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Jet Spaces

For a bundle π : E →M consider the equivalence relation on
Γ(E): s ' s′ iff s− s′ ∈ mk+1

x · Γ(E), where mx ⊂ C∞(M) is the
max. ideal of x ∈M . The equiv. classes jkxs ≡ the jet-space Jkπ.

In local coordinates (xi, uj) on E the Taylor expansion of sections
s : x 7→ u(x) yields coordinates (xi, ujσ) with |σ| ≤ k. This defines
the jet-lift jk : Γ(E)→ Γ(Jkπ), s 7→ jks. We have the projections

J∞π → · · · → Jkπ → Jk−1π → · · · → J0π = E →M.

Choose a point ak ∈ Jkπ with πk,l(ak) = al for k > l, a0 = a,
π(a) = x. Let F = Ker(daπ) ⊂ TaE, T = TxM . Then we identify
V (ak) = Ker(dakπk,k−1) = SkT ∗ ⊗ F .

Compactification: a manifold E and jets of m-dim submanifolds
M ⊂ E. The last projection π : J0 = E →M does not exist and
Ker(dakπk,k−1) = SkT ∗ ⊗ F , where T = TaM , F = TaE/TaM .
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Cartan distribution

Cartan distribution is given by the formula

C(ak) = span{L(ak+1) : ak+1 ∈ π−1k+1,k(ak)} ⊂ TakJ
kπ,

where L(ak+1) = Tak(jks) for ak+1 = jk+1
x s, ak = jkxs. In local

coordinates we have:

C(ak) = 〈D(k)
i = ∂xi +

∑
|σ|<k

ujσ+1i
∂
ujσ
, ∂
ujτ

: |τ | = k〉.

We have: C(ak) = L(ak+1)⊕ V (ak) and dakπk,k−1C(ak) = L(ak).

On J∞π we have integrable distribution

C(a∞) = L(a∞) = 〈Di = ∂xi +
∑

ujσ+1i
∂
ujσ
〉,

where Di = D
(∞)
i is the operator of total derivative along xi.
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Differential equations

Geometrically differential equation of order k is a submanifold
Ek ⊂ Jkπ that submerses on Jk−1π. We let Ei = J iπ for i < k
and Ei = E(i−k)k ⊂ J iπ be the (i− k)-th prolongation. The s-th
prolongations of Ek = {f = 0} has defining equations Dτf = 0,
|τ | = s, where Dτ = Di1 · · ·Dis for τ = (i1, . . . , is).

Thus a differential equation is a co-filtered manifold E = {Ei}∞i=0.
It is called compatible (sometimes said involutive) if
πi+1,i : Ei+1 → Ei is a submersion for i ≥ k. Cartan distribution of
E is the distribution CE = TE ∩ C for each jet-level i.

Ex. Complete system of equations of order k:

uσ = fσ(jk−1u), |σ| = k.

For this system E the Cartan distribution CE is horizontal, and the
compatibility is equivalent to its Frobenius-integrability, i.e.
Difτ+1j = Djfτ+1i for all i < j and τ with |τ | = k − 1.
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Symbolic module

Let 1M = M × R be the trivial one-dimensional bundle. If E is a
linear system, then E∗ = Hom(E ,1M ) is a D-module, i.e. a module
over the algebra of differential operators Diff(1M ,1M ).

Both the algebra and the module are filtered. Passing to the
graded objects at a point get: the ring ST = ⊕∞i=0S

iT of
polynomial functions on T ∗M and the symbolic module gr(E∗).

For nonlinear systems the symbols are bundles over E defined as
gi = Ker(dπi,i−1 : TEi → TEi−1) ⊂ SiT ∗ ⊗ F .
In fact, starting from the symbol gk of Ek define the symbolic
system {gi}∞i=0 by: gi = SiT ∗ ⊗ F for i < k and

gi = g
(i−k)
k := (Si−kT ∗ ⊗ gk) ∩ (SiT ∗ ⊗ F ).

The dual module g∗ = ⊕g∗i is naturally a module over R = ST ,
and is called the symbolic module ME .
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Spencer δ-cohomology

For a module M over the ring ST Koszul complex is defined by

0←M←M⊗ T ←M⊗ Λ2T ←M⊗ Λ3T ← . . .

Dualizing it over R (but not over R!) we get the Spencer
δ-complex, in each gradation

0→ gk → gk−1 ⊗ T → gk−2 ⊗ Λ2T ∗ → gk−3 ⊗ Λ3T ∗ → . . .

Its cohomology at the term gi ⊗ ΛjT ∗ is denoted by H i,j(g), and
also H i,j(E) if g is the symbolic system of E .

The Spencer cohomology H i,j(g) are dual to the Koszul homology
Hi,j(g

∗), and if g∗ = ST/I for an ideal I this also equals to
Hi−1,j+1(I).
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Iterpretation of δ-cohomology

Cohomology H∗,0(g) is supported in gradation 0: H0,0(g) = F
and H i,0(g) = 0 for i > 0.

Cohomology H∗,1(g) counts generators of the module g∗. For the
equation E : H i,1(E) is the number of defining differential
equations of order i, so in our setup it is non-zero only for i = k.

Cohomology H∗,2(g) counts compatibility conditions of E . In fact,
the curvature (structure tensor) of the distribution CE at a point
ak, that splits pointwise CE(ak) = L(ak+1)⊕ gk(ak), is an element
Ξ ∈ V (ak−1)⊗ Λ2C∗E(ak). Its restriction to a horizontal plane
L(ak+1) ⊂ CE(ak) gives ΞL(ak+1) ∈ gk−1 ⊗ Λ2T ∗.

Now change of ak+1 ∈ π−1k+1,k(ak) results in change of this tensor

by Im(δ : gk ⊗ T ∗ → gk−1 ⊗ Λ2T ∗), whence Wk(ak) ∈ Hk−1,2(E).

System E of order k is involutive if Wk ≡ 0, H i,2(E) = 0 ∀ i ≥ k.
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Variations of Spencer cohomology

When the system is not compatible (≡ involutive after
prolongation), this is achieved by prolongation-projection, resulting
in a smaller equation Ẽ ⊂ E with the same amount of solutions.

Consider the partial case of Lie equation E : the linear system
equations LX(q) = 0 for some geometric structure q. In other
words, E describes the infinitesimal symmetries of q.

In this case for classical geometries, after re-numeration gi = gi+1

we get (after prolongation-projection) the Lie algebra of
symmetries g = g−1 ⊕ g0 ⊕ g1 ⊕ . . . as a symbolic system.

A generalization of this is related to filtered geometries, when
g = g−ν ⊕ . . . g−1 ⊕ g0 ⊕ g1 ⊕ . . . . A partial case of this is given
by the class of parabolic geometries.

Another generalization arises in super-geometry. The Spencer
δ-cohomology is defined as the cohomology of the super-complex:

0→ gk → gk−1 ⊗ T → gk−2 ⊗ Λ2T ∗ → gk−3 ⊗ Λ3T ∗ → . . .
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Characteristic variety

From computational viewpoint let f = (f1, . . . , f r) be the defining
(non-linear) operators of order k for E , and let

`(f i)(v) =
∑
|σ|≤k

∑
j

P i,σj vjσ

be the linearization of the components, P i,σj depending on ak.

For p = (p1, . . . , pn) ∈ T ∗M denote P ij (p) =
∑
|σ|=k P

i,σ
j pσ, where

pσ = pi1 · · · pik for a multi-index σ = (i1, . . . , ik). The symbol of f
at ak is

smblf (p) =

P
1
1 (p) · · · P 1

m(p)
...

. . .
...

P r1 (p) · · · P rm(p)


Assume E is (over)determined, in näıve terms: dimF = m < r.
The affine/projective/complex characteristic variety is

Char(E ; ak) = {p ∈ T ∗xM : rank(smblf (p)) < m}.
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Relation to the symbolic module

Recall that ME = g∗ is the symbolic module. In the language of
commutative algebra Char(E) = supp(ME).

Every projective module over the Noetherian ring R = ST can be
realized as a module of sections of some sheaf. For the module
ME the characteristic sheaf K is defined in such a way and
evaluation at p ∈ T ∗ of the stalk is the kernel of the operator
smblf (p) considered as a map from Rm to Rr. For p ∈ Char(E)
the rank of evaluation belongs to [1,m].

Covector p ∈ T ∗ is characteristic iff pk⊗ v ∈ gk \ 0 for some v ∈ F .

In particular, the system E is of finite type dim g <∞ iff
CharC(E) = 0 (in projective setting ∅).
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Dimensions of the solution spaces

Cartan’s theory of characters gives Cauchy data that uniquely
determines solutions: in the analytic context of the Cartan-Kähler
theorem the general local solution depends on sd functions of d
arguments, . . . , s1 functions of 1 arguments, s0 constants.

These numbers have no invariant meaning except for the Cartan
genre d (maximal i with si 6= 0) and Cartan integer σ = sd. In
modern terms these can be defined as follows:

d = dim CharCaff(E), σ =
∑

dε · deg Σε,

where CharCproj(E) = ∪εΣε is the decomposition of the projective
characteristic variety into irreducible components.

Theorem

General local solution of E depends on d functions of σ arguments.
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An example: systems of complete intersection type

Consider a scalar system E : f1 = · · · = fr = 0, with the unique
dependent variable u. In this case, smblf1(p), . . . , smblfr(p) are
homogeneous polynomials of degrees k1, . . . , kr.

The system is called a complete intersection if their loci intersect
transversally, i.e. codim CharC(E) = r. In this case the
compatibility conditions are

{fi, fj} = 0 modJki+kj−1(f), i < j,

where Jt(f) is the differential ideal generated by components of f
up to jet-order t and

{f, h} = `(f) ◦ h− `(h) ◦ f

is the higher Jacobi-Mayer bracket. The Spencer δ-cohomology is

H∗,j(E) ' ΛjF.

If the system is compatible, Solloc(E) depends on k1 · · · kr
functions of n− r variables.
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Monge-Ampère equations

A Monge-Ampère equation in a region M ⊂ Rn is a nonlinear
scalar second order PDE of the form∑

aσ detUσ = 0,

where ai = ai(x, u, ∂u) is a function on the first jets J1M ,
U = Hess(u) =

(
uij
)

is the Hessian matrix and σ encodes all
minors of U of sizes 0 ≤ |σ| ≤ n.

Such equations arise in a variety of applications, for instance
self-dual gravity, special Lagrangian and Kähler geometry, gas
dynamics and non-linear accoustic.

More invariantly, for any n-dimensional manifold M a Monge-
Ampère equation is given by a choice of n-form ω ∈ Ωn(J1M),
namely the equation is E : ω|j1u = 0. n-forms that differ by the
contact ideal give identical equations, so ω can be normalized to
be an effective n-form.
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Symplectic Monge-Ampère equations

Monge-Ampère equations with ai = const are called symplectic.
This class is Sp(2n,C)-invariant. It is a subclass of Hirota type
equations, given by f(∂2u) = 0.

Geometrically Hirota type equations E correspond to hypersurfaces
X in Lagrangian Grassmanian Λ. Note that Λ corresponds to a
compactification of J2M and dim Λ = d(n) := n(n+1)

2 .

Symplectic Monge-Ampère equations are hyperplane sections of
the Plücker embedding Λ into Pp(n)−1, where p(n) := 2(2n+1)!

n!(n+2)! is
the number of independent minors of a symm n× n matrix.

In applications it is important to characterize Monge-Ampère
equations by differential relations. The following is based on this:

Theorem (E. Ferapontov, BK, V. Novikov)

For dim n ≥ 4, the integrability of a non-degenerate Hirota type
equation by the method of hydrodynamic reductions implies the
symplectic Monge-Ampère property.
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Characterization: geometric form

To characterize Monge-Ampère equations, it is useful to change
the implicit form of equation (this contains a reparametrization of
the defining function) to an explicit one, which is convenient to
write with n 7→ n+ 1, so that local coordinates are x0, . . . , xn

u00 = f(u01, . . . , u0n, u11, u12, . . . , unn).

In this non-symmetric form f depends on n(n+ 3) + 1 arguments
and uniquely defines the embedding

X ⊂ Λ ↪→ Pp(n+1)−1.

The following gives the projective-invariant characterization.

Theorem

Equation u00 = f is of Monge-Ampère type if and only if d2f
belongs to the span of the second fundamental forms of the
Plücker embedding of Λ restricted to the hypersurface X.
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Characterization: analytic form (MAE)

This leads to a system of PDEs for f for distinct indices
i 6= j 6= k 6= l ∈ {1, . . . , n}

fuiifu0iu0i + fuiiuii = 0, 1
2fu0ifu0iu0i + fu0iuii = 0,

1
2fu0jfu0iu0i + fu0ifu0iu0j + fu0iuij + fu0juii = 0,

1
2fuijfu0iu0i + fuiifu0iu0j + fuiiuij = 0,

1
2fujjfu0iu0i + 1

2fuiifu0ju0j + fuijfu0iu0j + fuiiujj + 1
2fuijuij = 0,

fu0kfu0iu0j + fu0jfu0iu0k + fu0ifu0ju0k + fu0iujk + fu0juik + fu0kuij = 0,
1
2fujkfu0iu0i + fuikfu0iu0j + fuijfu0iu0k + fuiifu0ju0k + fuiiujk + fuijuik = 0,

fuklfu0iu0j + fujlfu0iu0k + fujkfu0iu0l + fuilfu0ju0k + fuikfu0ju0l

+ fuijfu0ku0l + fuijukl + fuikujl + fuilujk = 0.
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Criterion for Monge-Ampère property

Theorem

Hirota type equation is of Monge-Ampère type iff the rhs f
satisfies the above overdetermined system of PDEs.

This will be proved by the formal theory of differential equations.
Note that every differential system can be described by either its
defining relations (PDEs) or jets of its solutions. In the latter case
the system is compatible (involutive), but we do not have control
over the defining relations. In the former case we have control but
do not know compatibility a priori.

To demonstrate that these two descriptions coincide we first prove
that Monge-Ampère equations have defining relations of the
second order only, then by dimensional reasons we conclude that
these must coincide with the above system of relations (MAE).
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Proof modulo symbolic involutivity

Let E ⊂ J∞(Rd̄) denote the system of PDEs for f . Here
d̄ = d(n+ 1)− 1, Rd̄ is the space of independent arguments of f
and E0 = J0 = Rd̄+1 ⊂ Λ. Locally X = graph(f) ⊂ J0 for f from
(MAE) and k-jets of these define Ek. Clearly, E1 = J1. We claim
that E2 is generated by (MAE).

The symbols of E are gk ⊂ Skτ∗ where τ = ToRd̄, and they can be
interpreted as the space of linearly independent minors of A of size
k. Thus g0 = R, g1 = τ∗ and in general

dim gk = b(k, n+ 1)

for all k ∈ [0, n+ 1] with the exception of k = 1, in which case
dim g1 = b(1, n+ 1)− 1 = d̄ due to the relation u00 = f .

Here b(k, n) = 1
k+1

(
n
k

)(
n+1
k

)
is the number of independent k × k

minors of a symm n× n matrix.
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Proof modulo ... cont’d

For k > n+ 1 the symbol of E vanishes, gk = 0, signifying that
this system is of finite type. The solution space S = E ∩ π−1

n+2(o)
has dimension

dimS =

∞∑
k=0

dim gk =

n+1∑
k=0

b(k, n+ 1)− 1 = p(n+ 1)− 1.

Next, E2 is contained in the locus of relations (MAE), and the
number of relations is N(n) =

(
d(n+1)

2

)
− b(2, n+ 1) which is the

codimension of g2 ⊂ S2T ∗X. This count along with the
quasi-linearity of (MAE) implies the claim.

To finish the proof we observe that the higher symbols coincide

with the prolongations: gk+2 = g
(k)
2 for k > 0.
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Use of An-equivariance

To compute prolongations of the symbols used above we exploit
the subalgebra An = sln+1 in the Lie algebra Cn+1 = g of the
equivalence group G = Sp(2n+ 2,C): in the |1|-grading
g = g−1 ⊕ g0 ⊕ g1 corresponding to the parabolic subalgebra
p = pn+1 we have g0 = gln+1 = sln+1 ⊕ R and this naturally acts
on the tangent space to the Lagrangian Grassmannian Λ = G/P .
Thus the tangent and derived spaces are all An-modules.

Denote by Ê the equation describing implicit Monge-Ampère
equations. As specified by its solutions, this equation is involutive.
A-priori, it can have PDE-generators of different orders.

Proposition

The defining equations of Ê have second order: Êi+2 = Ê(i)
2 .

The Lie algebra An acts naturally on Êk and hence its symbols ĝk
are An-modules.
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Proof of the proposition

The statement is equivalent to the successive identities

ĝk+1 = ĝ
(1)
k , k ≥ 2, i.e. H1,k(ĝ) = 0 or H1,k(ĝ

∗) = 0 for the
Koszul homology complex

0← ĝ∗k+1
∂←− T ⊗ ĝ∗k

∂←− Λ2T ⊗ ĝ∗k−1 ←− . . . (1)

The symbols, considered as An-modules, are

ĝk = SkS2V ∗n ∩ S2ΛkV ∗n = Γ2λn−k+1
,

where Vn = Γλ1 = Rn is the standard irep and V ∗n = Γλn its dual.
Dualising the symbol we get ĝ∗k = Γ2λk . We also get T = Γ2λ1 .

We work over C since the complexification commutes with passing
to (co)homology. The main advantage of passing to dual is that
the computations with the Littlewood-Richardson rule are
n-independent and yields the following tensor decompositions.
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Proof of the proposition cont’d

For the second term of Koszul’s complex and 0 < k ≤ n:

Γ2λ1 ⊗ Γ2λk = Γ2λk+1
+ Γλ1+λk+λk+1

+ Γ2λ1+2λk .

For the third term, using the plethysm Λ2T = Γ2λ1+λ2 , we have
for k ≥ 2 (λ0 = λn+1 = 0; for k = 2 and k = n+ 1 a modification
of terms is required):

Γ2λ1+λ2⊗Γ2λk−1
= Γλ2+2λk+Γλ1+λk+λk+1

+(Γλ1+λ2+λk−1+λk+Γ2λ1+2λk)

+Γ2λ1+λk−1+λk+1
+(Γ2λ1+λ2+2λk−1

+Γ3λ1+λk−1+λk).

Similarly, using futher plethysms, Shur’s lemma and Young
symmetrisers we compute the Koszul homology: H1,k(ĝ

∗) = 0 and
H2,k(ĝ

∗) = 0 for k ≥ 2. Hence the Spencer cohomology also
vanish: H1,k(ĝ) = 0, H2,k(ĝ) = 0 for k ≥ 2.
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The last part of the proof of the main theorem

Lemma

For k > 2 the following holds: gk = g
(k−2)
2 .

Proof. The symbols of the two considered equations agree
ĝk = gk for k 6= 1. However they form symbolic complexes over
different vector spaces: T for ĝ and τ for g, related by

0 −→ τ −→ T −→ R −→ 0

or by embedding X ↪→ Λ, with the normal bundle R.

This unites the Spencer δ-complexes for ĝ and g into a
commutative diagram of three complexes with exact vertical
sequences that, in view of the preceding proposition, implies the
claim by the standard diagram chase.
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Paraconformal structures

Paraconformal or GL(2) geometry on an n-dimensional manifold
M is defined by a field of rational normal curves of degree n− 1 in
the projectivised cotangent bundle PT ∗M . Equivalently, for a
coframe {ωi} on M it can be viewed as a field of 1-forms

ω(λ) = ω0 + λω1 + · · ·+ λn−1ωn−1.

This field and the parameter λ are defined up to transformations
λ 7→ aλ+b

cλ+d , ω(λ) 7→ r(cλ+ d)n−1ω(λ), where a, b, c, d, r are
arbitrary smooth functions on M with ad− bc = 1, r 6= 0.

Conventionally, a GL(2) geometry is defined by a field of rational
normal curves in the projectivised tangent bundle PTM . Both
pictures are projectively dual: the equation ω(λ) = 0 defines a
one-parameter family of hyperplanes that osculate a dual rational
normal curve ω̃(λ) ⊂ PTM .
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... and their appearance

GL(2) geometry is known to arise on solution spaces of ODEs with
vanishing Wünschmann (Doubrov-Wilczynski) invariants. GL(2)
structures also arise in the theory of bi-Hamiltonian integrable
systems as Veronese webs, in the context of exotic holonomy in
four dimensions, in the geometry of submanifold of the
Grassmannians, in the deformation theory of rational curves in
compact complex surfaces X with positive normal bundle.

Jointly with E. Ferapontov we established that dispersionless
integrable hierarchies of PDEs, such as the dispersionless
Kadomtsev-Petviashvili, Adler-Shabat and universal hierarchies,
provide GL(2) geometry as characteristic varieties on the solutions.

In this way we obtain torsion-free GL(2) structures of Bryant as
well as totally geodesic GL(2) structures of Krynski. The latter
possess a compatible affine connection (with torsion) and a
two-parameter family of totally geodesic α-manifolds, making them
a natural generalisation of the Einstein-Weyl geometry.
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Theorem 1 (E. Ferapontov, BK): Paremetrization

Every involutive GL(2) structure is locally of the form

ω(λ) =

n∑
i=1

[∏
j 6=i

(
λ− uj

vj

)]
uidx

i.

Here u and v are functions of (x1, . . . , xn), and subscripts denote
partial derivatives: ui = uxi , vi = vxi . These functions satisfy a
system of second-order PDEs, 2 equations for each quadruple of
indices 1 ≤ i < j < k < l ≤ n: Eijkl = 0, Fijkl = 0 with

Eijkl = S
(jkl)

(ai−aj)(ak−al)
(

2uij − (ai + aj)vij
uiuj

+
2ukl − (ak + al)vkl

ukul

)

Fijkl = S
(jkl)

(bi−bj)(bk−bl)
(

2vij − (bi + bj)uij
vivj

+
2vkl − (bk + bl)ukl

vkvl

)
where ai = ui

vi
, bi = vi

ui
, and S denotes cyclic summation.
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Proof of Thm 1 (sketch)

The space of α-manifolds is parametrised by 1 arbitrary function of
1 variable. Choose n 1-parameter family of α-manifolds ≡ (local)
foliations of M given by λ = ai(x) and rectify them:
ω(ai) = fidx

i (no summation). In this coordinate system:

ω(λ) =

n∑
i=1

[∏
j 6=i

λ− aj
ai − aj

]
fidx

i.

Choose two extra 1-parameter families of α-manifolds:
ω(an+1) = fn+1du and ω(an+2) = fn+2dv, i.e.

fi
∏
j 6=i

an+1 − aj
ai − aj

= fn+1ui, fi
∏
j 6=i

an+2 − aj
ai − aj

= fn+2vi.

Using the coordinate freedom send an+1 →∞ and an+2 → 0 and
use conformal freedom of ω(λ) to get its required formula.

The above overdetermined PDE system (EF) is obtained from the
integrability condition dω(λ) ∧ ω(λ) = 0.
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Proof of Thm 1 - end of the argument

Indeed, collecting coefficients at dxi ∧ dxj ∧ dxk we obtain

S
(jkl)

λ− ai
ui

(
1

λ− ak
− 1

λ− aj

)
λi + Sijk = 0, (†)

where λi = λxi and Sijk is given by

uij
aj−ai
uiuj

(
λ

λ−ai
+ λ

λ−aj

)
+ uik

ai−ak
uiuk

(
λ

λ−ai
+ λ

λ−ak

)
+ ujk

ak−aj
ujuk

(
λ

λ−aj
+ λ

λ−ak

)
−vij aj−aiuiuj

(
λai
λ−ai

+
λaj
λ−aj

)
− vik

ai−ak
uiuk

(
λai
λ−ai

+ λak
λ−ak

)
− vjk

ak−aj
ujuk

(
λaj
λ−aj

+ λak
λ−ak

)
.

Denote by Tijk the left-hand side of (†). For four distinct indices
i 6= j 6= k 6= l there are only two non-trivial linear combinations
that do not contain derivatives of λ:

Tikj+Tijl+Tilk+Tjkl and 1
λ−alTikj+

1
λ−akTijl+

1
λ−aj Tilk+ 1

λ−aiTjkl.

The first linear combination is equal to zero identically, while the
second combination vanishes iff relations (EF) are satisfied.

Thus system (EF) governing general involutive GL(2) structures
results on elimination of the derivatives of λ from equations (†).

Boris Kruglikov (Tromsø) � Srni-2019 Overdetermined systems of PDEs: Lecture 3



Theorem 2 (E. Ferapontov, BK): Involutivity

For every value of n, the following holds:

The characteristic variety of system (EF) is the tangential
variety of the rational normal curve P1 3 λ 7→ ω(λ) ∈ Pn−1.

The characteristic variety has degree 2n− 4, and the rational
normal curve can be recovered as its singular locus.

System (EF) is in involution and its general solution depends
on 2n− 4 functions of 3 variables (for analytic/formal case).

Note that although the PDE system (EF) formally consists of 2
(
n
4

)
equations, only 2

(
n−2

2

)
of them are linearly independent: we can

restrict to equations E12kl = 0 and F12kl = 0 for 3 ≤ k < l ≤ n
since all other equations are their linear combinations.

For n = 4 system (EF) is determined: it consists of 2 second-order
PDEs for 2 functions u and v of 4 independent variables, so the
claim is instant, and this implies the count of Bryant.
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Proof of Thm 2 - part 1

We parametrize the rational normal curve as

λ 7→ [p1 : · · · : pn] ∈ PT ∗M, pi =
ui

λ− ai
, ai =

ui
vi
, (†)

so that its tangential variety is given by

(λ, µ) 7→ [p1 : · · · : pn] ∈ PT ∗M, pi =
ui

λ− ai
+

uiµ

(λ− ai)2
. (‡)

The symbol of E = {E = 0, F = 0} is given by the matrix

`E(p) =

[
`uE(p) `vE(p)
`uF (p) `vF (p)

]
,

where `uE(p) = is the symbol of u-linearization of E is given by

`uEijkl(p) =
∑
a≤b

∂Eijkl
∂uab

papb = 2 S
(jkl)

(ai−aj)(ak−al)
( pipj
uiuj

+
pkpl
ukul

)
and similarly for other entries. Substitution of (†) yields `E(p) = 0,
while substitution of (‡) outside (†) yields rank

(
`E(p)

)
= 1.
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Proof of involution: A. Projecitve modules

If an involutive PDE system E is linear, its symbolic module
ME = g∗ over the ring R = ST is projective (locally free).

Let E be defined by a k-th order differential operator
∆ : Γ(π)→ Γ(ν), corresponding to morphisms
ψ∆
k+i : Jk+iπ → J iν, i.e. Ek+i = Ker(ψ∆

k+i) for i ≥ 0.

We construct a minimal free resolution of the symbolic module:

· · · → R⊗$∗ ψ∗−→ R⊗ ν∗
σ∗∆−→ R⊗ π∗ −→ME → 0

and applying the functor ∗ = HomR(·,R) get the exact sequence

0→ g ↪→ ST ∗ ⊗ π σ∆−→ ST ∗ ⊗ ν ψ−→ ST ∗ ⊗$ → . . .

from which the compatibility conditions of E = {∆ = 0} are
Ψ ◦∆|E = 0 for Ψ ∈ Diff(ν,$) with the symbol ψ at x.

For nonlinear equations, apply the linearisation operator on a
solution instead of ∆. Its symbol yields a syzygy, and hence
compatibility operators, and Ψ is an operator in total derivatives.
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Proof of involution: B. Explicit differential syzygies

The symbol `E of the nonlinear vector-operator defining E in new
coordinates ξi = pi

ui
on T ∗xM has components

`uEijkl(ξ) = 2 S
(jkl)

(ai − aj)(ak − al)
(
ξiξj + ξkξl

)
,

`vEijkl(ξ) = − S
(jkl)

(ai − aj)(ak − al)
(
(ai + aj)ξiξj + (ak + al)ξkξl

)
,

`uFijkl(ξ) = − S
(jkl)

(ai − aj)(ak − al)
aiajakal

(
(ai + aj)ξiξj + (ak + al)ξkξl

)
,

`vFijkl(ξ) = 2 S
(jkl)

(ai − aj)(ak − al)
( ξiξj
akal

+
ξkξl
aiaj

)
,

in the basis eu, ev of R2 and basis eEijkl , eFijkl of R2(n−2
2 ), where

we restrict to indices i = 1, j = 2, 2 < k < l ≤ n.

This means that the homomorphism `E maps f(ξ)eu to
f(ξ)

∑
k<l(`

u
E12kl

(ξ)eE12kl
+ `uF12kl

(ξ)eF12kl
) and similarly for h(ξ)ev.
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Proof of involution: B — cont’d

Now we resolve `E by a homomorphism C = CE . The image
C(ξ)(w) for w =

∑
i<j(wE12ijeE12ij + wF12ijeF12ij ) has the

following components (2 < i < j < k ≤ n):

CIijk = S
(ijk)

(
(a2 − ak)ξ1 + (ak − a1)ξ2 + (a1 − a2)ξk

)
wE12ij

CIIijk = S
(ijk)

[(
(a1 − a2)(a2 − ak)a1ξ1 + (a2 − a1)(a1 − ak)a2ξ2

+ ((a2 − ak)2a1 + (a1 − ak)2a2)ξk
)
wE12ij

+ 2a1a2aiaj(a1 − ak)(a2 − ak)ξkwF12ij

]
CIIIijk = S

(ijk)

[
2(a1 − ak)(a2 − ak)ξkwE12ij

+
(
(a1 − a2)(a2 − ak)a1ξ1 + (a2 − a1)(a1 − ak)a2ξ2

+ ((a2 − ak)2a1 + (a1 − ak)2a2)ξk
)
aiajwF12ij

]
CIVijk = S

(ijk)

(
(a2 − ak)a2

1ξ1 + (ak − a1)a2
2ξ2 + (a1 − a2)a2

kξk
)
aiajwF12ij
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Proof of involution: B — finish’d

One verifies that with these homomorphisms the following
sequence is exact:

R2 `E−→ R2(n−2
2 ) CE−→ R4(n−2

3 ).

In other words, CE is the first syzygy for the module

M?
E = Ker(`E) = HomR(ME ,R).

Therefore, the differential syzygies for E are enumerated by 5
different indices (12ijk), 2 < i < j < k ≤ n.

Consequently to verify compatibility conditions for each of these
5-tuples one can work in the corresponding 5-dimensional space,
which is verified straightforwardly. And this yields involutivity.
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Compatibility via free resolution

For a homomorphism ϕ : Rn−2 → R2 the following sequence is
known as the Eagon-Northcott complex (? = HomR(·,R))

· · · → S3R?2⊗Λ5Rn−2 ∂−→ S2R?2⊗Λ4Rn−2 ∂−→ R?2⊗Λ3Rn−2 ∂−→ Λ2Rn−2 ε−→ R.

It is exact when the Fitting ideal I(ϕ), generated by 2× 2
determinants of ϕ, contains a regular sequence of length (n− 3).

For the system E the map `E split: `E(eu) and `E(ev) generate two

complementary submodules Λ2Rn−2 ⊂ R2(n−2
2 ). Therefore two

copies of the ?-dual Eagon-Northcott complex yield the following
resolution of the ?-dual symbolic module:

0→M?
E →R2 `E−→ R2⊗Λ2Rn−2 CE−→ R?2⊗R2⊗Λ3Rn−2 ∂?−→ S2R?2⊗R2⊗Λ4Rn−2 → . . .

The Fitting condition corresponds to codimension n− 3 of the zero
set of I(`E) is the tangential variety to the rational normal curve.

That only 5-tuples of distinct indices enter the compatibility
conditions we read off Λ3Rn−2: triples (ijk) yield 5-tuples (12ijk).
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