# Compatibility complexes for the Killing equation arXiv:1805.03751 

Igor Khavkine

Institute of Mathematics
Czech Academy of Sciences, Prague

17 Jan 2019
39th Winter School on Geometry and Physics 12-19 Jan 2019, Srní, Czech Republic

## Problem to solve

- Consider a (pseudo-)Riemannian manifold ( $M, g$ ).
- $\nabla_{a}$ - Levi-Civita connection; $R_{a b c d}$ — Riemann tensor of $\nabla_{a}$.
- $K[v]_{a b}=\nabla_{a} v_{b}+\nabla_{b} v_{a}$ - Killing operator.
- The Killing equation $K[v]_{a b}=0$ is an over-determined equation of finite type.
- Given $g$, what is the full compatibility complex of $K[v]_{a b}=0$ ?

$$
T^{*} M \xrightarrow{K} S^{2} T^{*} M \xrightarrow{?} \cdots \xrightarrow{?} \cdots
$$

- Def: $C$ is a compatibility operator for $K$ if $c \circ K=0 \Longrightarrow c=c^{\prime} \circ C$.

$$
\begin{aligned}
& \bullet \xrightarrow{K} \stackrel{C}{ } \text { • }
\end{aligned}
$$

- Complete answer known previously only for constant curvature (Calabi, 1961) and locally symmetric (Gasqui-Goldschmidt, 1983) cases.


## Solution strategy and new results

- Possible solutions:
> General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure) - Reduction to canonical form of a flat connection. $(\checkmark)$


## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure) R Reduction to canonical form of a flat connection. ( $\checkmark$ )


## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure)
- Reduction to canonical form of a flat connection. ( $\checkmark$ )


## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure)
- Reduction to canonical form of a flat connection. ( $\checkmark$ )


## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure)
- Reduction to canonical form of a flat connection. ( $\checkmark$ )
- Updated list of known cases:
- constant curvature $\tilde{g}(\operatorname{dim} M \geq 2): \tilde{R}=\alpha\left(\tilde{g}_{a c} \tilde{g}_{b d}-\tilde{g}_{a d} \tilde{g}_{b c}\right)$
- locally symmetric $\nabla_{a} R_{b c d e}=0$ (not explored after Gasqui-Goldschmidt)

- spherical Schwarzschild-Tangherlini black hole ( $\operatorname{dim} M \geq 4$ ): [arXiv:1805.03751]

$\rightarrow$ rotating Kerr black hole $(\operatorname{dim} M=4)$ : work in progress [arXiv:1803.05341]


## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure)
- Reduction to canonical form of a flat connection. ( $\checkmark$ )
- Updated list of known cases:
- constant curvature $\tilde{g}(\operatorname{dim} M \geq 2): \tilde{R}=\alpha\left(\tilde{g}_{a c} \tilde{g}_{b d}-\tilde{g}_{a d} \tilde{g}_{b c}\right)$
- locally symmetric $\nabla_{a} R_{b c d e}=0$ (not explored after Gasqui-Goldschmidt)
- homogeneous and isotropic FLRW cosmology ( $\operatorname{dim} M \geq 2$ ): [arXiv:1805.03751]

$$
g=-d t^{2}+f(t)^{2} \tilde{g}
$$

- spherical Schwarzschild-Tangherlini black hole (dim M $\geq$ ): [arXiv:1805.03751

- rotating Kerr black hole (dim $M=4$ ): work in progress [arXiv:1803.05341]


## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure)
- Reduction to canonical form of a flat connection. ( $\checkmark$ )
- Updated list of known cases:
- constant curvature $\tilde{g}(\operatorname{dim} M \geq 2): \tilde{R}=\alpha\left(\tilde{g}_{a c} \tilde{g}_{b d}-\tilde{g}_{a d} \tilde{g}_{b c}\right)$
- locally symmetric $\nabla_{a} R_{b c d e}=0$ (not explored after Gasqui-Goldschmidt)
- homogeneous and isotropic FLRW cosmology ( $\operatorname{dim} M \geq 2$ ): [arXiv:1805.03751]

$$
g=-d t^{2}+f(t)^{2} \tilde{g}
$$

- spherical Schwarzschild-Tangherlini black hole ( $\operatorname{dim} M \geq 4$ ): [arXiv:1805.03751]

$$
g=-f d t^{2}+f^{-1} d r^{2}+r^{2} \tilde{g}, \quad f(r)=\alpha-\frac{2 M}{r^{n-3}}-\frac{2 \wedge r^{2}}{(n-1)(n-2)}
$$

$\rightarrow$ rotating Kerr black hole $(\operatorname{dim} M=4):$ work in progress [arXiv:1803.05341]

## Solution strategy and new results

- Possible solutions:
- General Spencer-Goldschmidt theory. (too cumbersome)
- Computer algebra. (not enlightening, breaks special structure)
- Reduction to canonical form of a flat connection. ( $\checkmark$ )
- Updated list of known cases:
- constant curvature $\tilde{g}(\operatorname{dim} M \geq 2): \tilde{R}=\alpha\left(\tilde{g}_{a c} \tilde{g}_{b d}-\tilde{g}_{a d} \tilde{g}_{b c}\right)$
- locally symmetric $\nabla_{a} R_{b c d e}=0$ (not explored after Gasqui-Goldschmidt)
- homogeneous and isotropic FLRW cosmology ( $\operatorname{dim} M \geq 2$ ): [arXiv:1805.03751]

$$
g=-d t^{2}+f(t)^{2} \tilde{g}
$$

- spherical Schwarzschild-Tangherlini black hole ( $\operatorname{dim} M \geq 4$ ): [arXiv:1805.03751]

$$
g=-f d t^{2}+f^{-1} d r^{2}+r^{2} \tilde{g}, \quad f(r)=\alpha-\frac{2 M}{r^{n-3}}-\frac{2 \wedge r^{2}}{(n-1)(n-2)}
$$

- rotating Kerr black hole (dim $M=4$ ): work in progress [arXiv:1803.05341]


## Canonical form for PDEs of finite type

- Our solution strategy:
- reduce the Killing equation $K[v]=0$ to canonical form;
- in canonical form, the full compatibility complex is known;
- convert results back to the original Killing equation.
$\Rightarrow$ The Killing equation $K[v]_{a b}=\nabla_{a} v_{b}+\nabla_{b} v_{a}=0$ is of finite type. There exists an $N<\infty$ such that $v(x), \partial v(x), \ldots, \partial^{N} v(x)$ determines the solution $v$ uniquely on a neighborhood of $x$. It is regular when $\operatorname{dim}(\operatorname{ker} K)$ is locally constant.
- The canonical form for any flat connection on a (possibly new) set of fields $u$ :
- Starting with $\mathbb{D}_{0}:=\mathbb{D}$, define $\mathbb{D}_{p} w=\mathbb{D} \wedge w^{\alpha}$ for any vector valued $p$-form $w^{\alpha}$ Then $\mathbb{D}_{p} \circ \mathbb{D}_{p-1}=0$ is the de Rham complex twisted by $\mathbb{D}$; it is a full compatibility complex.
- The number of components of $u^{\alpha}$ is the number of independent solutions of $K[v]=0(\leq n(n+1) / 2$ in $n$-dim.). This number should be locally constant!


## Canonical form for PDEs of finite type

- Our solution strategy:
- reduce the Killing equation $K[v]=0$ to canonical form;
- in canonical form, the full compatibility complex is known;
- convert results back to the original Killing equation.
- The Killing equation $K[v]_{a b}=\nabla_{a} v_{b}+\nabla_{b} v_{a}=0$ is of finite type. There exists an $N<\infty$ such that $v(x), \partial v(x), \ldots, \partial^{N} v(x)$ determines the solution $v$ uniquely on a neighborhood of $x$. It is regular when $\operatorname{dim}(\operatorname{ker} K)$ is locally constant.
- The canonical form for any regular PDE of finite type is $\mathbb{D} u=0$, where $\mathbb{D}$ is a flat connection on a (possibly new) set of fields $u$ :

$$
\mathbb{D}_{a} u^{\alpha}=\partial_{a} u^{\alpha}+\Gamma_{a}{ }_{\beta}^{\alpha} u^{\beta}=0, \quad \text { where } \quad\left[\mathbb{D}_{a}, \mathbb{D}_{b}\right]=0 .
$$

- Starting with $\mathbb{D}_{0}:=\mathbb{D}$, define $\mathbb{D}_{p} w=\mathbb{D} \wedge w^{\alpha}$ for any vector valued $p$-form $w^{\alpha}$ Then $\mathbb{D}_{n}$ o $\mathbb{D}_{n-1}=0$ is the de Rham complex twisted by $\mathbb{D}$ : it is a full compatibility complex.
- The number of components of $u^{\alpha}$ is the number of independent solutions of $K[v]=0(\leq n(n+1) / 2$ in $n$-dim. $)$. This number should be locallv constant!


## Canonical form for PDEs of finite type

- Our solution strategy:
- reduce the Killing equation $K[v]=0$ to canonical form;
- in canonical form, the full compatibility complex is known;
- convert results back to the original Killing equation.
- The Killing equation $K[v]_{a b}=\nabla_{a} v_{b}+\nabla_{b} v_{a}=0$ is of finite type. There exists an $N<\infty$ such that $v(x), \partial v(x), \ldots, \partial^{N} v(x)$ determines the solution $v$ uniquely on a neighborhood of $x$. It is regular when $\operatorname{dim}(\operatorname{ker} K)$ is locally constant.
- The canonical form for any regular PDE of finite type is $\mathbb{D} u=0$, where $\mathbb{D}$ is a flat connection on a (possibly new) set of fields $u$ :

$$
\mathbb{D}_{a} u^{\alpha}=\partial_{a} u^{\alpha}+\Gamma_{a}{ }_{\beta}^{\alpha} u^{\beta}=0, \quad \text { where } \quad\left[\mathbb{D}_{a}, \mathbb{D}_{b}\right]=0 .
$$

- Starting with $\mathbb{D}_{0}:=\mathbb{D}$, define $\mathbb{D}_{p} w=\mathbb{D} \wedge w^{\alpha}$ for any vector valued $p$-form $w^{\alpha}$. Then $\mathbb{D}_{p} \circ \mathbb{D}_{p-1}=0$ is the de Rham complex twisted by $\mathbb{D}$; it is a full compatibility complex.
$\rightarrow$ The number of components of $u^{\alpha}$ is the number of independent solutions of $K[v]=0(\leq n(n+1) / 2$ in $n$-dim.). This number should be locally constant!


## Canonical form for PDEs of finite type

- Our solution strategy:
- reduce the Killing equation $K[v]=0$ to canonical form;
- in canonical form, the full compatibility complex is known;
- convert results back to the original Killing equation.
- The Killing equation $K[v]_{a b}=\nabla_{a} v_{b}+\nabla_{b} v_{a}=0$ is of finite type. There exists an $N<\infty$ such that $v(x), \partial v(x), \ldots, \partial^{N} v(x)$ determines the solution $v$ uniquely on a neighborhood of $x$. It is regular when $\operatorname{dim}(\operatorname{ker} K)$ is locally constant.
- The canonical form for any regular PDE of finite type is $\mathbb{D} u=0$, where $\mathbb{D}$ is a flat connection on a (possibly new) set of fields $u$ :

$$
\mathbb{D}_{\mathrm{a}} u^{\alpha}=\partial_{a} u^{\alpha}+\Gamma_{a}{ }_{\beta}^{\alpha} u^{\beta}=0, \quad \text { where } \quad\left[\mathbb{D}_{a}, \mathbb{D}_{b}\right]=0 .
$$

- Starting with $\mathbb{D}_{0}:=\mathbb{D}$, define $\mathbb{D}_{p} w=\mathbb{D} \wedge w^{\alpha}$ for any vector valued $p$-form $w^{\alpha}$. Then $\mathbb{D}_{p} \circ \mathbb{D}_{p-1}=0$ is the de Rham complex twisted by $\mathbb{D}$; it is a full compatibility complex.
- The number of components of $u^{\alpha}$ is the number of independent solutions of $K[v]=0(\leq n(n+1) / 2$ in $n$-dim.). This number should be locally constant!


## Remark

The canonical form need not always be a flat connection. It need only be a PDE with a known compatibility complex.
But the twisted de Rham complex $\mathbb{D}_{p}$ is a particularly simple construction.

## Reduction to canonical form

Equations $K[v]=0$ and $\mathbb{D} u=0$ are equivalent only when there are local formulas $v \leftrightarrow u$ that are bijective on solutions:

$$
K\left[V_{0}[u]\right] \propto \mathbb{D} u=V_{1}[D u] .
$$

The basic idea is that $V_{0}[u](x)=\sum_{\alpha} u^{\alpha}(x) \mathbf{v}_{\alpha}(x)$ for a complete set of independent solutions $K\left[\mathbf{v}_{\alpha}\right]=0$. Also,

$$
\begin{aligned}
\mathbb{D} U_{0}[v] & \propto K[v]=U_{1}[K[v]], \\
v-V_{0}\left[U_{0}[v]\right] & \propto K[v]=H_{0}[K[v], \\
u-U_{0}\left[V_{0}[u]\right] & \propto \mathbb{D} u=H_{0}[D u] .
\end{aligned}
$$

The relationships between these differential operators are visually summarized in the following diagram:

## Reduction to canonical form

Equations $K[v]=0$ and $\mathbb{D} u=0$ are equivalent only when there are local formulas $v \leftrightarrow u$ that are bijective on solutions:

$$
K\left[V_{0}[u]\right] \propto \mathbb{D} u=V_{1}[\mathbb{D} u] .
$$

The basic idea is that $V_{0}[u](x)=\sum_{\alpha} u^{\alpha}(x) \mathbf{v}_{\alpha}(x)$ for a complete set of independent solutions $K\left[\mathbf{v}_{\alpha}\right]=0$. Also,

$$
\begin{aligned}
& \mathbb{D} U_{0}[v] \propto K[v]=U_{1}[K[v]], \\
& v-V_{0}\left[U_{0}[v]\right] \propto K[v]=H_{0}[K[v]] \text {, } \\
& u-U_{0}\left[V_{0}[u]\right] \propto \mathbb{D} u=H_{0}^{\prime}[\mathbb{D} u] \text {. }
\end{aligned}
$$

The relationships between these differential operators are visually summarized in the following diagram:

## Reduction to canonical form

Equations $K[v]=0$ and $\mathbb{D} u=0$ are equivalent only when there are local formulas $v \leftrightarrow u$ that are bijective on solutions:

$$
K\left[V_{0}[u]\right] \propto \mathbb{D} u=V_{1}[\mathbb{D} u] .
$$

The basic idea is that $V_{0}[u](x)=\sum_{\alpha} u^{\alpha}(x) \mathbf{v}_{\alpha}(x)$ for a complete set of independent solutions $K\left[\mathbf{v}_{\alpha}\right]=0$. Also,

$$
\begin{aligned}
\mathbb{D} U_{0}[v] & \propto K[v]=U_{1}[K[v]], \\
v-V_{0}\left[U_{0}[v]\right] & \propto K[v]=H_{0}[K[v]], \\
u-U_{0}\left[V_{0}[u]\right] & \propto \mathbb{D} u=H_{0}^{\prime}[\mathbb{D} u] .
\end{aligned}
$$

The relationships between these differential operators are visually summarized in the following diagram:


## Sufficient conditions for completeness

Two complexes of differential operators, $K_{i}$ and $\mathbb{D}_{i}$, are equivalent up to homotopy when the diagram

exists, where the solid arrows commute and the dashed arrows are homotopy corrections.

## Lemma (homotopy equivalence as witness)

Consider an equivalence up to homotopy between complexes $K_{i}$ and $\mathbb{D}_{i}, i \geq 0$. Then, if $\mathbb{D}_{i}$ is a full compatibility complex, then so is $K_{i}$.

## Lifting compatibility operators



## Lemma

After reduction to canonical form:

## Lifting compatibility operators



## Lemma

After reduction to canonical form:
(a) $\mathbb{D}_{1} \circ U_{1}[K[v]]=0$
(b) $\left(\mathrm{id}-K \circ H_{0}-V_{1} \circ U_{1}\right)[K[v]]=0$
the set (a), (b) is complete

## Lifting compatibility operators



## Lemma

After reduction to canonical form:
(a) $\mathbb{D}_{1} \circ U_{1}[K[v]]=0$
(b) $\left(\mathrm{id}-K \circ H_{0}-V_{1} \circ U_{1}\right)[K[v]]=0$
(d) $\exists$ compatible $U_{2}, V_{2}, H_{1}, H_{1}^{\prime}$

## Lifting compatibility operators



## Lemma

After reduction to canonical form:
(a) $\mathbb{D}_{1} \circ U_{1}[K[v]]=0$
(b) $\left(\mathrm{id}-K \circ H_{0}-V_{1} \circ U_{1}\right)[K[v]]=0$
(d) $\exists$ compatible $U_{2}, V_{2}, H_{1}, H_{1}^{\prime}$
(c) the set (a), (b) is complete

## Lifting compatibility operators



## Lemma

After reduction to canonical form:
(a) $\mathbb{D}_{1} \circ U_{1}[K[v]]=0$
(b) $\left(\mathrm{id}-K \circ H_{0}-V_{1} \circ U_{1}\right)[K[v]]=0$
(d) $\exists$ compatible $U_{2}, V_{2}, H_{1}, H_{1}^{\prime}$
(c) the set (a), (b) is complete

## Lemma

When $K_{1}$ and $K_{1}^{\prime}$ can be factored through each other, $K_{1}^{\prime}=U^{\prime} \circ K_{1}$, $K_{1}=U \circ K_{1}^{\prime}$, if one is complete then both are complete.


## Full compatibility complex

- The preceding argument does not depend on $K_{0}$ being of finite type, only on the equivalence between $K_{0}$ and $\mathbb{D}_{0}$, which has a known compatibility operator $\mathbb{D}_{1}$.
$\rightarrow$ Hence, we can iterate the argument (simplifying at each step) to get a full compatibility complex for $K_{0}$, with an explicit equivalence up to homotopy with the de Rham complex twisted by $\mathbb{D}$.
- Because $\mathbb{D}_{\geq n}=0$, we can simplify to $K_{\geq n+1}=0$.


## Full compatibility complex

- The preceding argument does not depend on $K_{0}$ being of finite type, only on the equivalence between $K_{0}$ and $\mathbb{D}_{0}$, which has a known compatibility operator $\mathbb{D}_{1}$.
- Hence, we can iterate the argument (simplifying at each step) to get a full compatibility complex for $K_{0}$, with an explicit equivalence up to homotopy with the de Rham complex twisted by $\mathbb{D}$.
$\Rightarrow$ Because $\mathbb{D}_{\geq n}=0$, we can simplify to $K_{\geq n+1}=0$.


## Full compatibility complex

- The preceding argument does not depend on $K_{0}$ being of finite type, only on the equivalence between $K_{0}$ and $\mathbb{D}_{0}$, which has a known compatibility operator $\mathbb{D}_{1}$.
- Hence, we can iterate the argument (simplifying at each step) to get a full compatibility complex for $K_{0}$, with an explicit equivalence up to homotopy with the de Rham complex twisted by $\mathbb{D}$.
- Because $\mathbb{D}_{\geq n}=0$, we can simplify to $K_{\geq n+1}=0$.


## Example: (A)dS

- The simplest example is of a constant curvature space, identified by

$$
C[g]:=R_{a b c d}[g]-\alpha\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)=0 .
$$

The Calabi complex (reviewed in [arXiv:1409.7212])


$$
K_{2}[r]=3 \nabla_{[a} r_{b c] d e},
$$

$$
K_{i}[b]=(i+1) \nabla_{\left[a_{0}\right.} b_{\left.a_{1} \cdots a_{i}\right] b c} \quad(i \geq 2) .
$$

is already known to be a full compatibility complex. Our method is not necessary, but can reproduce the same result ( $\rightsquigarrow B G G$ construction).
These formulas work in any signature and dimension $n$.

- Lorentzian: Minkowski or (Anti-)de Sitter space with $\Lambda=\frac{(n-1)(n-2)}{2} \alpha$. $\rightarrow$ Riemannian: $n$-sphere $(\alpha>0)$, $n$-dimensional hyperbolic space $(\alpha<0)$.


## Example: (A)dS

- The simplest example is of a constant curvature space, identified by

$$
C[g]:=R_{a b c d}[g]-\alpha\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)=0 .
$$

- The Calabi complex (reviewed in [arXiv:1409.7212])

$$
\begin{aligned}
K_{1}[h]=\dot{C}[h]= & \nabla_{(a} \nabla_{c)} h_{b d}-\nabla_{(b} \nabla_{c)} h_{a d}-\nabla_{(a} \nabla_{d)} h_{b c}+\nabla_{(b} \nabla_{d)} h_{a c} \\
& +\alpha\left(g_{a c} h_{b d}-g_{b c} h_{a d}-g_{a d} h_{b c}+g_{b d} h_{a c}\right), \\
K_{2}[r]= & 3 \nabla_{[a} r_{b c] d e}, \\
\cdots & \\
K_{i}[b]= & (i+1) \nabla_{\left[a_{0}\right.} b_{\left.a_{1} \cdots a_{i}\right] b c} \quad(i \geq 2) .
\end{aligned}
$$

is already known to be a full compatibility complex. Our method is not necessary, but can reproduce the same result ( $\rightsquigarrow$ BGG construction).


## Example: (A)dS

- The simplest example is of a constant curvature space, identified by

$$
C[g]:=R_{a b c d}[g]-\alpha\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)=0
$$

- The Calabi complex (reviewed in [arXiv:1409.7212])

$$
\begin{aligned}
K_{1}[h]=\dot{C}[h]= & \nabla_{(a} \nabla_{c)} h_{b d}-\nabla_{(b} \nabla_{c)} h_{a d}-\nabla_{(a} \nabla_{d)} h_{b c}+\nabla_{(b} \nabla_{d)} h_{a c} \\
& +\alpha\left(g_{a c} h_{b d}-g_{b c} h_{a d}-g_{a d} h_{b c}+g_{b d} h_{a c}\right), \\
K_{2}[r]= & 3 \nabla_{[a} r_{b c] d e}, \\
& \cdots \\
K_{i}[b]= & (i+1) \nabla_{\left[a_{0}\right.} b_{\left.a_{1} \cdots a_{i}\right] b c} \quad(i \geq 2) .
\end{aligned}
$$

is already known to be a full compatibility complex. Our method is not necessary, but can reproduce the same result ( $\rightsquigarrow$ BGG construction).

- These formulas work in any signature and dimension $n$.
- Lorentzian: Minkowski or (Anti-)de Sitter space with $\Lambda=\frac{(n-1)(n-2)}{2} \alpha$.
- Riemannian: $n$-sphere ( $\alpha>0$ ), $n$-dimensional hyperbolic space $(\alpha<0)$.


## Example: FLRW cosmology

- For an ( $n-1$ )-dimensional constant curvature Riemannian metric $\tilde{g}$ with $\tilde{R}[\tilde{g}]_{a b c d}=\alpha\left(\tilde{g}_{a c} \tilde{g}_{b d}-\tilde{g}_{a d} \tilde{g}_{b c}\right)$, let

$$
g=-(d t)^{2}+f^{2}(t) \tilde{g} \quad\left(f^{\prime}(t) \neq 0\right)
$$

- Parametrize $v_{a}=-\boldsymbol{A} f(d t)_{a}+f^{2} \tilde{\boldsymbol{X}}_{a}$ and $h_{a b}=\boldsymbol{p}(d t)_{a b}^{2}+2 f^{2}(d t)_{(a} \tilde{\boldsymbol{Y}}_{b)}+f^{2} \tilde{\boldsymbol{Z}}_{a b}$.
- The Killing operator $h=K[v]$ becomes

$$
\left[\begin{array}{c}
p \\
\tilde{Y} \\
\tilde{Z}
\end{array}\right]=K\left[\begin{array}{c}
A \\
\tilde{\tilde{X}}
\end{array}\right]=\left[\begin{array}{c}
-2(A f)^{\prime} \\
\hline \tilde{X}^{\prime}-f^{-1} \tilde{\nabla} A \\
\tilde{K}[\tilde{X}]+2 A f^{\prime} \tilde{g}
\end{array}\right]=\left[\begin{array}{c|c}
-2 \partial_{t} f & 0 \\
\hline-f^{-1} \tilde{\nabla} & \frac{\partial_{t}}{2 f^{\prime} \tilde{g}}
\end{array}\right]\left[\begin{array}{c}
A \\
\tilde{K}
\end{array}\right],
$$

where $(-)^{\prime}=\partial_{t}(-)$, while $\tilde{\nabla}$ and $\tilde{K}$ come from $\tilde{g}$.

## FLRW: canonical form

- Any solution of $K[v]=0$ has $A=0, \tilde{K}[\tilde{X}]=0$ and $\partial_{t} \tilde{X}=0$.
- There exists an operator $J$ such that $J[K[v]]=A$.
- Since $\mathcal{R}^{\prime}=\partial_{t} R_{a b}{ }^{a b}[g] \neq 0$, we can take

$$
J[h]=\frac{1}{f \mathcal{R}^{\prime}} \dot{\mathcal{R}}[h] .
$$

- Since we know the constant curvature full compatibility complex for $\tilde{K}$, there is no need to fully reduce it to a flat connection.



## Discussion

- A full compatibility complex $K_{i}$ can now be constructed for $K$ on any spacetime of sub-maximal (but uniform) symmetry.
> The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation $K[v]=0$ and putting it into the canonical form of a flat connection.
- The construction outputs a homotopy equivalence of $K_{i}$ with a twisted de Rham complex, which witnesses the completeness of each $K_{i}$.
- Examples of new method: FIRIN and Schwarzschild (including higher dimensions); Kerr (together with Aksteiner, Andersson, Bäckdahl and Whiting).
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman,
- TODO: connect with non-linear version of the question


## Discussion

- A full compatibility complex $K_{i}$ can now be constructed for $K$ on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation $K[v]=0$ and putting it into the canonical form of a flat connection.
- The construction outputs a homotopy equivalence of $K_{i}$ with a twisted de Rham complex, which witnesses the completeness of each $K_{i}$.
- Examples of new method: FLRW and Schwarzschild (including higher dimensions); Kerr (together with Aksteiner, Andersson, Bäckdahl and Whiting)
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman,
- TODO: connect with non-linear version of the question


## Discussion

- A full compatibility complex $K_{i}$ can now be constructed for $K$ on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation $K[v]=0$ and putting it into the canonical form of a flat connection.
- The construction outputs a homotopy equivalence of $K_{i}$ with a twisted de Rham complex, which witnesses the completeness of each $K_{i}$.
- Examples of new method: FLRW and Schwarzschild (including higher dimensions); Kerr (together with Aksteiner, Andersson, Bäckdahl and Whiting).
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman
- TODO: connect with non-linear version of the question


## Discussion

- A full compatibility complex $K_{i}$ can now be constructed for $K$ on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation $K[v]=0$ and putting it into the canonical form of a flat connection.
- The construction outputs a homotopy equivalence of $K_{i}$ with a twisted de Rham complex, which witnesses the completeness of each $K_{i}$.
- Examples of new method: FLRW and Schwarzschild (including higher dimensions); Kerr (together with Aksteiner, Andersson, Bäckdahl and Whiting).
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman, ...
- TODO: connect with non-linear version of the question


## Discussion

- A full compatibility complex $K_{i}$ can now be constructed for $K$ on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation $K[v]=0$ and putting it into the canonical form of a flat connection.
- The construction outputs a homotopy equivalence of $K_{i}$ with a twisted de Rham complex, which witnesses the completeness of each $K_{i}$.
- Examples of new method: FLRW and Schwarzschild (including higher dimensions); Kerr (together with Aksteiner, Andersson, Bäckdahl and Whiting).
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman, ...
- TODO: connect with non-linear version of the question


## Thank you for your attention!

