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Motivation

Last year we celebrated 100 years from publication of the results
known as ”Noether Theorems”. These results was published in the
paper

Noether, Emmy (1918). ”Invariante Variationsprobleme”. Nachr. D.
König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse. 1918:
235–257.

In my lecture I would like to demonstrate one application of the 2nd
Noether’s theorem in Covariant Classical and Quantum Mechanics.

For review of possible applications of results of above paper I rec-
ommend the monograph

Kosmann-Schwarzbach, Yvette (2010). The Noether theorems:
Invariance and conservation laws in the twentieth century. Sources and
Studies in the History of Mathematics and Physical Sciences. Springer-
Verlag. ISBN 978-0-387-87867-6.



Covariant Classical and Quantum Mechanics

Covariant Classical Mechanics (CCM) and Covariant Quan-
tum Mechanics (CQM) are geometric approaches to Classical Me-
chanics and Quantum Mechanics on a curved spacetime fibred over
absolute time and equipped with a riemannian metric on its fibres.

The main features of CCM and CQM are:

- CCM and CQM are fully covariant,

- CCM and CQM skip the spacetime lorentzian metric and replaces
it with a spacelike riemannian metric,

- CCM and CQM implement the principle of General Relativity,

- CCM and CQM fit Standard Classical and Quantum Mechanics
in the flat case.



1. General formulation of the 2nd Noether’s
theorem

Let us consider a fibred manifold p : F → B , with dimB = m
and dimF = n = m + l , equipped with a scaled volume form of the
base space υ : B → U⊗∧mT ∗B . We denote the typical fibred charts
of p : F → B by (xλ, yi) .

Moreover, let us consider a 1st-order lagrangian form

L = l υ ∈ sec(J1F ,∧mT ∗B) , where l ∈ map(J1F ,U∗ ⊗ IR) ,

and the associated Poincaré–Cartan form

Θ = L + Π ∈ sec(J1F ,∧mT ∗F ) ,

with coordinate expression

Θ = l υ + ∂λi l (di − yiµ dµ) ∧ υλ , where υλ := i∂λυ .



Let us consider a vector field Y ∈ sec(F , TF ) and its holonomic
(jet) prolongation

Y1 := r1 ◦ J1Y ∈ proF (J1F , TJ1F ) ,

where r1 : J1TF → TJ1F is the natural transformation.

2nd Noether’s theorem: If Y is an infinitesimal symmetry of L ,
i.e. if LY1L = 0 , then the form, called the current associated with Y ,

j[Y ] := iY1Θ = iY Θ ∈ sec(J1F ,∧m−1T ∗F )

turns out to be conserved along the sections s : B → F which are
solutions of the Euler–Lagrange equation (“critical sections”), hence
the current form (j1s)

∗j[Y ] ∈ sec(B,∧m−1T ∗B) is closed, i.e.

d
(
(j1s)

∗j[Y ]
)

= 0 .



Indeed, in the context of Covariant Classical Mechanics and Co-
variant Quantum Mechanics, respectively, we get in a covariant way
classical and quantum lagrangians and we are able to classify their
infinitesimal symmetries (generated by the so called special phase
functions f). As a consequence we obtain classical and quantum cur-
rents conserved on critical sections.



2. Covariant Classical Mechanics

Spaces of scales

Covariance involves equivariance with respect to coordinates,
observers, gauges and scale bases as well, on the same footing. For
this reason, we incorporate the spaces of scales into geometric objects,
by a rigorous mathematical procedure.

The basic “positive spaces” in the theory are:

T = space of time scales ,

L = space of length scales ,

M = space of mass scales .

In order to account for objects with scaled dimensions, these
space will be possibly tensorialised with standard tensors, so yielding
scaled tensors.

We denote as ~ = ~0 u0 ∈ T−1 ⊗ L2 ⊗M the Planck constant.



Spacetime

Absolute time is an affine space T of dimension 1 with the asso-
ciated vector space R⊗ T.

Spacetime is an oriented manifold of dimension 4, fibred over time

t : E → T .

The fibred coordinate charts will be (xλ) = (x0, xi).

Time 1-form is dt : E → T⊗ T ∗E.

Motions are section s : T → E.



Classical fields

1) The metric is a scaled spacelike riemannian metric

g : E → L2 ⊗ (V ∗E ⊗ V ∗E) .

2) The gravitational field is a torsion free linear connection of
spacetime (galilean connection)

K\ : TE → T ∗E ⊗ TTE ,

such that

∇\dt = 0 , ∇\g = 0 , R\
iλjµ = R\

jµiλ .

3) The electromagnetic field is a scaled spacetime 2–form

F : E → (L1/2 ⊗M1/2)⊗ ∧2T ∗E ,

such that dF = 0 .



Coordinate expression

The gravitational connection K\ is determined by the metric g and
an observer dependent and gauge dependent potential A\ : E → T ∗E

K\
λ
0
µ = 0 ,

K\
h
i
k = K\

k
i
h = −1

2 g
ij (∂hgjk + ∂kgjh − ∂jghk) ,

K\
h
i
0 = K\

0
i
h = − 1

2 g
ij (∂0ghj + ∂hAj − ∂jAh) ,

K\
0
i
0 = −gij (∂0Aj − ∂jA0) ,

Comment: In fact time-preserving and metric-preserving linear
connection is given by a 2-form Φ\. The condition R\

iλjµ = R\
jµiλ is

equivalent with dΦ\ = 0, so locally Φ\ = 2 dA\.



Joined spacetime connection

It is possible to incorporate, in a covariant way by a minimal cou-
pling, the electromagnetic field into gravitational field K\ preserving
the properties of K\ to be galileian

K = K\ − 1
2
q
m (dt⊗ F̂ + F̂ ⊗ dt) , with F̂ := g]2(F ) ,

where m ∈ M , q ∈ T−1 ⊗ L3/2 ⊗M1/2 are mass and charge of a
particle.

This joined spacetime connection K yields several classical and
quantum objects, which split into gravitational and electromagnetic
components.

From dF = 0 we get the joined potential A = A\ + Ae.

From now on, in CCM and CQM, we shall refer to this joined
spacetime connection.



Phase space

We consider as phase space the space of 1–jets of motions

J1E ⊂ T∗ ⊗ TE .

Phase space is odd dimensional

dim J1E = 7

with the induced fibred coordinate charts (x0, xi, xi0).



Joined phase objects

The joined connection K yields in a covariant way the following
objects, which split into gravitational and electromagnetic compo-
nents:

1) phase connection (affine connection)

Γ : J1E → T ∗E ⊗ TJ1E , Γλ
i0
0µ = Kλ

i
µ ,

2) dynamical phase connection

γ : J1E → T∗ ⊗ TJ1E , γi00 = Kp
i
q x

p
0 x

q
0 + 2Kp

i
0 x

p
0 +K0

i
0 ,

3) dynamical phase 2–form Ω : J1E → ∧2T ∗J1E

Ω = m
~0 gij

(
di0 − (Kλ

i
p x

p
0 +Kλ

i
0) d

λ
)
∧ (dj − xj0 d0) ,

4) dynamical phase 2–vector Λ : J1E → ∧2V J1E

Λ = ~0
m g

ij
(
∂i + (Ki

h
p x

p
0 +Ki

h
0) ∂

0
h

)
∧ ∂0j .



Cosymplectic structure of phase space

Above phase objects satisfy the following identities

iγdt = 1 , iγΩ = 0 , idtΛ = 0 ,

dΩ = 0 , dt ∧ Ω ∧ Ω ∧ Ω 6≡ 0 , γ ∧ Λ ∧ Λ ∧ Λ 6≡ 0 ,

[γ,Λ] = 0 , [Λ,Λ] = 0 .

Thus the phase space turns out to be equipped with a scaled cosym-
plectic structure given by the pair of phase forms (dt,Ω). γ is the
scaled Reeb vector field and Λ is the Poisson 2-vector field.

This cosymplectic structure replaces the symplectic structure or
the contact structure of other geometric approaches to Classical and
Quantum Mechanics. Really, in GR as the phase space is usually de-
fined to be T ∗E with the canonical symplectic 2–form or the
observer space (a part of the unit pseudosphere bundle given by
timelike future oriented vectors) with the contact structure.



Ω is closed and admits horizontal phase potentials

A↑ ∈ sec(J1E, T
∗E) , such that Ω = dA↑ ,

A↑ = −(m~0
1
2 gij x

i
0 x

j
0 − A0) d

0 + (m~0 gij x
j
0 + Ai) d

i .

For an observer o : E → J1E the observed potentials o∗A↑ =
A[o] of Ω coincide with the observed potentials of the joined spacetime
connection K .

Ω is global, gauge independent, observer independent,
A↑ is local, gauge dependent, observer independent,
A[o] is local, gauge dependent, observer dependent.



3. Classical current

The cosymplectic phase 2–form Ω yields the classical lagrangian

L : J1E → T ∗T , L = idA
↑ = L0 d

0 = (m~0
1
2 gij x

i
0 x

j
0 + Ai x

i
0 + A0) d

0 ,

where d is the contact mapping d : J1E → T∗ ⊗ TE

d = u0 ⊗ (∂0 + xi0 ∂i) .

L is local, gauge dependent, observer independent,

The corresponding Poincaré–Cartan form is

Θ ≡ A↑ = L0 d
0 + ∂0iL0 (di − xi0 d0) = (L0 − xi0 ∂0iL0) d

0 + ∂0iL0 d
i ,

and the classical current associated with a vector field X = Xλ ∂λ
on E is the function

c[X] = X0 (L0 − xi0 ∂0iL0) +X i ∂0iL0 .



Special phase functions

By the Noether’s theorem if we wish to find vector fields X such
that the corresponding classical currents are constant on critical sec-
tions, we have to find infinitesimal symmetries of L. Such symmetries
are generated by special phase functions (s.p.f.)

f = f 0 m
~0

1
2 gij x

i
0 x

j
0 + f i m~0 gij x

j
0 + f̆ ,

with f 0, f i, f̆ ∈ map(E, IR) .

S.p.f. turn out to be the sources of classical symmetries, quan-
tum symmetries, classical and quantum currents.

Theorem: S.p.f. yield a map (tangent lift)

X : spe(J1E, IR)→ sec(E, TE) : f 7→ X[f ] ,

X[f ] = f 0 ∂0 − f i ∂i .



Holonomic and hamiltonian phase lifts

X↑hol[f ] := r1 ◦ J1X[f ] : J1E → TJ1E ,

X↑ham[f ] := γ(f ′′) + Λ](df) : J1E → TJ1E .

Here f ′′ = f 0 ∂0 is the ”time” component of f . We see that the hamil-
tonian lift is a modification of the standard Jacobi lift where we
use only time component of s.p.f. f . In coordinates

X↑hol[f ] = f 0 ∂0 − f i ∂i − (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0 + ∂jf

0 xj0 x
i
0) ∂

0
i ,

X↑ham[f ] = f 0 ∂0 − f i ∂i
+ ~0

m g
ij
(
− f 0 (∂0Pj − ∂jA0) + fh (∂hPj − ∂jAh)

+ ∂jf
0 1
2
m
~0 ghk x

h
0 x

k
0 + ∂jf

h m
~0 ghk x

k
0 + ∂j f̆

)
∂0i .



Special phase Lie bracket

Theorem: S.p.f. are closed w.r.t. the special phase Lie bracket

[[ f, f́ ]] = {df, df́}+ γ(f ′′).f́ − γ(f́ ′′).f

= Λ(df, df́) + γ(f ′′).f́ − γ(f́ ′′).f .

We see that the special phase Lie bracket is a modification of the
Jacobi bracket used in contact geometry. But here we use only the
time components of f, f́ to unscale the Reeb vector field.

So, we have the Lie algebra of s.p.f. (spe(J1E,R), [[ , ]] ).

Remark: S.p.f. f can be identified with the pair (X[f ], f̆). The
special phase Lie bracket then corresponds to the bracket of pairs[

(X, f̆), (X́,
˘́
f)
]
dA

=
(
[X, X́], X.f̆ − X́.f̆ + dA(X, X́)

)
.



Theorem: For f, f́ ∈ spe(J1E,R) we have

X↑hol
[

[[ f, f́ ]]
]

=
[
X↑hol[f ], X↑hol[f́ ]

]
.

For f, f́ ∈ pro spe(J1E,R) we have

X↑ham
[

[[ f, f́ ]]
]

=
[
X↑ham[f ], X↑ham[f́ ]

]
.

Distinguished subalgebras in the Lie algebra of s.p.f.

The sheaf of s.p.f. with the special Lie bracket is a Lie algebra with
the following subalgebras:

of projectable s.p.f. := pro spe(J1E, IR) :=
{
f | ∂jf 0 = 0

}
.

of time preserving s.p.f. := tim spe(J1E, IR) :=
{
f | ∂λf 0 = 0

}
,

of affine s.p.f. := aff spe(J1E, IR) :=
{
f | f 0 = 0

}
,

of spacetime s.p.f. := map(E, IR) :=
{
f | fλ = 0

}
.



Conserved special phase functions

Conserved phase functions are phase functions such that

γ.f = 0 .

Theorem: The conserved s.p.f. constitute an IR–Lie subalgebra
cns spe(J1E,R) ⊂ spe(J1E,R) and

X↑ham[f ] = X↑hol[f ] .

In coordinates

1) 0 = ∂if
0 ,

2) 0 = m
~0

(
∂0f

0 ghk − f 0 ∂0ghk + f i ∂ighk + ∂hf
i gik + ∂kf

i gih
)
,

3) 0 = ∂hf̆ − f 0 (∂0Ah − ∂hA0) + f i (∂iAh − ∂hAi) + ∂0f
i m
~0 gih ,

4) 0 = ∂0f̆ − f i (∂0Ai − ∂iA0) .

Hence f is projectable and X[f ] is an infinitesimal symmetry of m
~ g.



Phase lift of conserved s.p.f.

cns spe(J1E, IR) ⊂ pro spe(J1E, IR) ⊂ spe(J1E, IR) .

X↑[f ] :=X↑ham[f ] = X↑hol[f ] .

Classical symmetries

Theorem : The IR–Lie algebra of infinitesimal symmetries
X↑ : J1E → TJ1E of Ω is constituted by the phase lifts of conserved
s.p.f.

X↑[f ] : J1E → TJ1E , with f ∈ cns spe(J1E, IR) .

Moreover, the IR–Lie algebra of infinitesimal symmetries of the
cosymplectic structure (dt,Ω) is constituted by the phase lifts of con-
served time preserving s.p.f.



Infinitesimal symmetries of the classical lagrangian

Finally, we are interested in infinitesimal symmetries of the classical
lagrangian L.

Theorem:

LX↑
hol
L = 0 if and only if LX↑

hol
A↑ = 0 .

So, the Lie algebra of infinitesimal symmetries of the classical la-
grangian coinsides with the Lie algebra of infinitesimal symmetries of
the potential of the phase 2-form Ω. But any infinitesimal symmetry
of A↑ is an infinitesimal symmetry of Ω = dA↑. Hence the Lie alge-
bra of infinitesimal symmetries of A↑ is a Lie subalgebra in the Lie
algebra of infinitesimal symmetries of Ω which is generated by the Lie
subalgebra in the Lie algebra of conserved s.p.f..



Theorem: The Lie algebra of infinitesimal symmetries of the classi-
cal lagrangian L is a subalgebra in the Lie algebra of infinitesimal sym-
metries of Ω and is constituted by the subalgebra in cns spe(J1E,R)
given by

df̆ = −d(iX[f ]A) . (A)

So, infinitesimal symmetries of L are generated by s.p.f. (given up
to a constant) of the type

f = f 0 m
~0

1
2 gij x

i
0 x

j
0 + f i m~0 gij x

j
0 − f 0A0 + f iAi ,

where conditions 1) – 4) are satisfied.

sym(L) ⊂ sym(Ω) ⊂ sec(J1E, TJ1E)

?

6 661–1 X↑hol X↑ham

cns spe(J1E,R) ⊂ spe(J1E,R)⊂

6

?
1–1

cns spe(A)(J1E,R)



Theorem: For each f ∈ cns spe(J1E, IR) ⊂ spe(J1E, IR) satisfying
the condition (A) and each critical motion s ∈ sec(T ,E) , the time
function (classical current form)

c[f ](s) := (j1s)
∗c[X[f ]] ∈ map(T , IR) ,

c[f ](s) = f 0 (12 G
0
ij ∂0s

i ∂0s
j − A0) + f i (G0

ij ∂0s
j + Ai)

turns out to be constant.

Remark: Let us note that the critical sections are solutions of the
Euler–Lagrange equations and in the classical case they coincides with
sections satisfying

∂00s
i = γi00 ◦ s = Kp

i
q ∂0s

p ∂0s
q + 2K0

i
p ∂0s

p +K0
i
0 .



4. Covariant Quantum Mechanics

Quantum bundle is a 1–dimensional complex vector bundle over
spacetime

π : Q→ E

Upper quantum bundle is the quantum bundle with extended
base space

π↑ : Q↑ := J1E ×
E
Q→ J1E .

A quantum state is described by a quantum section

Ψ : E → Q .



Quantum objects

1) Hermitian quantum metric is a hermitian metric of Q with
values into vertical spacelike volume forms

hη : E → (Q∗ ⊗Q∗ ⊗ ∧3V ∗E)⊗ C .

2) Upper quantum connection is a linear connection of the
vector bundle π↑ : Q↑ → J1E

Q↑ : Q↑ → T ∗J1E ⊗ TQ↑ ,

such that: a) it is hermitian ∇↑hη = 0 ,
b) it is reducible (Q0

i = 0) ,
c) its curvature is R↑ = −2 iΩ⊗ I↑ .

Coordinate expression

Q↑ = dλ ⊗ ∂λ + di0 ⊗ ∂0i + i (A↑λ d
λ)⊗ I↑ .



Dynamical objects

The hermitian quantum metric hη and the upper quantum connec-
tion Q↑ yield, in a covariant way, all main quantum dynamical objects.
The quantum lagrangian is

L : sec(E,Q)→ sec(E,∧4T ∗E) ,

L(Ψ) := − dt ∧
(
imhη(Ψ, d y∇↑Ψ) + 1

2 ( ~
m ḡ ⊗ hη)(∇̌↑Ψ, ∇̌↑Ψ)

)
,

L(Ψ) = 1
2

(
− ~0

m g
ij ∂iψ̄ ∂jψ + iAλ

0 (ψ̄ ∂λψ − ψ ∂λψ̄) + (2A0 − AiA
i
0)
)
υ0 .

The quantum Poincaré–Cartan form is

Θ[L] :=L + ϑ ∧̄VQL : J1Q→ ∧4T ∗Q ,

Θ[L] = 1
2 i (z̄ dz − z dz̄) ∧ υ00 − 1

2

(~0
m g

ij (z̄i dz + zi dz̄)

+ i Ai
0 (z̄ dz − z dz̄)

)
⊗ υ0j +

(
1
2
~0
m g

ij z̄i zj + (A0 − 1
2 AiA

i
0)z̄ z

)
υ0 ,

where υ0λ := i∂λυ
0.



Further, we get the Schrödinger operator

S(Ψ) := 1
2

(
d y∇↑Ψ + δQ↑

(
Q(Ψ)

))
: sec(E,Q)→ sec(E,T∗ ⊗Q) ,

S0(ψ) =∇0ψ + 1
2

∂0
√
|g|√
|g|

ψ − i 12 ∆0ψ

=∂0ψ − 1
2 i

~0
m g

ij ∂ijψ − (Aj
0 + 1

2 i
~0
m

∂i(g
ij
√
|g|)√

|g|
) ∂jψ

+ 1
2

(∂0√|g|√
|g|
− ∂i(A

i
0

√
|g|)√

|g|
− i (2A0 − AiA

i
0)
)
ψ .

Remark: Let us note that solutions of the S.e. S(Ψ) = 0 coin-
cide with solutions of the E.-L.e. E [L](Ψ) = 0 ((quantum) critical
sections).



Quantum and upper quantum lifts of s.p.f.

We assume the pullback o∗Q↑ = Q[o] and obtain the hermitian
connection on Q. Then we obtain injective morphisms of Lie algebras

Yη : pro spe(J1E, IR)→ sec(Q, TQ) .

Yη[f ] = Q[o]
(
X[f ]

)
+ (i f̆ − 1

2 divηX[f ]) I
= f 0 ∂0 − f i ∂i +

(
i (f̆ + f 0A0 − f iAi)− 1

2 divηX[f ])
)
I .

Y ↑η : pro spe(J1E, IR)→ sec(Q↑, TQ↑) .

Y ↑η[f ] = Q↑
(
X↑hol[f ]

)
+
(
i f̆ − 1

2 divηX[f ]
)
I↑

= f 0 ∂0 − f i ∂i − (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0) ∂

0
i

+
(
i (f̆ + f 0A0 − f iAi)− 1

2 divηX[f ])
)
I↑ .



Quantum symmetries

Theorem: The IR–Lie algebra of infinitesimal symmetries
Y ↑ : Q↑ → TQ↑ of

hη : E → (Q∗ ⊗Q∗)⊗ C , Q↑ : Q↑ → T ∗J1E ⊗ TQ↑

is constituted by the upper quantum lifts of conserved s.p.f.

Y ↑η[f ] : Q↑ → TQ↑ , with f ∈ cns spe(J1E, IR) .

The map

cns spe(J1E, IR)→ sym(hη,Q↑) : f 7→ Y ↑η[f ]

is an isomorphism of IR–Lie algebras.

Remark: Quantum symmetries have the same generators as sym-
metries of the classical cosymplectic 2-form Ω.



Symmetries of the quantum lagrangian

Theorem: Infinitesimal symmetries of L are quantum vector fields
Y = Yη[f ] , with f ∈ cns spe(J1E, IR) .

In other words, they are the quantum vector fields of the type

Y = Yη[f ] = f 0 ∂0 − f i ∂i + i (f̆ + A0 f
0 − Ai f

i) I ,

where the functions f 0 , f i , f̆ ∈ map(E, IR) fulfill conditions

1) 0 = ∂if
0 ,

2) 0 = m
~0

(
∂0f

0 ghk − f 0 ∂0ghk + f i ∂ighk + ∂hf
i gik + ∂kf

i gih
)
,

3) 0 = ∂hf̆ − f 0 (∂0Ah − ∂hA0) + f i (∂iAh − ∂hAi) + ∂0f
i m
~0 gih ,

4) 0 = ∂0f̆ − f i (∂0Ai − ∂iA0) .

Remark: So infinitesimal symmetries of L have the same gener-
ators as infinitesimal symmetries of the quantum structure and the
classical cosymplectic 2-form Ω.



cns spe(J1E) 1–1 -�

1–1

��
�
��*��
����

1–1HH
HHHjHH
H

HHY
sym(hη,Q↑) ⊂ sec(Q↑, TQ↑)

sym(Ω) ⊂ sec(J1E, TJ1E)

sym(L) ⊂ sec(Q, TQ)

6

?

6

?



5. Quantum currents

Quantum current associated with f ∈ pro spe(J1E, IR)

jη[f ] := − iYη 1[f ] Θ[L] ∈ sec(J1Q,∧3T ∗Q) .

The special phase Lie bracket yields a Lie bracket of quantum
currents [

jη[f ] , jη[f́ ]
]

:= jη
[

[[ f , f́ ]]
]
.

Quantum current forms

We define the quantum current form associated with
f ∈ pro spe(J1E, IR) and Ψ ∈ sec(E,Q) to be the spacetime 3–form

jη[f ](Ψ) := (j1Ψ)∗jη[f ] ∈ sec(E,∧3T ∗E) .



As a consequence of the 2nd Noether’s theorem we get

Theorem: For each f ∈ cns spe(J1E, IR) and Ψ ∈ sec(E,Q) which
is a solution of the Schrödinger equation, the associated quantum cur-
rent form

jη[f ](Ψ) ∈ sec(E,∧3T ∗E)

turns out to be closed, i.e.

d
(
jη[f ](Ψ)

)
= 0 .
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