Hodge theory, associated bundles and C^* -modules

Svatopluk Krýsl

Charles University Prague

Winter School of Geometry and Physics Srní, January 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Hodge theory in additive categories
 Hodge Theory for pre-Hilbert spaces
 Hodge theory for complexes of C*-modules

 000000
 00
 0000000

Motivation

Geometry - cohomology of sheaves of sections Banach bundles (Illusie, Rohrl, Lempert, Kim)

Determining of cohomology by kernel of Laplacians (harmonic elements)

Non-locality of Quantum Theory – EPR-paradox in Copenhagen interpretation (at least)

Partial Inversions (related e.g. to Lippmann-Schwinger equation in QM-scattering theory) $|\psi\rangle = |\phi\rangle + (\Delta - E \pm i\epsilon \operatorname{Id})^{-1} |\psi\rangle$

1 Hodge theory in additive categories

2 Hodge Theory for pre-Hilbert spaces

3 Hodge theory for complexes of C*-modules



Classical Hodge theory

Suppose

M is a compact manifold, q_i : Fⁱ → M, i ∈ Z, is sequence of finite rank vector bundles equipped with a smoothly varying functions h_i of hermitian products on each fiber

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Classical Hodge theory

Suppose

- M is a compact manifold, q_i : Fⁱ → M, i ∈ Z, is sequence of finite rank vector bundles equipped with a smoothly varying functions h_i of hermitian products on each fiber
- Smooth functions with values in Fⁱ (sections of Eⁱ) have a pre-Hilbert space topology
 (s, t) = ∫_{x∈M} h_i(s(x), t(x))|vol_g(x)| is a hermitian inner product on smooth sections

Classical Hodge theory

Suppose

- M is a compact manifold, q_i : Fⁱ → M, i ∈ Z, is sequence of finite rank vector bundles equipped with a smoothly varying functions h_i of hermitian products on each fiber
- Smooth functions with values in Fⁱ (sections of Eⁱ) have a pre-Hilbert space topology
 (s, t) = ∫_{x∈M} h_i(s(x), t(x))|vol_g(x)| is a hermitian inner product on smooth sections
- 3) complex of differential operators (not necessary de Rham complex) $d_i : C^{\infty}(F^i) \to C^{\infty}(F^{i+1})$. Complex is *elliptic* means - symbol of Δ_i is isomorphism out of the zero section of T^*M , where $\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^*$ (Laplacians)

Hodge decomposition theorem

Theorem (deRham, Hodge, Fredholm, Weyl): Let $(\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of pseudodifferential operators on finite rank vector bundles $(q_i : F^i \to M)_i$ over a compact manifold M. Then 1) $\mathcal{C}^{\infty}(F^i) \simeq \operatorname{Im} d_{i-1} \oplus \operatorname{Im} d_i^* \oplus \operatorname{Ker} \Delta_i$ (='Hodge theory holds') 2) $H^i(E^{\bullet}) \simeq \operatorname{Ker} \Delta_i$ and they are finite dimensional.

Hodge decomposition theorem

Theorem (deRham, Hodge, Fredholm, Weyl): Let $(\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of pseudodifferential operators on finite rank vector bundles $(q_i : F^i \to M)_i$ over a compact manifold M. Then 1) $\mathcal{C}^{\infty}(F^i) \simeq \operatorname{Im} d_{i-1} \oplus \operatorname{Im} d_i^* \oplus \operatorname{Ker} \Delta_i$ (='Hodge theory holds') 2) $H^i(E^{\bullet}) \simeq \operatorname{Ker} \Delta_i$ and they are finite dimensional.

 $\operatorname{\mathsf{Im}} d_{i-1} \subset \mathcal{C}^\infty(E^i)$ are closed

Hodge decomposition theorem

Theorem (deRham, Hodge, Fredholm, Weyl): Let $(\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of pseudodifferential operators on finite rank vector bundles $(q_i : F^i \to M)_i$ over a compact manifold M. Then 1) $\mathcal{C}^{\infty}(F^i) \simeq \operatorname{Im} d_{i-1} \oplus \operatorname{Im} d_i^* \oplus \operatorname{Ker} \Delta_i$ (='Hodge theory holds') 2) $H^i(E^{\bullet}) \simeq \operatorname{Ker} \Delta_i$ and they are finite dimensional.

 $\operatorname{\mathsf{Im}} d_{i-1} \subset \mathcal{C}^\infty(E^i)$ are closed

Cohomology groups are Hausdorff

 Hodge theory in additive categories
 Hodge Theory for pre-Hilbert spaces
 Hodge theory for complexes of C*-modules

 000000
 00
 0000000

Dagger categories

Dagger category = category \mathfrak{C} with a *dagger functor* \dagger which is a contravariant and idempotent endofunctor on \mathfrak{C} which is identity on objects (preserves objects, reverse direction of morphisms and applied twice it is identity)

Examples:

Hilbert spaces: objects = Hilbert spaces, morphisms = continuous linear maps, and \dagger = the adjoint of maps

Dagger categories

Dagger category = category \mathfrak{C} with a *dagger functor* \dagger which is a contravariant and idempotent endofunctor on \mathfrak{C} which is identity on objects (preserves objects, reverse direction of morphisms and applied twice it is identity)

Examples:

Hilbert spaces: objects = Hilbert spaces, morphisms = continuous linear maps, and \dagger = the adjoint of maps

Bord-*n* category: objects = smooth oriented *n*-dimensional mnflds, morphisms between objects M a N = an oriented (n + 1)-mnfld L which bords on M and N, and \dagger = orientation reversion of L

Dagger categories

Dagger category = category \mathfrak{C} with a *dagger functor* \dagger which is a contravariant and idempotent endofunctor on \mathfrak{C} which is identity on objects (preserves objects, reverse direction of morphisms and applied twice it is identity)

Examples:

Hilbert spaces: objects = Hilbert spaces, morphisms = continuous linear maps, and \dagger = the adjoint of maps

Bord-*n* category: objects = smooth oriented *n*-dimensional mnflds, morphisms between objects M a N = an oriented (n + 1)-mnfld L which bords on M and N, and \dagger = orientation reversion of L

TQFT is a functor from a bord-*n* category to the monoidal tensor category over a fixed topological vector space

Pseudoinverses on additive dagger categories

Let \mathfrak{C} be an *additive category* (finite two-sided products of objects exist, each set of morphism is an abelian group and compositions are bilinear with respect to the abelian structure +: e.g., $h \circ (f + g) = h \circ f + h \circ g$) with *dagger* \dagger

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Hodge theory in additive categories
 Hodge Theory for pre-Hilbert spaces
 Hodge theory for complexes of C*-modules

 000000
 00
 000000

Pseudoinverses on additive dagger categories

Let \mathfrak{C} be an *additive category* (finite two-sided products of objects exist, each set of morphism is an abelian group and compositions are bilinear with respect to the abelian structure +: e.g., $h \circ (f + g) = h \circ f + h \circ g$) with *dagger* \dagger

We say that a complex $(E^i, d_i)_i$ in \mathfrak{C} is *Green complex* if for $\Delta_i = d_i^{\dagger} d_i + d_{i-1} d_{i-1}^{\dagger}$, there are morphisms g_i and p_i in \mathfrak{C} such that $Id_{E^i} = g_i \Delta_i + p_i = \Delta_i g_i + p_i$, $d_i p_i = 0$ and $d_{i-1}^{\dagger} p_i = 0$.

Theorem (S. Krysl): If $(E^i, d_i)_i$ is a Green complex in an additive dagger category, then p_i and the pseudoinverses g_i are morphisms of the complex, i.e., $g_{i+1}d_i = d_ig_i$.

 Hodge theory in additive categories
 Hodge Theory for pre-Hilbert spaces
 Hodge theory for complexes of C*-modules

 000000
 00
 000000

Pseudoinverses on additive dagger categories

Let \mathfrak{C} be an *additive category* (finite two-sided products of objects exist, each set of morphism is an abelian group and compositions are bilinear with respect to the abelian structure +: e.g., $h \circ (f + g) = h \circ f + h \circ g$) with *dagger* \dagger

We say that a complex $(E^i, d_i)_i$ in \mathfrak{C} is *Green complex* if for $\Delta_i = d_i^{\dagger} d_i + d_{i-1} d_{i-1}^{\dagger}$, there are morphisms g_i and p_i in \mathfrak{C} such that $Id_{E^i} = g_i \Delta_i + p_i = \Delta_i g_i + p_i$, $d_i p_i = 0$ and $d_{i-1}^{\dagger} p_i = 0$.

Theorem (S. Krysl): If $(E^i, d_i)_i$ is a Green complex in an additive dagger category, then p_i and the pseudoinverses g_i are morphisms of the complex, i.e., $g_{i+1}d_i = d_ig_i$.

 Δ_i are also morphism of complexes

Hodge theory in additive dagger categories

Definition: We say that the Hodge theory holds for a complex $E = (E^i, d_i)_{i \in \mathbb{Z}}$ in an additive dagger category if

 $E^i = \operatorname{Im} d_{i-1} \oplus \operatorname{Im} d_i^* \oplus \operatorname{Ker} \Delta_i$

holds for any $i \in \mathbb{Z}$.

Hodge theory in additive dagger categories

Definition: We say that the Hodge theory holds for a complex $E = (E^i, d_i)_{i \in \mathbb{Z}}$ in an additive dagger category if

 $E^i = \operatorname{Im} d_{i-1} \oplus \operatorname{Im} d_i^* \oplus \operatorname{Ker} \Delta_i$

holds for any $i \in \mathbb{Z}$.

Necessarily the images and kernels of d_i and Δ_i exist (for a complex for which the Hodge theory holds).

Hodge theory in additive dagger categories

Definition: We say that the Hodge theory holds for a complex $E = (E^i, d_i)_{i \in \mathbb{Z}}$ in an additive dagger category if

 $E^i = \operatorname{Im} d_{i-1} \oplus \operatorname{Im} d_i^* \oplus \operatorname{Ker} \Delta_i$

holds for any $i \in \mathbb{Z}$.

Necessarily the images and kernels of d_i and Δ_i exist (for a complex for which the Hodge theory holds).

1 Hodge theory in additive categories

2 Hodge Theory for pre-Hilbert spaces

3 Hodge theory for complexes of C*-modules

 $\begin{array}{ccc} \text{Hodge theory in additive categories} & \text{Hodge Theory for pre-Hilbert spaces} & \text{Hodge theory for complexes of C^*-modules} \\ \text{occoso} & \text{occoso} & \text{occoso} \\ \end{array}$

Hodge theory for pre-Hilbert spaces

 ${\mathfrak C}$ - category of pre-Hilbert spaces and adjointable (\Rightarrow continuous and linear) maps

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

 $\begin{array}{ccc} \text{Hodge theory in additive categories} & \text{Hodge Theory for pre-Hilbert spaces} & \text{Hodge theory for complexes of C^*-modules} \\ \text{occoso} & \text{oo} & \text{occoso} & \text{occoso} \\ \end{array}$

Hodge theory for pre-Hilbert spaces

 $\mathfrak C$ - category of pre-Hilbert spaces and adjointable (\Rightarrow continuous and linear) maps

Theorem (S. Krysl [SK1]): Let $E^{\bullet} = (E^i, d_i)_i$ be a complex in the category of **pre-Hilbert** spaces and adjointable maps. If E^{\bullet} is Green, its cohomology groups are topologically isomorphic to Ker Δ_i , and **if moreover** maps p_i are self-adjoint, the Hodge theory holds for the complex.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\begin{array}{ccc} \text{Hodge theory in additive categories} & \text{Hodge Theory for pre-Hilbert spaces} & \text{Hodge theory for complexes of C^*-modules} \\ \text{occoso} & \text{oo} & \text{occoso} & \text{occoso} \\ \end{array}$

Hodge theory for pre-Hilbert spaces

 $\mathfrak C$ - category of pre-Hilbert spaces and adjointable (\Rightarrow continuous and linear) maps

Theorem (S. Krysl [SK1]): Let $E^{\bullet} = (E^i, d_i)_i$ be a complex in the category of **pre-Hilbert** spaces and adjointable maps. If E^{\bullet} is Green, its cohomology groups are topologically isomorphic to Ker Δ_i , and **if moreover** maps p_i are self-adjoint, the Hodge theory holds for the complex.

Theorem (S. Krysl [SK2]): Let $E^{\bullet} = (E^i, d_i)_i$ be a complex in the category of **Hilbert spaces** and adjointable maps. Then E^{\bullet} is a Green complex with self-adjoint maps p_i if and only if the Hodge theory holds for it.

1 Hodge theory in additive categories

2 Hodge Theory for pre-Hilbert spaces

3 Hodge theory for complexes of C*-modules

Hilbert C^* -modules

Generalization of Hilbert spaces

 (R, || ||, *) a C*-algebra, i.e., R is associative algebra over complex numbers, || || is a norm satisfying submultiplicativity and * is an linear idempotent map such that ||aa*|| = ||a||² and (R, || ||) is complete

Hilbert C*-modules

Generalization of Hilbert spaces

 (R, || ||, *) a C*-algebra, i.e., R is associative algebra over complex numbers, || || is a norm satisfying submultiplicativity and * is an linear idempotent map such that ||aa*|| = ||a||² and (R, || ||) is complete

2) $R^+ = \{a | a = a^* \text{ and } \operatorname{sp}(a) \subset [0, \infty)\}$ where $\operatorname{sp}(a) = \{\lambda \in C | a - \lambda 1 \text{ does not have inverse}\}$

Hilbert C*-modules

Generalization of Hilbert spaces

 (R, || ||, *) a C*-algebra, i.e., R is associative algebra over complex numbers, || || is a norm satisfying submultiplicativity and * is an linear idempotent map such that ||aa*|| = ||a||² and (R, || ||) is complete

2)
$$R^+ = \{a | a = a^* \text{ and } \operatorname{sp}(a) \subset [0, \infty)\}$$
 where
 $\operatorname{sp}(a) = \{\lambda \in C | a - \lambda 1 \text{ does not have inverse}\}$

3) Hilbert *R*-module = (H, (,)) is complex vector space which is a right *R*-module and $(,) : H \times H \rightarrow R$ is *R*-sesquilinear, hermitian $((u, v) = (v, u)^*)$, positive definite $((v, v) \in R^+$ and (v, v) = 0 implies v = 0) and (H, ||) is complete, where $|v| = \sqrt{||(v, v)||} \in \mathbb{R}$

Closed images of Laplacians implies Hausdorff cohomologies

Hilbert C^* -bundles = Banach bundles with fibers a fixed Hilbert C^* -module H, and transition maps map into $\operatorname{Aut}_{C^*}(H)$ - the C^* -automorphism group H (linear bijection with T(hr) = [T(h)]r)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Closed images of Laplacians implies Hausdorff cohomologies

Hilbert C^* -bundles = Banach bundles with fibers a fixed Hilbert C^* -module H, and transition maps map into $\operatorname{Aut}_{C^*}(H)$ - the C^* -automorphism group H (linear bijection with T(hr) = [T(h)]r)

Finitely generated projective Hilbert C^* -bundle = the fiber is finitely generated and projective

Closed images of Laplacians implies Hausdorff cohomologies

Hilbert C^* -bundles = Banach bundles with fibers a fixed Hilbert C^* -module H, and transition maps map into $\operatorname{Aut}_{C^*}(H)$ - the C^* -automorphism group H (linear bijection with T(hr) = [T(h)]r)

Finitely generated projective Hilbert C^* -bundle = the fiber is finitely generated and projective

Finitely generated = there exists $h_i \in H$, i = 1, ..., m such that each $h = \sum_{i=1}^{m} h_i r_i$, $r_i \in R$

Closed images of Laplacians implies Hausdorff cohomologies

Hilbert C^* -bundles = Banach bundles with fibers a fixed Hilbert C^* -module H, and transition maps map into $\operatorname{Aut}_{C^*}(H)$ - the C^* -automorphism group H (linear bijection with T(hr) = [T(h)]r)

Finitely generated projective Hilbert C^* -bundle = the fiber is finitely generated and projective

Finitely generated = there exists $h_i \in H$, i = 1, ..., m such that each $h = \sum_{i=1}^{m} h_i r_i$, $r_i \in R$

Projective = whenever *H* is embedded into H', $H' = H \oplus H''$, i.e., *H'* splits orthogonally

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Closed images of Laplacians implies Hausdorff cohomologies

Hilbert C^* -bundles = Banach bundles with fibers a fixed Hilbert C^* -module H, and transition maps map into $\operatorname{Aut}_{C^*}(H)$ - the C^* -automorphism group H (linear bijection with T(hr) = [T(h)]r)

Finitely generated projective Hilbert C^* -bundle = the fiber is finitely generated and projective

Finitely generated = there exists $h_i \in H$, i = 1, ..., m such that each $h = \sum_{i=1}^{m} h_i r_i$, $r_i \in R$

Projective = whenever *H* is embedded into H', $H' = H \oplus H''$, i.e., *H'* splits orthogonally

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Elliptic complexes of Hilbert C^* -bundles

Theorem (S. Krysl): Let $(q_i : F^i \to M)_i$ be a sequence of finitely generated projective C^* -bundles over a compact manifold M and $(\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of C^* -invariant pseudodiff. operators whose Laplacians are **closed maps**. Then the *Hodge theory holds* for the complex, and complexes' cohomology groups are *finitely generated projective* Hilbert C^* -modules.

Elliptic complexes of Hilbert C^* -bundles

Theorem (S. Krysl): Let $(q_i : F^i \to M)_i$ be a sequence of finitely generated projective C^* -bundles over a compact manifold M and $(\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of C^* -invariant pseudodiff. operators whose Laplacians are **closed maps**. Then the *Hodge theory holds* for the complex, and complexes' cohomology groups are *finitely generated projective* Hilbert C^* -modules.

Kondrachev embedding is not available. Proof is based on '*C**-elliptic regularity' (Solovyov, Troitsky [Troi], Mishchenko, Fomenko [MF], Schick [Sch], Krysl [SK1]).

Elliptic complexes of Hilbert C^* -bundles

Theorem (S. Krysl): Let $(q_i : F^i \to M)_i$ be a sequence of finitely generated projective C^* -bundles over a compact manifold M and $(\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of C^* -invariant pseudodiff. operators whose Laplacians are **closed maps**. Then the *Hodge theory holds* for the complex, and complexes' cohomology groups are *finitely generated projective* Hilbert C^* -modules.

Kondrachev embedding is not available. Proof is based on '*C**-elliptic regularity' (Solovyov, Troitsky [Troi], Mishchenko, Fomenko [MF], Schick [Sch], Krysl [SK1]).

Assumption on closed images is 'hard' to verify in specific cases.

Algebra of compact operators of a Hilbert space

If *H* is a Hilbert space, and R = K(H) is its *C**-algebra of compact operators, than Laplacians' images are closed.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebra of compact operators of a Hilbert space

If H is a Hilbert space, and R = K(H) is its C*-algebra of compact operators, than Laplacians' images are closed.

Theorem (S. Krysl, J. Geom. Phys.): Let $(q_i : F^i \to M)_i$ be finitely generated projective K(H)-bundles over compact manifold M, and $E^{\bullet} = (\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of K(H)-invariant pseudodiff. operators. Then the Hodge theory holds for the complex and its cohomology groups are finitely generated projective Hilbert C^* -modules and $H^i(E^{\bullet})$ are finitely generated and projective over K(H).

Algebra of compact operators of a Hilbert space

If H is a Hilbert space, and R = K(H) is its C*-algebra of compact operators, than Laplacians' images are closed.

Theorem (S. Krysl, J. Geom. Phys.): Let $(q_i : F^i \to M)_i$ be finitely generated projective K(H)-bundles over compact manifold M, and $E^{\bullet} = (\mathcal{C}^{\infty}(F^i), d_i)_i$ be an elliptic complex of K(H)-invariant pseudodiff. operators. Then the Hodge theory holds for the complex and its cohomology groups are finitely generated projective Hilbert C^* -modules and $H^i(E^{\bullet})$ are finitely generated and projective over K(H).

Underlying result Bakić, Guljaš [BG] ('rigidity' of K(H)-modules), and a transfer theorem from Hilbert to pre-Hilbert spaces [SK3].

Example from Spin symplectic geometry

 (M^{2n}, ω) symplectic manifold, $Mp(2n, \mathbb{R})$ double cover of the symplectic group (*metaplectic group*), *S* the complex Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert space $H = L^2(\mathbb{C}^n)$, *S* the *Shale–Weil bundle* induced by *S* to the principal bundle of symplectic frames on *M*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example from Spin symplectic geometry

 (M^{2n}, ω) symplectic manifold, $Mp(2n, \mathbb{R})$ double cover of the symplectic group (*metaplectic group*), *S* the complex Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert space $H = L^2(\mathbb{C}^n)$, *S* the *Shale–Weil bundle* induced by *S* to the principal bundle of symplectic frames on *M*.

Dixmier–Douady: Global trivializations of $\mathcal S$ exist.

Example from Spin symplectic geometry

 (M^{2n}, ω) symplectic manifold, $Mp(2n, \mathbb{R})$ double cover of the symplectic group (*metaplectic group*), *S* the complex Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert space $H = L^2(\mathbb{C}^n)$, *S* the *Shale–Weil bundle* induced by *S* to the principal bundle of symplectic frames on *M*.

Dixmier–Douady: Global trivializations of S exist.

 \Longrightarrow product connection ∇ on ${\mathcal S}$

Example from Spin symplectic geometry

 (M^{2n}, ω) symplectic manifold, $Mp(2n, \mathbb{R})$ double cover of the symplectic group (*metaplectic group*), *S* the complex Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert space $H = L^2(\mathbb{C}^n)$, *S* the *Shale–Weil bundle* induced by *S* to the principal bundle of symplectic frames on *M*.

Dixmier–Douady: Global trivializations of $\mathcal S$ exist.

 \Longrightarrow product connection ∇ on ${\mathcal S}$

On $S^i = \bigwedge^i T^* M \otimes S$, d_{\bullet}^{∇} exterior covariant derivatives ("aka" twisted deRham ops) associated to ∇ and de Rham differential

 $\begin{array}{ccc} \text{Hodge theory in additive categories} & \text{Hodge Theory for pre-Hilbert spaces} & \text{Hodge theory for complexes of C^*-modules} \\ \text{000000} & \text{000000} \end{array}$

Example from Spin symplectic geometry

 (M^{2n}, ω) symplectic manifold, $Mp(2n, \mathbb{R})$ double cover of the symplectic group (*metaplectic group*), *S* the complex Segal–Shale–Weil representation ([Shale], [Weil]) on the Hilbert space $H = L^2(\mathbb{C}^n)$, *S* the *Shale–Weil bundle* induced by *S* to the principal bundle of symplectic frames on *M*.

Dixmier–Douady: Global trivializations of $\mathcal S$ exist.

 \Longrightarrow product connection ∇ on ${\mathcal S}$

On $S^i = \bigwedge^i T^* M \otimes S$, d_{\bullet}^{∇} exterior covariant derivatives ("aka" twisted deRham ops) associated to ∇ and de Rham differential

Covariant derivatives d_i^{Fed} induced to S^i by a symplectic (Fedosov) connection ∇^{Fed} need not be pseudodiff. K(H)-operators.

 $\begin{array}{ccc} \text{Hodge theory in additive categories} & \text{Hodge Theory for pre-Hilbert spaces} & \text{Hodge theory for complexes of C^*-modules} \\ \text{occose} & \text{occose} & \text{occose} \\ \end{array}$

Cohomology of symplectic spinors

Theorem (S. Krysl [SK–CMP]): If M is compact than for d_{\bullet}^{∇} the Hodge theory holds, i.e., $\mathcal{C}^{\infty}(\mathcal{S}^i) \simeq \operatorname{Im} d_{i-1}^{\nabla} \oplus \operatorname{Im} d_i^{\nabla^*} \oplus \operatorname{Ker} \Delta_i^{\nabla}$. Further, the cohomological groups are K(H)-isomorphic to $H_{deRham}^k(M) \otimes H$, and the images of d_i^{∇} and of the Laplacians Δ_i^{∇} are closed spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ◆○○

[Shale] Shale, D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167.

[Weil] Weil, A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211.

- [FM] Fomenko, A., Miščenko, A., Indeks elliptičeskich operatorov nad C*-algebrami, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 831–859, 967. (Translation: Fomenko, A., Mishchenko, A., The index of elliptic operators over C*-algebras, Mathematics of the USSR-Izvestiya, 15:1 (1980) 15:1, 87–112.)
- [Sch] Schick, Th., L²-index theorems, KK-theory, and connections, New York J. Math. 11, 387-443 (2005).
- [SolTro] Solovyov, Y., Troitsky, E., Elliptic C*-algebras and elliptic operators in differential topology, Vol. 192, Transl. of Math. Monographs AMS, 2000.

[Troi] Troitsky, E., The index of equivariant elliptic operators over *C**-algebras. Ann. Global Anal. Geom. 5 (1987), no. 1, 3–22.

- [SK1] Krysl, S., Hodge theory for elliptic complexes over unital C*-algebras, Annals Glob. Anal. Geom. 45 (2014), no. 3, 197–203.
- [SK1] Krýsl, S., Hodge theory for self-adjoint parametrix possessing complexes over C*-algebras, Annals Glob. Anal. Geom. 47 (2015), no. 4, 359–372.
- [SK2] Krýsl, S., Elliptic complexes over C*-algebras of compact operators, J. of Geom. and Phys. 101 (2016), 27–37.
- [SK–CMP] Krýsl, S., Induced C*-complexes in metaplectic geometry, Comm. Math. Phys., Volume 365, Issue 1 (2019), 61–91. https://doi.org/10.1007/s00220-018-3275-9
- [BG] Bakić, D., Guljaš, B., Operators on Hilbert H*-modules, J. Oper. Theory 46 (2001), no. 1, 123–137.