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1: C∗-algebras and Noncommutative Topology

Let X be a compact Hausdorff space, and C(X ) its space
of continuous functions.

C(X ) has a very rich structure:

It is a commutative algebra with respect to pointwise
addition, multiplication, and scalar multiplication.
It is a normed vector space with respect to

‖f‖∞ = sup{|f (x)| | x ∈ X}.

C(X ) is complete with respect to ‖ · ‖∞
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The norm is sub-multiplicative, which is to say

‖fg‖∞ ≤ ‖f‖∞‖g‖∞, for all f ,g ∈ C(X ).

Complex conjugation in C induces a conjugate linear
multiplicative involution on C(X )

∗ : C(X )→ C(X ), f 7→ f ∗

where

f ∗(x) := f (x), for all x ∈ X .

Moreover, we have the very important identity

‖f ∗f‖∞ = ‖f‖2∞.
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Definition
A Banach algebra is a complete normed algebra (B, ‖ · ‖) with a
sub-multiplicative norm.

Definition
A ∗-algebra (A, ∗) is a complex algebra A endowed with a
conjugate linear anti-multiplicative involution ∗ : A→ A.

Example
A basic noncommutative example of a ∗-algebra is the matrices
Mn(C) endowed with the conjugate transpose, or more
generally, the bounded linear operators B(H) on a Hilbert
space H endowed with the adjoint operation.
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Definition
A C∗-algebra is a unital Banach algebra (A, ‖ · ‖), together with
a ∗-algebra structure on A, such that

‖a∗a‖ = ‖a‖2, for all a ∈ A.

Theorem (Gelfand–Naimark ’43)

Every commutative C∗-algebra is isomorphic to C(X ), for some
compact Hausdorff space X.
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Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019

In fact, we get a duality of categories:
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Dictionary between topological structures and
C∗-algebraic structures:

compact space X ←→ comm. C∗-algebra C(X )
locally compact space X ←→ non-unital comm.

C∗-algebra C0(X )
homeomorphism ←→ ∗-isomorphism
image of a function ←→ spectrum of an element
positive function ←→ positive element
regular Borel measure ←→ bounded linear functionals

on C(X )
one-point compactification of a space ←→ unitisation of C(X )
open subset of X ←→ ideal of C(X )
X is connected ←→ C(X ) is projectionless
X is metrisable ←→ C(X ) is separable
vector bundle over X ←→ finite projective module

over C(X )
measure space ←→ comm. von Neumann algebra
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What about noncommutative C∗-algebras?

Example

The matrices Mn(C) endowed with the conjugate transpose and
the operator norm.

Example

The algebra of bounded operators B(H) on a Hilbert space H
endowed with the adjoint operation and the operator norm

‖A‖ := sup{‖A(x)‖ | x ∈ H, ‖x‖ ≤ 1}.

Example

Any norm-closed ∗-subalgebra of B(H).
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Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019

Theorem (Gelfand–Naimark–Segal ’43)

Every C∗-algebra A admits a faithful ∗-representation

φ : A → B(H)

for some Hilbert space H.

For a commutative C∗-algebra C(X ) such a representation
is given by the elements of C(X ) acting by multiplication on
the square integrable functions L2(X , µ), where µ is a Borel
measure.
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The general idea of noncommutative topology is to study
noncommutative C∗-algebras as if they were
‘noncommutative function algebras’.

This is not complete abstract nonsense! For example,
these ideas have had amazing success in the classification
of noncommutative C∗-algebras.

1 Connes’ celebrated classification of injective von Neumann
factors used noncommutative analogues of measure and
ergodic theory.

2 Elliott’s classification program for simple separable nuclear
C∗-algebras uses noncommutative topological K -theory
and Winter’s noncommutative topological covering
dimension.
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2: Compact Quantum Groups

Question: What is a compact topological group in
Gelfand–Naimark terms?

On the topological side: It is an object G in the category
of compact Hausdorff spaces, together with a 4-tuple of
morphisms (m, •−1, η, ε)

m : G ×G→ G, •−1 : G→ G,
ι : {•} → G e : G→ {•}.

such that the following diagrams commute:
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G ×G ×G

m×id
��

id×m // G ×G

m
��

G ×G m
// G

G × {•}

ρG
((

id×η // G ×G

m
��

G

G
ι ◦ e

''
id×•−1

��

•−1×id // G

m
��

G ×G m
// G

{•} ×G

λG
((

ε◦η // G ×G

m
��

G
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Thus the dual structure in the category of commutative
C∗-algebras is an object A and a 4-tuple (∆,S, ε, η), where
A = C(G) is a C∗-algebra with the following commutative
diagrams:

A⊗̂A⊗̂A A⊗̂Aid⊗∆oo

A⊗̂A⊗̂A
∆⊗id

OO

A
∆

oo

∆

OO A⊗ C

ρA
((

A⊗̂Aid⊗εoo

A
∆

OO

A A⊗̂AS⊗idoo

A⊗̂A
id⊗S

OO

A
∆

oo

∆

OO

η ◦ ε

gg C⊗A

λA
((

A⊗̂Aε⊗idoo

A
∆

OO
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An important observation is the following:

Denote by O(G) the algebra of representable functions on
G, that is, the functions generated by the coordinate
functions of all the finite-dimensional representations
ρ : G→ Mk (C).
Note that O(G) ⊆ C(G).
It holds that ∆(O(G)) ⊆ O(G)⊗O(G), and
S(O(G)) ⊆ O(G).

This gives us the definition of a Hopf algebra.
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Definition
A Hopf algebra is a 4-tuple (C,∆,S, ε), where C is a vector
space, and

∆ : C → C ⊗ C; S : C → C, ε : C → C,

are linear maps (called the coproduct, antipode, and counit
respectively), satisfying the following axioms:

1 (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,
2 (S ⊗ id) ◦∆ = (id⊗ S) ◦∆ = ε,
3 (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id.
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3: Drinfel’d–Jimbo Quantum Groups

In Leningrad in the 1980 physicists working on the
quantum inverse scattering method discovered

Uq(sl2).

The work of Vladimir Drinfeld and Michio Jimbo would
generalise this to

Uq(g), for g any complex semisimple Lie algebra.

and at Drinfel’d’s 1986 ICM address the term quantum
group was coined.
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Definition
We denote by Uq(sl2) the free noncommutative algebra
generated by E ,F ,K , and K−1, subject to the relations

KE = q2EK , KF = q−2FK ,

[E ,F ]− K − K−1

q − q−1 .

Warning: When q = 1 the relations of Uq(sl2) are not
well-defined! However, there exists an alternative (slightly
more complicated) presentation of the algebra which is
well-defined for q = 1, and forms a double cover of U(sl2).
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Definition
A Hopf algebra structure on Uq(sl)2 is defined by

∆(E) = 1⊗ E + E ⊗ K , ∆(K ) = K ⊗ K , ∆(F ) = K−1 ⊗ F + F ⊗ 1

S(E) = −EK−1, S(K ) = K−1, S(F ) = −FK ,

ε(E) = ε(F ) = 0.
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It was shown by Drinfeld and Jimbo that, for every
semisimple complex Lie algebra g:

There exists a q-deformed universal enveloping algebra
Uq(g).
For q = 1, U1(g) forms a rank(g)-fold cover of U(g).
Uq(g) comes endowed with a Hopf algebra structure,
deforming that Hopf algebra structure of U(g).

Moreover, for q ∈ R, it admits a ∗-algebra structure, whose
fixed points identify the compact real form of g.
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Some facts about the finite dimensional modules of Uq(g),
when q ∈ R\{−1}:

The category of modules is semisimple and the irreducible
modules are classified by the dominant weights of g.

This gives an equivalence of categories

Qg : U(g)Mod ∼= Uq(g)Mod

mapping irreducibles to irreducibles.
Dimensions and characters remain unchanged.
The category Uq(g)Mod has a monoidal structure, defined for
V and W irreducibles, and v ∈ V and w ∈W , according to

X . v ⊗ w =
∑

i

(Xi . v)⊗ (X ′i . w),

where ∆(X ) =
∑

i Xi ⊗ X ′i .
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Moreover, Q(V ⊗W ) ' Q(V )⊗Q(W ).
This is not an equivalence of monoidal categories!!!
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The category admits the structure of a braided monoidal
category, which is not symmetric when q 6= 1.

While the q-deformation of Uq(g) is not unique, work of
Kazhdan–Wenzl, Wenzl–Tuba, and Liu (more or less)
shows that, the monoidal category Uq(g)Mod is the unique
monoidal deformation of U(g)Mod.
A very interesting feature of a braided monoidal category is
that it allows us to define a braided notion of dimension.
This very important in applications to knots, and will arise
later in our treatment of Dirac operator spectra.
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5: Quantum Coordinate Algebras and Woronowicz

For a Hopf algebra H, consider the linear dual H∗.
We can dualise comultiplication of H to a multiplication on
H*, such that for f ,g ∈ H∗,

f ∗ g(h) :=
∑

i

f (hi)g(h′i ), where h ∈ H, ∆(h) =
∑

i

hi ⊗ h′i .

With respect to this multiplication, the counit εH is the unit
1H∗ .
The unit 1H dualises to a counit εH∗

εH∗ : H∗ → C, f 7→ f (1H).

We can dualise multiplication to a map

∆ : H∗ → (H ⊗ H)∗, ∆(f )(h,g) := f (hg).
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When H is infinite dimensional (H ⊗ H)∗ 6= H∗ ⊗ H∗, so ∆
is not a comultiplication. However, there does exist a
smallest H◦ ⊆ H∗ such that

∆(H◦) ⊆ H◦ ⊗ H◦.

The 4-tuple (H◦,∆, ε,S) is a Hopf algebra and is called the
Hopf dual of H.
It can be shown that

H◦ '
⊕

α∈Ĥ

Vα ⊗ V∨α ,

where Ĥ denotes the finite dimensional representations of
H, Vα the left module, V∨α the dual right module. So the
Hopf dual can also be viewed as a type of ‘Peter–Weyl
dual’.
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Definition
We call Oq(G) := Uq(g)◦ the Drinfeld–Jimbo quantum
coordinate algebra of G, where G is the simply connected Lie
group corresponding to G.

Theorem
The ∗-structure of Uq(g) dualises to a ∗-algebra structure on
Oq(G). Moreover, Oq(G) admits a unique completion to a
C∗-algebra Cq(G).
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Problem: The maps S and ε are not in general bounded
operators, and hence, do not admit an extension to the
completion of Oq(G).

Thus our guess for the definition of a compact quantum
group was too naive.
This is where we need to look to Woronowicz for help . . .
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Definition (Woronowicz ’87)

A compact quantum group is a pair (A,∆), where A is a
C∗-algebra and ∆ : A → A⊗min A is a ∗-homomorphism such
that

1 (∆⊗ id) ◦∆ = (id⊗∆) ◦∆

2 (1⊗minA)∆(A) and (A⊗min 1)∆(A) are dense in A⊗minA.

Theorem
For every Drinfeld–Jimbo quantised enveloping algebra Uq(g),
the pair (Cq(G),∆) is a compact quantum group.

Theorem
Every compact quantum group contains a dense Hopf algebra.
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Question
What about a noncommutative generalisation of compact
differentiable manifolds, or even Lie groups?

Question
Can we construct motivating examples from Drinfeld–Jimbo
quantum groups?
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Quantum Flag Manifolds: From Quantum
Groups to Noncommutative Geometry II

Réamonn Ó Buachalla

Université Libre de Bruxelles

39th Winter School Geometry and Physics 2019 - Srnı́
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The Gelfand–Naimark Theorem:
Compact Hausdorff Spaces←→ Commutative C∗-algebras

Woronowicz’s Theorem:
Compact topological Groups←→ Commutative Compact

Quantum Groups
Question Can we express differential structures on a
compact Hausdorff space in terms of some C∗-algebraic
differential structure on C(X )?
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But what is a spectral triple?

Definition
A spectral triple is a triple (A,H,D), where

A is a dense ∗-subalgebra of a C∗-algebra,
H is a Hilbert space with a faithful ∗-representation
ρ : A→ B(H)

D is a densely defined unbounded self-adjoint operator
D : dom(D)→ H, such that

[D,a] ∈ B(H), for all a ∈ A, and (1− D2)−1 ∈ K(H).

K(H) denotes the compact operators on H, i.e. the norm
closure of the finite rank operators
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Example
For a compact Riemannian spin manifold M, we have a spectral
triple

(
C∞(M),L2(S),D

)
,

where L2(S) is the space of square integrable sections of the
spinor bundle of M, and D is the Dirac operator.

Example
For a compact Hermitian manifold M, we have a spectral triple

(
C∞(M),L2(Ω(0,•)),D∂ := ∂ + ∂

†)
,

where d = ∂ + ∂, and ∂† is the adjoint of ∂.
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Example
Noncommutative spectral triples arise in the study of foliated
manifolds.

Example
One of the motivating examples of a noncommutative spectral
triple is constructed over the noncommutative torus:

For θ ∈ R,
the noncommutative torus Aθ is the C∗-subalgebra of
B(L2(S1)), the algebra of bounded linear operators of
square-integrable functions on the unit circle, generated by the
unitary elements U and V , where

U(f )(z) = zf (z) and V (f )(z) = f (e2πiθz).

This implies the noncommutative relation VU = e2πiθUV .
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What about examples from quantum groups?
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Despite a large number of important contributions over the
last thirty years, there is still no consensus on how to
construct a spectral triple for Oq(SU2), probably the most
basic example of a quantum group!

In contrast the Podleś sphere Oq(S2) admits a canonical
spectral triple which directly q-deforms the classical
Dolbeault–Dirac operator of the 2-sphere. Moreover, it is
the most widely and consistently accepted example of a
spectral triple in the Drinfeld–Jimbo setting.
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Drinfeld–Jimbo Quantised Enveloping Algebras Uq(g)

Let (aij)ij denote the Cartan matrix of g.

Fix q ∈ R \ {±1,0}. Denote qi := qdi .

The quantised enveloping algebra Uq(g) is generated by

Ei ,Fi ,Ki ,K−1
i , i = 1, . . . , r ;

subject to the relations

KiEj = qaij
i EjKi , KiFj = q−aij

i FjKi , KiKj = KjKi ,

EiFj − FjEi = δij
Ki − K−1

i
qi − qi

;

along with the quantum Serre relations.
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Hopf algebra structure on Uq(g)

On Uq(g) define

∆(Ki) = Ki ⊗ Ki , ∆(Ei) = Ei ⊗ Ki + 1⊗ Ei ,

∆(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi

S(Ei) = −EiK−1
i , S(Fi) = −KiFi , S(Ki) = K−1

i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

A ∗-structure for Uq(g), called the compact real form , is given
by

K ∗i := Ki , E∗i := KiFi , F ∗i := EiK−1
i .
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Quantum Flag Manifolds

For S a subset of simple roots, we have the quantum Levi
subalgebra

Uq(lS) :=
〈
Ki ,Ej ,Fj | i = 1, . . . , r ; j ∈ S

〉

Definition
For S a subset of simple roots of g, the corresponding quantum
flag manifold is the invariant subspace

Oq(G/LS) :=Oq(G)Uq(lS)

=
{

g ∈ Oq(G)|g / X = ε(X )g, ∀X ∈ Uq(lS)
}
.
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Let’s look at the simplest example Oq(S2), where
Uq(l$1) =

〈
K ,K−1〉

By direct calculation, it can be shown that Oq(S2) is
generated by the three elements b+,b0, and b− subject to
the relations

b±b3 = q±2b3b± + (1− q±2)b±,

q2b−b+ = q−2b+b− + (q − q−1)(b3 − 1),

b2
3 = b3 + qb−b+.

For q = 1, with respect to the variables

b± = ±(x ± iy), b3 = z +
1
2
,

the relations reduce to

x2 + y2 + z2 = 1.
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Compact Quantum Hermitian Symmetric Spaces

An Oq(Grn,r ) quantum Grassmanian
Bn Oq(Q2n+1) odd quantum quadric
Cn Oq(Ln) symmetric q.-Lagrangian

Grassmannian

Dn Oq(Q2n) even quantum quadric

Dn Oq(Sn) quantum spinor variety

E6 Oq(OP2) quantum Cayley plane

E7 Oq(F) quantum Freudenthal variety
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Noncommutative Differential Calculi

Definition
A pair (Ω•,d) is called a differential graded algebra if
Ω• =

⊕
k∈N0

Ωk is an N0-graded algebra, and d is a degree 1
map such that d2 = 0, and

d(ω ∧ ν) = d(ω) ∧ ν + (−1)kω ∧ d(ν), (ω ∈ Ωk , ν ∈ Ω•).

A differential calculus over an algebra A is a differential
algebra (Ω(A), d) such that

Ωk = spanC{a0da1 ∧ · · · ∧ dak |a0, . . . ,ak ∈ A}.
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Definition
A differential ∗-calculus is a differential calculus endowed with
a conjugate linear, involutive, graded anti-algebra map which
commutes with the differential.

Definition
We say that a differential calculus Ω•q(G/LS) over Oq(G/LS) is
covariant if the action Uq(g)×Oq(G/LS) extends to a
(necessarily unique) algebra map Uq(g)× Ω•q(G/LS) such that

X . (dm) := d(X .m), for all m ∈ M.
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Theorem (Heckenberger, Kolb ’06)
For each compact quantum Hermitian symmetric flag manifold
Oq(G/LS), there exists a unique equivariant differential
calculus Ω•q(G/L) of classical dimension.

In a little more detail: The first-order part of Ωq(G/L) is the
direct sum of two covariant irreducible finite-dimensional
first-order differential calculi, and these were classified by
Heckenberger and Kolb as the only such first-order calculi.
The total differential calculi were then constructed as the
universal extensions of these first-order calculi.
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Noncommutative Complex Structures

Definition
An almost complex structure for a total differential ∗-calculus
Ω•(A) over a ∗-algebra A, is an N2

0-algebra grading⊕
(a,b)∈N2

0
Ω(a,b) for Ω•(A) such that, for all (a,b) ∈ N2

0:

1 Ωk (A) =
⊕

p+q=k Ω(a,b);

2 ∗(Ω(a,b)) = Ω(b,a).
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Example

The quantum projective plane Cq[CP2] has such a structure

Ω4 Ω(2,2)

Ω3

d

OO

Ω(2,1)

∂

;;

Ω(1,2)

∂

cc

Ω2

d

OO

Ω(2,0)

∂

;;

Ω(1,1)

∂

;;
∂

cc

Ω(0,2)

∂

cc

Ω1

d

OO

Ω(1,0)

∂

;;
∂

cc

Ω(0,1)

∂

;;
∂

cc

Ω0

d

OO

Ω(0,0)

∂

;;
∂

cc
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Theorem (Newlander–Nirenberg ’57)
Holomorphic atlases on a differential manifold M

≡

Complex structures on Ω•(M), that is, almost complex
structures such that

d = ∂ + ∂.
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Definition

Defining two operators ∂, ∂ : Ω• → Ω• by

∂|Ω(a,b) := projΩ(a+1,b) ◦ d, ∂|Ω(a,b) := projΩ(a,b+1) ◦ d,

we say that an almost complex structure is integrable if

d = ∂ + ∂.

We usually call an integrable almost complex structure a
complex structure.
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Definition
We say that a noncommutative complex structure for a
covariant differential calculus is covariant if the
N2

0-decomposition of Ω•(M) is a Uq(g)-decomposition.

Theorem
Each Heckenberger–Kolb calculus Ω•q(G/LS) has a unique
covariant complex structure. Hence, it is a direct q-deformation
of the classical complex structure of G/LS.
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Bott-Borel-Weil for the Quantum Grassmannians

Theorem (Koszul–Malgrange)
A holomorphic structure for a vector bundle F over a compact
complex manifold is equivalent to a flat (0,1)-connection

∂F : Γ∞(F)→ Γ∞(F)⊗C∞ Ω(0,1).

Thus for a differential calculus Ω• over an algebra A,
endowed with a complex structure Ω(•,•), and a projective
right A-module E , we view flat (0,1)-connections

∂E : E → Γ∞(E)⊗C∞ Ω(0,1).

as noncommutative holomorphic structures for E .
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But how to construct projective modules over the quantum
flag manifolds?

Copy the classical construction of
homogeneous vector bundles!
For a Uq(lS)-module V , consider the Uq(g)-module,
Oq(G/LS)-module,

Oq(G)�Uq(lS)V

:=
(
Oq(G)⊗ V

)Uq(lS)

={s ∈ Oq(G)⊗ V | s / X = ε(X )s, ∀X ∈ Uq(lS)},

where as usual Uq(lS) acts on the tensor product via the
coproduct
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Theorem (Takeuchi ’79)
We have an equivalence of categories

ModUq(lS)
∼= Uq(g)

Oq(G/LS)Mod.

Thus noncommutative line bundles are defined to be
homogeneous vector bundles induced from 1-dimensional
modules.
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Theorem (R. Ó B., C. Mrozinski ’17)
The homogeneous line bundles over the quantum
Grassmannians admit a unique covariant holomorphic
structure. Moreover,

H0(Ek ) ' Vk$r .

Theorem (R. Ó B., J. Št’oviček, A.C. van Roosmallen ’18)
For all positive line bundles Ek , it holds that

H i(Ek ) = 0, for all i = 1, . . . , r(n − r).

Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019
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We have an obvious embedding

Ek ↪→ Oq(SUn).

With respect to this embedding, the span of the
holomorphic sections H0(Ek ), for all k ∈ Z, forms a
subalgebra, which for q = 1 coincides with the
homogeneous coordinate ring of the Grassmannians . . . .
Jan will take up the rest of this story.
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Now back to spectral triples . . . .
We would like to show that for each compact quantum
Hermitian symmetric space, a spectral triple is given by

(Oq(G/LS),L2(Ω(0,•),D∂ := ∂ + ∂
†
).

For this we need noncommutative Kähler structures . . .
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Summary of Classical Hermitian Geometry
Classically we have:

Hermitian form
L(·):=κ∧(·)// Lefschetz decomposition

Weil formula

��

1

Ω1(M)⊗ Ω1(M)
det //

��

g : Ω•(M)⊗ Ω•(M)

g

��

κ:=g(I(·),·)

OO

g(·,·)=:
∫
·∧∗H (·)
// Hodge operator

C∞(M) C∞(M) .
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Definition (R.Ó B. ’17)
An Hermitian structure for a differential calculus of total
dimension 2n is a pair (Ω(•,•), σ), where

1 Ω(•,•) is complex structure for Ω•,
2 σ ∈ Ω(1,1) is a central real form (i.e. κ∗ = κ),
3 isomorphisms are given by

Ln−k : Ωk → Ω2n−k , ω 7→ σn−k ∧ ω,

for all 1 ≤ k < n.

Definition (R. Ó B. ’17)

A Kähler structure is an Hermitian structure (Ω(•,•), κ) such
that dκ = 0.
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An Hermitian structure for a differential calculus of total
dimension 2n is a pair (Ω(•,•), σ), where

1 Ω(•,•) is complex structure for Ω•,
2 σ ∈ Ω(1,1) is a central real form (i.e. κ∗ = κ),
3 isomorphisms are given by

Ln−k : Ωk → Ω2n−k , ω 7→ σn−k ∧ ω,

for all 1 ≤ k < n.

Definition (R. Ó B. ’17)
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Theorem (R. Ó B. ’17)
There exists a covariant Kähler structure for the
Heckenberger–Kolb calculus of quantum projective space,
which is unique up to real scalar multiple.

Theorem (Matassa ’19)
There exists a covariant Kähler structure for the
Heckenberger–Kolb calculus of each compact quantum
Hermitian symmetric space Oq(G/LS), which is unique up to
real scalar multiple.
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Quantum Flag Manifolds: From Quantum
Groups to Noncommutative Geometry III

Réamonn Ó Buachalla

Université Libre de Bruxelles

39th Winter School Geometry and Physics 2019 - Srnı́

Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019

Very Quick Recap

The Gelfand–Naimark Theorem:
Compact Hausdorff Spaces←→ Commutative C∗-algebras

Woronowicz’s Theorem:
Compact topological Groups←→ Commutative Compact

Quantum Groups
Question Can we express differential structures on a
compact Hausdorff space in terms of some C∗-algebraic
differential structure on C(X )?
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Definition
A spectral triple is a triple (A,H,D), where

A is a dense ∗-subalgebra of a C∗-algebra,
H is a Hilbert space with a faithful ∗-representation
ρ : A→ B(H)

D is a densely defined unbounded self-adjoint operator
D : dom(D)→ H, such that

[D,a] ∈ B(H), for all a ∈ A, and (1− D2)−1 ∈ K(H).

K(H) denotes the compact operators on H, i.e. the norm
closure of the finite rank operators
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Example
For a compact Riemannian spin manifold M, we have a spectral
triple

(C∞(M),L2(S),D),

where L2(S) is the space of square integrable sections of the
spinor bundle of M, and D is the Dirac operator.

Example
For a compact Hermitian manifold M, we have a spectral triple

(
C∞(M),L2(Ω(0,•)),D∂ := ∂ + ∂

†)
,

where d = ∂ + ∂, and ∂† is the adjoint of ∂.
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For S a subset of simple roots, we have the quantum Levi
subalgebra

Uq(lS) :=
〈
Ki ,Ej ,Fj | i = 1, . . . , r ; j ∈ S

〉

Definition
For S a subset of simple roots of g, the corresponding quantum
flag manifold is the invariant subspace

Oq(G/LS) :=Oq(G)Uq(lS)

=
{

g ∈ Oq(G)|g / X = ε(X )g, ∀X ∈ Uq(lS)
}
.
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Compact Quantum Hermitian Symmetric Spaces

An Oq(Grn,r ) quantum Grassmanian
Bn Oq(Q2n+1) odd quantum quadric
Cn Oq(Ln) symmetric q.-Lagrangian

Grassmannian

Dn Oq(Q2n) even quantum quadric

Dn Oq(Sn) quantum spinor variety

E6 Oq(OP2) quantum Cayley plane

E7 Oq(F) quantum Freudenthal variety
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Recall: A differential calculus Ω• is a differential graded
algebra generated in degree 0.

We say that a differential calculus Ω•(G/LS) (for which
Ω0 = Oq(G/LS)) is covariant if the Uq(g)-module structure
of Oq(G/LS) extends to a module structure

Uq(g)× Ω•q(G/LS)→ Oq(G/LS),

with respect to which d is a module map.

Theorem (Heckenberger, Kolb ’06)
For each compact quantum Hermitian symmetric flag manifold
Oq(G/LS), there exists a unique equivariant differential
calculus Ω•q(G/L) of classical dimension.
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Definition
An almost complex structure for a total differential ∗-calculus
Ω•(A) over a ∗-algebra A, is an N2

0-algebra grading⊕
(a,b)∈N2

0
Ω(a,b) for Ω•(A) such that, for all (a,b) ∈ N2

0:

1 Ωk (A) =
⊕

a+b=k Ω(p,q);

2 ∗(Ω(a,b)) = Ω(b,a).
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Example

The quantum projective plane Oq(CP2) has such a structure

Ω4 Ω(2,2)

Ω3

d

OO

Ω(2,1)

∂

;;

Ω(1,2)

∂

cc

Ω2

d

OO

Ω(2,0)

∂

;;

Ω(1,1)

∂

;;
∂

cc

Ω(0,2)

∂

cc

Ω1

d

OO

Ω(1,0)

∂

;;
∂

cc

Ω(0,1)

∂

;;
∂

cc

Ω0

d

OO

Ω(0,0)

∂

;;
∂

cc

Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019

Definition

Defining two operators ∂, ∂ : Ω• → Ω• by

∂|Ω(a,b) := projΩ(a+1,b) ◦ d, ∂|Ω(a,b) := projΩ(a,b+1) ◦ d,

we say that an almost complex structure is integrable if

d = ∂ + ∂.

Theorem
Each Heckenberger–Kolb calculus Ω•q(G/LS) has a unique
covariant complex structure. Hence, it is a direct q-deformation
of the classical complex structure of G/LS.
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Summary of Classical Hermitian Geometry
Classically we have:

Hermitian form
L(·):=κ∧(·)// Lefschetz decomposition

Weil formula

��

1

Ω1(M)⊗ Ω1(M)
det //

��

g : Ω•(M)⊗ Ω•(M)

g

��

κ:=g(I(·),·)

OO

g(·,·)=:
∫
·∧∗H (·)
// Hodge operator

C∞(M) = Ω0(M) C∞(M) = Ω0(M) .
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Nichols Algebras

A braided vector space is a pair (V , σ), where V is a vector
space, and σ : V ⊗ V → V ⊗ V is a linear map satisfying
the Yang–Baxter equation

(σ ⊗ id) ◦ (id⊗ σ) ◦ (id⊗ σ) = (id⊗ σ) ◦ (id⊗ σ) ◦ (σ ⊗ id).

Denote by Sn, and Bn, the symmetric group, and the braid
group, respectively.
There exists a set theoretic splitting of the projection
proj : Bn → Sn, called the Matsumoto lift

s : Sn → Bn.

With respect to this splitting, for any π ∈ Sn, we have a
well-defined map s(π) : V⊗n → V⊗n which is independent
of the choice of reduced expression for π.
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With respect to the Matsumoto lift, we can define a braided
anti-symmetrizer

Aσ,k :=
∑

π∈Sn

s(π) : V⊗k → V⊗k .

Definition
The Nichols algebra associated to (V , σ) is the algebra

B(V , σ) :=
⊕

k∈N0

V⊗k/ker(Aσ,k )

When σ is the flip map, we get back the usual exterior
algebra of V .
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Theorem (A. Krutov, R. Ó B., K. Strung ’18)

For the quantum Grassmannians, endowed with their
Heckenberger–Kolb calculus, there exist (Yetter–Drinfeld)
braidings

σ+ : V (0,1) ⊗ V (0,1) → V (0,1) ⊗ V (0,1),

σ− : V (1,0) ⊗ V (1,0) → V (1,0) ⊗ V (1,0).

Denoting by σ± the induced braidings,

B
(

Φ(Ω(1,0)), σ+
)
' V (•,0),

B
(

Φ(Ω(0,1)), σ−
)
' V (0,•).
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Definition (R.Ó B. ’17)
An Hermitian structure for a differential calculus of total
dimension 2n is a pair (Ω(•,•), σ), where

1 Ω(•,•) is complex structure for Ω•,
2 σ ∈ Ω(1,1) is a central real form (i.e. κ∗ = κ),
3 isomorphisms are given by

Ln−k : Ωk → Ω2n−k , ω 7→ σn−k ∧ ω,

for all 1 ≤ k < n.

Definition

A Kähler structure is an Hermitian structure (Ω(•,•), κ) such
that dκ = 0.
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Example

For the quantum projective plane Oq(CP2), we have

Ω(2,2)

Λ

��

Ω(2,1)

∂

;;

Λ

��

Ω(1,2)

∂

cc

Λ

��

Ω(2,0)

∂

;;

Ω(1,1)

L

OO

Λ

��

∂

;;
∂

cc

Ω(0,2)

∂

cc

Ω(1,0)

∂

;;
∂

cc L

OO

Ω(0,1)

L

OO

∂

;;
∂

cc

Ω(0,0)

L

OO

∂

;;
∂

cc
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Theorem (R. Ó B. ’17)
There exists a covariant Kähler structure for the
Heckenberger–Kolb calculus of quantum projective space,
which is unique up to real scalar multiple.

Theorem (Matassa ’19)
There exists a covariant Kähler structure for the
Heckenberger–Kolb calculus of each compact quantum
Hermitian symmetric space Oq(G/LS), which is unique up to
real scalar multiple.
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There exists a covariant Kähler structure for the
Heckenberger–Kolb calculus of quantum projective space,
which is unique up to real scalar multiple.

Theorem (Matassa ’19)
There exists a covariant Kähler structure for the
Heckenberger–Kolb calculus of each compact quantum
Hermitian symmetric space Oq(G/LS), which is unique up to
real scalar multiple.

Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019

Lemma (Lefschetz Decomposition)

For any equivariant Hermitian structure for Ω•(M), we have the
Lefschetz decomposition:

Ω(a,b)(M) :=

min{a,b}⊕

i=0

Li(P(a−i,b−i)),

where we have denoted
P(a,b) := ker

(
Ln−(a+b)+1 : Ω(a,b)(M)→ Ω(n−b+1,n−a+1)(M)

)
.
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Example

For the quantum projective plane Oq(CP2), we have

L2(P(0,0))

Λ

��

L(P(1,0))

∂

77

Λ

��

L(P(0,1))

Λ

��

∂

gg

P(2,0)

∂

::

P(1,1) ⊕ L(P(0,0))

L

OO

Λ

��

∂

77
∂

gg

P(0,2)

∂

dd

P(1,0)

L

OO

∂

77
∂

ee

P(0,1)

L

OO

∂

99
∂

gg

P(0,0)

L

OO

∂

77
∂

gg
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Definition (Weil Formula)
The Hodge map associated to an Hermitian structure is the
morphism uniquely defined, for ω ∈ P(p,q)(M), and k = p + q,
by

∗H(Lj(ω)) := ip−q(−1)
k(k+1)

2
j!

(N − k − j)!
LN−j−k (ω).
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The Hodge map is not unique in any obvious way.

Definition (Weil Formula)
The h-Hodge map associated to an Hermitian structure is the
morphism uniquely defined, for ω ∈ P(p,q)(M), and k = p + q,
by

∗H(Lj(ω)) := ip−q(−1)
k(k+1)

2
[j]h!

[N − k − j]h!
LN−j−k (ω),

where the quantum integer and quantum factorial are the
scalars

[k ]h :=
1− hk

1− h
, [k ]h! := [k ]h[k − 1]h · · · [2]h.
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the associated metric is the map

g(ω, ν) := vol(ω ∧ ∗H(ν∗)),

Summary
Noncommutatively we define:

Hermitian form
L(·):=κ∧(·) // Lefschetz decomposition

Weil formula

��
g : Ω•(M)⊗ Ω•(M)→ Ω0 Hodge operator

g(·,·):=
∫
·∧∗H (·)

oo
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Lemma
It holds that

1 ∗H(Ω(a,b)) = Ω(n−b,n−a);
2 ∗2H = (−1)k ;
3 [∗H , ∗] = 0;
4 the complex structure N2

0-decomposition is orthogonal with
respect to g;

5 the Lefschetz decomposition is orthogonal with respect
to g;

6 ∗H is a unitary operator;
7 g(ω, ν) = g(ν, ω)∗.
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Lemma

The maps L, d, ∂, ∂ are adjointable with respect to g, and
1 L∗ = Λ = ∗−1

H ◦ L ◦ ∗H ,
2 d∗ = − ∗H ◦ d ◦ ∗H ,
3 ∂∗ = − ∗H ◦ ∂ ◦ ∗H ,
4 ∂

∗
= − ∗H ◦ ∂ ◦ ∗H .
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Hodge Decomposition and Cohomology

Definition

The d, ∂, and ∂ Laplacians are respectively the operators

∆d = (d + d∗)2, ∆∂ = (∂ + ∂∗)2, ∆∂ = (∂ + ∂
∗
)2.

We denote their respective kernels by Hd, H∂ , and H∂ , and call
them the d,∂, and ∂ harmonic forms.
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Theorem (R. Ó B. ’17)
For the Heckenberger–Kolb calculi, with their unique Kähler
structure, we have the three decompositions

1 Ω•(M) = Hd ⊕ d(Ω•(M))⊕ d∗(Ω•(M)),
2 Ω•(M) = H∂ ⊕ ∂(Ω•(M))⊕ ∂∗(Ω•(M)),
3 Ω•(M) = H∂ ⊕ ∂(Ω•(M))⊕ ∂∗(Ω•(M)).
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Definition
1
∫

:= haar ◦ ∗H ,
2 < ·, · >:= h ◦ g =

∫
∗H(·) ∧ (·).

Corollary
If < ·, · > is positive definite, then we have isomorphisms:

Hk
d → Hk

d ; H(p,q)
∂ → H(p,q)

∂ ; H(p,q)

∂
→ H(p,q)

∂
.

Corollary
The ∗ and Hodge maps descend to isomorphisms on the
cohomology groups.
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Example

For Oq(CP2), we have isomorphisms

H(2,2)

��

H(2,1) //

��

H(1,2)oo

��

H(2,0) // H(0,2)oo

H(1,0)

OO

// H(0,1)

OO

oo

H(0,0)

OO
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Proposition
For a covariant Kähler structure on a calculus Ω•, every left
Uq(g)-invariant form is harmonic, and hence, gives a
cohomology class.

Theorem
For every compact quantum Hermitian symmetric space, the
cohomology rings of the Heckenberger–Kolb calculi have at
least classical dimension.

Contrast this with cyclic cohomology, the usual analogue of
de Rham cohomology in noncommutative geometry, where
the dimension of the cyclic cohomology of Oq(S2) is less
than in the classical case.
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Theorem (The Kähler Identities)(R. Ó B ’17)

For any Kähler structure (Ω(•,•), κ), we have the following
relations:

[L, ∂] = 0, [L, ∂] = 0, [Λ, ∂∗] = 0, [Λ, ∂
∗
] = 0,

[L, ∂∗] = i∂, [L, ∂∗] = −i∂, [Λ, ∂] = i∂∗, [Λ, ∂] = −i∂∗.

Corollary
It holds that ∆d = 2∆∂ = 2∆∂ .

Corollary
The Frölicher spectral sequence terminates on the first page:

Hk =
⊕

k=p+q

H(p,q).
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For any Kähler structure (Ω(•,•), κ), we have the following
relations:

[L, ∂] = 0, [L, ∂] = 0, [Λ, ∂∗] = 0, [Λ, ∂
∗
] = 0,

[L, ∂∗] = i∂, [L, ∂∗] = −i∂, [Λ, ∂] = i∂∗, [Λ, ∂] = −i∂∗.

Corollary
It holds that ∆d = 2∆∂ = 2∆∂ .

Corollary
The Frölicher spectral sequence terminates on the first page:

Hk =
⊕

k=p+q

H(p,q).
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Spectral Triples

Theorem (B. Das, R. Ó B., P. Somberg)
For any covariant Hermitian structure on a compact quantum
Hermitian symmetric space Oq(G/LS), with positive definite
inner product, a pair of spectral triples, which we call a
Dolbeault–Dirac pair, is given by
(
Oq(G/LS),L2(Ω(0,•)),D∂

)
,
(
Oq(G/LS),L2(Ω(•,0)

)
,D∂

)
,

if and only if the Laplace operator ∆∂ = D2
∂

(which is automatic-
ally diagonalisable) has eigenvalues

1 of finite multiplicity
2 tending to infinity.
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Theorem (B. Das, R. Ó B., P. Somberg ’18)

For quantum projective space Oq(CPN−1), endowed with its
Heckenberger–Kolb calculus and its unique Kähler structure,
the eigenvalues of the Laplacian ∆∂ = D2

∂
have finite multiplicity

and tend to infinity.

Corollary
A Dolbeault–Dirac pair of spectral triples is given by
(
Oq(CPN−1),L2(Ω(•,0)

)
,D∂

)
,
(
Oq(CPN−1),L2(Ω(0,•)),D∂

)
.

Explicitly, the integers of the classical spectrum get
replaced by q2-integers!
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So how does one go about calculating the spectrum?

The essential simplifying assumption is that the left
Uq(g)-module

∂Ω(0,k), for all k ∈ N0,

is mutiplicity free.
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Theorem
The compact quantum Hermitian spaces for which ∂Ω(0,k) is
multiplicity free are precisely those in the following two diagrams.

The first identifies four countable families:

An Oq(CPn)

An Oq(Grn+1,2)

Bn Oq(Q2n+1)

Dn Oq(Q2n)

E6 Oq(OP2)
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The second diagram identifies four isolated examples, arising from
low dimensional redundancies in the table of compact quantum
Hermitian spaces given above.

B3 ∼= Oq(L2) ' Oq(Q5)

D3 ∼= Oq(S3) ' Oq(CP3)

D3 ∼= Oq(Q6) ' Oq(Gr4,2)

D4 ∼= Oq(S4) ' Oq(Q8)

Réamonn Ó Buachalla Quantum Flag Manifolds - Srnı́ 2019



Quantum Flag Manifolds - Srnı́ 2019

Conjecture
For all compact quantum Hermitian symmetric spaces
Oq(G/LS) appearing in the above list, a Dolbeault–Dirac pair of
spectral triples is given by
(
Oq(G/LS),L2(Ω(•,0)

)
,D∂

)
,
(
Oq(G/LS),L2(Ω(0,•)),D∂

)
.
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Operator K -theory

For a C∗-algebra A, let (V (A),⊕) be the abelian semigroup of
isomorphism classes of finitely-generated projective A-modules
with direct sum.

Then

K0(A) := {x − y | x , y ∈ V (A)}

is the Grothendieck group of (V (A),⊕), that is, x − y = z − w if
and only if there is r ∈ V (A) such that x + w + r = z + y + r .
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K -homology

Let A by a ∗-algebra dense in a ∗-algebra A. A Fredholm
module over A consists of a ∗-representation of A on a Hilbert
space H, together with a self-adjoint operator F , of square 1
and such that the commutator

[F ,a] ∈ K(H), for all a ∈ A.

An even Fredholm module over A is a Fredholm module
together with a Z/2-graded H := H0 ⊕H1 of Hilbert spaces on
which A is represented by a degree zero map and F is a
degree one Fredholm operator on H.

The K 0(A) consists of homotopy equivalence classes of even
Fredholm modules over A.
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Why the focus on the Dirac operator?

We have a pairing

K 0(A)× K0(A)→ K 0(A)

which generalises the process of tensoring a vector bundle
by a differential operator.

[b(D)] is the fundamental K -homology class

K0(X )× [b(D)] = K 0(A)
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Theorem
For any Dolbeault–Dirac spectral triple

(Oq(G/LS),L2(Ω(0,2)),D∂),

and a noncommutative homogeneous vector bundle
F = Oq(G)�Uq(lS)V, with a noncommutative holomorphic
structure ∂F , it holds that

〈
(F , ∂F ),D∂

〉
=

n∑

k=0

(−1)kH(0,k)
F .
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