-qubit quantum computation
is generated by a restricted set of unitary Clifford gates – the
Hadamard, π/4-phase and controlled-X gates. This restriction is
known to lead to the

Theorem (Gottesman-Knill)
The Clifford model of quantum computation can be ef-
ficiently simulated on a classical computer.

However, this fact does not diminish the importance of the Clif-
ford model, since it may serve as a suitable starting point for
full-fledged quantum algorithms.
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