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Motivation

Geometry - cohomology of sheaves of sections Banach bundles
(Illusie, Rohrl, Lempert, Kim)

Determining of cohomology by kernel of Laplacians (harmonic
elements)

Non-locality of Quantum Theory – EPR-paradox in Copenhagen
interpretation (at least)

Partial Inversions (related e.g. to Lippmann-Schwinger equation in
QM-scattering theory)
|ψ〉 = |φ〉+ (∆− E ± ıǫ Id)−1 |ψ〉
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Classical Hodge theory

Suppose

1) M is a compact manifold, qi : F
i → M, i ∈ Z, is sequence of

finite rank vector bundles equipped with a smoothly varying
functions hi of hermitian products on each fiber
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1) M is a compact manifold, qi : F
i → M, i ∈ Z, is sequence of

finite rank vector bundles equipped with a smoothly varying
functions hi of hermitian products on each fiber

2) Smooth functions with values in F i (sections of E i ) have a
pre-Hilbert space topology
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∫

x∈M
hi (s(x), t(x))|volg (x)| is a hermitian inner

product on smooth sections
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Classical Hodge theory

Suppose

1) M is a compact manifold, qi : F
i → M, i ∈ Z, is sequence of

finite rank vector bundles equipped with a smoothly varying
functions hi of hermitian products on each fiber

2) Smooth functions with values in F i (sections of E i ) have a
pre-Hilbert space topology
(s, t) =

∫

x∈M
hi (s(x), t(x))|volg (x)| is a hermitian inner

product on smooth sections

3) complex of differential operators (not necessary de Rham
complex) di : C

∞(F i ) → C∞(F i+1). Complex is elliptic means
- symbol of ∆i is isomorphism out of the zero section of T ∗M,

where ∆i = d∗
i di + di−1d

∗
i−1 (Laplacians)
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Hodge decomposition theorem

Theorem (deRham, Hodge, Fredholm, Weyl): Let (C∞(F i ), di )i be
an elliptic complex of pseudodifferential operators on finite rank
vector bundles (qi : F

i → M)i over a compact manifold M. Then
1) C∞(F i ) ≃ Im di−1 ⊕ Imd∗

i ⊕ Ker∆i (=‘Hodge theory holds’)
2) H i (E •) ≃ Ker∆i and they are finite dimensional.
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Hodge decomposition theorem

Theorem (deRham, Hodge, Fredholm, Weyl): Let (C∞(F i ), di )i be
an elliptic complex of pseudodifferential operators on finite rank
vector bundles (qi : F

i → M)i over a compact manifold M. Then
1) C∞(F i ) ≃ Im di−1 ⊕ Imd∗

i ⊕ Ker∆i (=‘Hodge theory holds’)
2) H i (E •) ≃ Ker∆i and they are finite dimensional.

Im di−1 ⊂ C∞(E i ) are closed

Cohomology groups are Hausdorff



Hodge theory in additive categories Hodge Theory for pre-Hilbert spaces Hodge theory for complexes of C∗-modules

Dagger categories

Dagger category = category C with a dagger functor † which is a
contravariant and idempotent endofunctor on C which is identity on
objects (preserves objects, reverse direction of morphisms and
applied twice it is identity)

Examples:

Hilbert spaces: objects = Hilbert spaces, morphisms = continuous
linear maps, and † = the adjoint of maps
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applied twice it is identity)

Examples:

Hilbert spaces: objects = Hilbert spaces, morphisms = continuous
linear maps, and † = the adjoint of maps

Bord-n category: objects = smooth oriented n-dimensional mnflds,
morphisms between objects M a N = an oriented (n + 1)-mnfld L

which bords on M and N, and † = orientation reversion of L
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Dagger categories

Dagger category = category C with a dagger functor † which is a
contravariant and idempotent endofunctor on C which is identity on
objects (preserves objects, reverse direction of morphisms and
applied twice it is identity)

Examples:

Hilbert spaces: objects = Hilbert spaces, morphisms = continuous
linear maps, and † = the adjoint of maps

Bord-n category: objects = smooth oriented n-dimensional mnflds,
morphisms between objects M a N = an oriented (n + 1)-mnfld L

which bords on M and N, and † = orientation reversion of L

TQFT is a functor from a bord-n category to the monoidal tensor
category over a fixed topological vector space
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Pseudoinverses on additive dagger categories

Let C be an additive category (finite two-sided products of objects
exist, each set of morphism is an abelian group and compositions
are bilinear with respect to the abelian structure + : e.g.,
h ◦ (f + g) = h ◦ f + h ◦ g) with dagger †



Hodge theory in additive categories Hodge Theory for pre-Hilbert spaces Hodge theory for complexes of C∗-modules

Pseudoinverses on additive dagger categories

Let C be an additive category (finite two-sided products of objects
exist, each set of morphism is an abelian group and compositions
are bilinear with respect to the abelian structure + : e.g.,
h ◦ (f + g) = h ◦ f + h ◦ g) with dagger †

We say that a complex (E i , di )i in C is Green complex if for

∆i = d
†
i di + di−1d

†
i−1, there are morphisms gi and pi in C such

that IdE i = gi∆i + pi = ∆igi + pi , dipi = 0 and d
†
i−1pi = 0.

Theorem (S. Krysl): If (E i , di )i is a Green complex in an additive
dagger category, then pi and the pseudoinverses gi are morphisms
of the complex, i.e., gi+1di = digi .
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Pseudoinverses on additive dagger categories

Let C be an additive category (finite two-sided products of objects
exist, each set of morphism is an abelian group and compositions
are bilinear with respect to the abelian structure + : e.g.,
h ◦ (f + g) = h ◦ f + h ◦ g) with dagger †

We say that a complex (E i , di )i in C is Green complex if for

∆i = d
†
i di + di−1d

†
i−1, there are morphisms gi and pi in C such

that IdE i = gi∆i + pi = ∆igi + pi , dipi = 0 and d
†
i−1pi = 0.

Theorem (S. Krysl): If (E i , di )i is a Green complex in an additive
dagger category, then pi and the pseudoinverses gi are morphisms
of the complex, i.e., gi+1di = digi .

∆i are also morphism of complexes
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Hodge theory in additive dagger categories

Definition: We say that the Hodge theory holds for a complex
E = (E i , di )i∈Z in an additive dagger category if

E i = Im di−1 ⊕ Im d∗
i ⊕ Ker∆i

holds for any i ∈ Z.
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Definition: We say that the Hodge theory holds for a complex
E = (E i , di )i∈Z in an additive dagger category if

E i = Im di−1 ⊕ Im d∗
i ⊕ Ker∆i

holds for any i ∈ Z.

Necessarily the images and kernels of di and ∆i exist (for a
complex for which the Hodge theory holds).
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Hodge theory for pre-Hilbert spaces

C - category of pre-Hilbert spaces and adjointable (⇒ continuous
and linear) maps
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Hodge theory for pre-Hilbert spaces

C - category of pre-Hilbert spaces and adjointable (⇒ continuous
and linear) maps

Theorem (S. Krysl [SK1]): Let E • = (E i , di )i be a complex in the
category of pre-Hilbert spaces and adjointable maps. If E • is
Green, its cohomology groups are topologically isomorphic to
Ker∆i , and if moreover maps pi are self-adjoint, the Hodge
theory holds for the complex.
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Hodge theory for pre-Hilbert spaces

C - category of pre-Hilbert spaces and adjointable (⇒ continuous
and linear) maps

Theorem (S. Krysl [SK1]): Let E • = (E i , di )i be a complex in the
category of pre-Hilbert spaces and adjointable maps. If E • is
Green, its cohomology groups are topologically isomorphic to
Ker∆i , and if moreover maps pi are self-adjoint, the Hodge
theory holds for the complex.

Theorem (S. Krysl [SK2]): Let E • = (E i , di )i be a complex in the
category of Hilbert spaces and adjointable maps. Then E • is a
Green complex with self-adjoint maps pi if and only if the Hodge
theory holds for it.
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Hilbert C ∗-modules

Generalization of Hilbert spaces

1) (R , || ||, ∗) a C ∗-algebra, i.e., R is associative algebra over
complex numbers, || || is a norm satisfying submultiplicativity
and ∗ is an linear idempotent map such that ||aa∗|| = ||a||2

and (R , || ||) is complete
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Hilbert C ∗-modules

Generalization of Hilbert spaces

1) (R , || ||, ∗) a C ∗-algebra, i.e., R is associative algebra over
complex numbers, || || is a norm satisfying submultiplicativity
and ∗ is an linear idempotent map such that ||aa∗|| = ||a||2

and (R , || ||) is complete

2) R+ = {a| a = a∗ and sp(a) ⊂ [0,∞)} where
sp(a) = {λ ∈ C | a− λ1 does not have inverse}
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Hilbert C ∗-modules

Generalization of Hilbert spaces

1) (R , || ||, ∗) a C ∗-algebra, i.e., R is associative algebra over
complex numbers, || || is a norm satisfying submultiplicativity
and ∗ is an linear idempotent map such that ||aa∗|| = ||a||2

and (R , || ||) is complete

2) R+ = {a| a = a∗ and sp(a) ⊂ [0,∞)} where
sp(a) = {λ ∈ C | a− λ1 does not have inverse}

3) Hilbert R-module = (H, (, )) is complex vector space which
is a right R-module and (, ) : H × H → R is R-sesquilinear,
hermitian ((u, v) = (v , u)∗), positive definite ((v , v) ∈ R+ and
(v , v) = 0 implies v = 0) and (H, | |) is complete, where
|v | =

√

||(v , v)|| ∈ R
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Closed images of Laplacians implies Hausdorff cohomologies

Hilbert C ∗-bundles = Banach bundles with fibers a fixed Hilbert
C ∗-module H, and transition maps map into AutC∗(H) - the
C ∗-automorphism group H (linear bijection with T (hr) = [T (h)]r)
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Finitely generated projective Hilbert C ∗-bundle = the fiber is
finitely generated and projective
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Projective = whenever H is embedded into H ′, H ′ = H ⊕ H ′′, i.e.,
H ′ splits orthogonally
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Elliptic complexes of Hilbert C ∗-bundles

Theorem (S. Krysl): Let (qi : F
i → M)i be a sequence of finitely

generated projective C ∗-bundles over a compact manifold M and
(C∞(F i ), di )i be an elliptic complex of C ∗-invariant pseudodiff.
operators whose Laplacians are closed maps. Then the Hodge

theory holds for the complex, and complexes’ cohomology groups
are finitely generated projective Hilbert C ∗-modules.
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Elliptic complexes of Hilbert C ∗-bundles

Theorem (S. Krysl): Let (qi : F
i → M)i be a sequence of finitely

generated projective C ∗-bundles over a compact manifold M and
(C∞(F i ), di )i be an elliptic complex of C ∗-invariant pseudodiff.
operators whose Laplacians are closed maps. Then the Hodge

theory holds for the complex, and complexes’ cohomology groups
are finitely generated projective Hilbert C ∗-modules.

Kondrachev embedding is not available. Proof is based on
‘C ∗-elliptic regularity’ (Solovyov, Troitsky [Troi], Mishchenko,
Fomenko [MF], Schick [Sch], Krysl [SK1]).
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Elliptic complexes of Hilbert C ∗-bundles

Theorem (S. Krysl): Let (qi : F
i → M)i be a sequence of finitely

generated projective C ∗-bundles over a compact manifold M and
(C∞(F i ), di )i be an elliptic complex of C ∗-invariant pseudodiff.
operators whose Laplacians are closed maps. Then the Hodge

theory holds for the complex, and complexes’ cohomology groups
are finitely generated projective Hilbert C ∗-modules.

Kondrachev embedding is not available. Proof is based on
‘C ∗-elliptic regularity’ (Solovyov, Troitsky [Troi], Mishchenko,
Fomenko [MF], Schick [Sch], Krysl [SK1]).

Assumption on closed images is ’hard’ to verify in specific cases.
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Algebra of compact operators of a Hilbert space

If H is a Hilbert space, and R = K (H) is its C ∗-algebra of compact
operators, than Laplacians’ images are closed.
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Algebra of compact operators of a Hilbert space

If H is a Hilbert space, and R = K (H) is its C ∗-algebra of compact
operators, than Laplacians’ images are closed.

Theorem (S. Krysl, J. Geom. Phys.): Let (qi : F
i → M)i be finitely

generated projective K (H)-bundles over compact manifold M, and
E • = (C∞(F i ), di )i be an elliptic complex of K (H)-invariant
pseudodiff. operators. Then the Hodge theory holds for the complex
and its cohomology groups are finitely generated projective Hilbert
C ∗-modules and H i (E •) are finitely generated and projective over
K (H).
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Algebra of compact operators of a Hilbert space

If H is a Hilbert space, and R = K (H) is its C ∗-algebra of compact
operators, than Laplacians’ images are closed.

Theorem (S. Krysl, J. Geom. Phys.): Let (qi : F
i → M)i be finitely

generated projective K (H)-bundles over compact manifold M, and
E • = (C∞(F i ), di )i be an elliptic complex of K (H)-invariant
pseudodiff. operators. Then the Hodge theory holds for the complex
and its cohomology groups are finitely generated projective Hilbert
C ∗-modules and H i (E •) are finitely generated and projective over
K (H).

Underlying result Bakić, Guljaš [BG] (‘rigidity’ of K (H)-modules),
and a transfer theorem from Hilbert to pre-Hilbert spaces [SK3].
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Example from Spin symplectic geometry

(M2n, ω) symplectic manifold, Mp(2n,R) double cover of the
symplectic group (metaplectic group), S the complex
Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert
space H = L2(Cn), S the Shale–Weil bundle induced by S to the
principal bundle of symplectic frames on M.



Hodge theory in additive categories Hodge Theory for pre-Hilbert spaces Hodge theory for complexes of C∗-modules

Example from Spin symplectic geometry

(M2n, ω) symplectic manifold, Mp(2n,R) double cover of the
symplectic group (metaplectic group), S the complex
Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert
space H = L2(Cn), S the Shale–Weil bundle induced by S to the
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Dixmier–Douady: Global trivializations of S exist.
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Example from Spin symplectic geometry

(M2n, ω) symplectic manifold, Mp(2n,R) double cover of the
symplectic group (metaplectic group), S the complex
Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert
space H = L2(Cn), S the Shale–Weil bundle induced by S to the
principal bundle of symplectic frames on M.

Dixmier–Douady: Global trivializations of S exist.

=⇒ product connection ∇ on S

On S i =
∧i

T ∗M ⊗ S, d∇
• exterior covariant derivatives (“aka”

twisted deRham ops) associated to ∇ and de Rham differential

Covariant derivatives dFed
i induced to S i by a symplectic (Fedosov)

connection ∇Fed need not be pseudodiff. K (H)-operators.
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Cohomology of symplectic spinors

Theorem (S. Krysl [SK–CMP]): If M is compact than for d∇
• the

Hodge theory holds, i.e., C∞(S i ) ≃ Im d∇
i−1 ⊕ Im d∇

i

∗
⊕ Ker∆∇

i .

Further, the cohomological groups are K (H)-isomorphic to
Hk
deRham(M)⊗ H, and the images of d∇

i and of the Laplacians ∆∇
i

are closed spaces.
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