Webs of \mathcal{W}-algebras

Tomáš Procházka

Arnold Sommerfeld Center for Theoretical Physics LMU Munich

January 14, 2019

Plan

- \mathcal{W}_{3}, construction of \mathcal{W}-algebras
- \mathcal{W}_{∞} as Yangian of affine $\mathfrak{u}(1)$
- Gaiotto-Rapčák gauge theory construction
- Gluing with examples

W algebras

\mathcal{W}-algebas: extensions of the Virasoro algebra by higher spin currents - appear in many different contexts:

- integrable hierarchies of PDE (KdV, KP)
- (old) matrix models
- instanton partition functions and AGT
- algebras of BPS states in 4d gauge theories
- holographic dual description of 3d higher spin gravities
- quantum Hall effect
- topological strings

Recent: Gaiotto\&Rapčák: trivalent junction of D5-NS5-(1,1) bc in Kapustin-Witten twist of 4d $\mathcal{N}=4$ SYM

Zamolodchikov \mathcal{W}_{3} algebra

As in illustration, the \mathcal{W}_{3} algebra constructed by Zamolodchikov (1984) has a stress-energy tensor (Virasoro algebra) with OPE

$$
T(z) T(w) \sim \frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+r e g .
$$

together with spin 3 primary field $W(z)$

$$
T(z) W(w) \sim \frac{3 W(w)}{(z-w)^{2}}+\frac{\partial W(w)}{z-w}+r e g .
$$

We need to find the OPE of W with itself such that the resulting chiral algebra is associative.

The result:

$$
\begin{aligned}
W(z) W(w) \sim & \frac{c / 3}{(z-w)^{6}}+\frac{2 T(w)}{(z-w)^{4}}+\frac{\partial T(w)}{(z-w)^{3}} \\
& +\frac{1}{(z-w)^{2}}\left(\frac{32}{5 c+22} \Lambda(w)+\frac{3}{10} \partial^{2} T(w)\right) \\
& +\frac{1}{z-w}\left(\frac{16}{5 c+22} \partial \Lambda(w)+\frac{1}{15} \partial^{3} T(w)\right)
\end{aligned}
$$

Λ is a quasiprimary 'composite' (spin 4) field,

$$
\Lambda(z)=(T T)(z)-\frac{3}{10} \partial^{2} T(z)
$$

The algebra is non-linear, not a Lie algebra in the usual sense (in fact linearity should not be expected for spins ≥ 3).

Construction of \mathcal{W}-algebras

Many different ways of constructing \mathcal{W}-algebras:

- solving the associativity conditions for a given spin content; e.g. Zamolodchikov \mathcal{W}_{3}, Gaberdiel-Gopakumar \mathcal{W}_{∞}
- affine Lie algebra \rightsquigarrow Casimir subalgebra $\widehat{s l(N)_{1}} / s l(N)$ or more generally GKO coset
- Hamiltonian reduction via BRST: Drinfeld-Sokolov reduction; e.g. $\mathcal{W}_{4}^{(2)}$ from $\widehat{\mathfrak{s u}(4)}$

$$
\left(\begin{array}{ccc|c}
* & 1 & 0 & 0 \\
* & * & 1 & * \\
* & * & * & * \\
\hline * & * & 0 & *
\end{array}\right)
$$

- free field constructions - Miura transformation

Construction \#1: (Gaberdiel-Gopakumar) solving the associativity conditions (crossing relations)

- assuming the spin content $2,3,4, \ldots$ a two-parametric family of algebras is found: $\mathcal{W}_{\infty}[\lambda, c]$
- specializing $\lambda \rightarrow N \rightsquigarrow$ truncation to $\mathcal{W}_{N}[c]$
- in this sense \mathcal{W}_{∞} interpolates between all \mathcal{W}_{N}
- triality symmetry: for each value of c three solutions λ_{j} giving the same algebra $\mathcal{W}_{\infty}\left[\lambda_{1}, c\right] \simeq \mathcal{W}_{\infty}\left[\lambda_{2}, c\right] \simeq \mathcal{W}_{\infty}\left[\lambda_{3}, c\right]$,

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}=0 \quad\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(\lambda_{3}-1\right)=c
$$

- the vacuum character is the MacMahon function (counting three-dimensional partitions)

Construction \#2: (Maulik-Okounkov) R-matrix, spin chain

- Miura transform (free field representation, oper...) for \mathcal{W}_{N}

$$
\left(\alpha_{0} \partial+J_{1}(z)\right) \cdots\left(\alpha_{0} \partial+J_{N}(z)\right)=\sum_{k=0}^{N} U_{k}(z)\left(\alpha_{0} \partial\right)^{N-k}
$$

where $J_{j}(z)$ are free bosons $J_{j}(z) J_{k}(w) \sim \delta_{j k}(z-w)^{-2}$

- intertwiner between different embeddings
$R_{12}\left(\alpha_{0} \partial+J_{1}(z)\right)\left(\alpha_{0} \partial+J_{2}(z)\right)=\left(\alpha_{0} \partial+J_{2}(z)\right)\left(\alpha_{0} \partial+J_{1}(z)\right) R_{12}$
satisfies the Yang-Baxter equation
$R_{12}\left(u_{1}-u_{2}\right) R_{13}\left(u_{1}-u_{3}\right) R_{23}\left(u_{2}-u_{3}\right)=R_{23}\left(u_{2}-u_{3}\right) R_{13}\left(u_{1}-u_{3}\right) R_{12}\left(u_{1}-u_{2}\right)$
\rightsquigarrow algebraic Bethe ansatz
W5:

$U(1) \vartheta$

Construction \#3 (Yangian): (Schiffmann-Vasserot, Tsymbaliuk) an associative algebra with generators $\psi_{j}, e_{j}, f_{j}, j=0,1, \ldots$ and relations of the form

$$
\begin{aligned}
0= & {\left[\psi_{j}, \psi_{k}\right] } \\
\psi_{j+k}= & {\left[e_{j}, f_{k}\right] } \\
0= & {\left[e_{j+3}, e_{k}\right]-3\left[e_{j+2}, e_{k+1}\right]+3\left[e_{j+1}, e_{k+2}\right]-\left[e_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[e_{j+1}, e_{k}\right]-\sigma_{2}\left[e_{j}, e_{k+1}\right]-\sigma_{3}\left\{e_{j}, e_{k}\right\} \\
0= & \operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[e_{j_{1}},\left[e_{j_{2}}, e_{j_{3}+1}\right]\right]
\end{aligned}
$$

- integrability - an infinite set of commuting charges ψ_{j}
- representations on plane partitions: e_{j} / f_{j} are box addition/removal operators
- non-locally related to previous constructions

- characters of maximally degenerate $\mathcal{W}_{1+\infty}$ reps are counting plane partitions with given Young diagram asymptotics
- L_{0} level \leftrightarrow number of boxes
- this is exactly what the topological vertex of topological strings is counting
- \rightsquigarrow characters, conformal dimensions, ... can be determined combinatorially

- truncation to integer λ by restricting the height

Truncations

- for special values of parameters the algebra can be truncated
- truncations labeled by triple of non-negative integers

$$
\frac{N_{1}}{\lambda_{1}}+\frac{N_{2}}{\lambda_{2}}+\frac{N_{3}}{\lambda_{3}}=1
$$

- the first singular vector corresponds to a box at $\left(N_{1}+1, N_{2}+1, N_{3}+1\right)$

- all the \mathcal{W}_{N} minimal models correspond to intersections of two curves of this type, i.e. Ising $c=1 / 2:(0,0,2) \cap(2,1,0)$ Lee-Yang $c=-22 / 5:(2,0,0) \cap(0,3,0) \ldots$

Brane construction (Gaiotto-Rapčák)

trivalent junction of codim 1 interfaces in the Kapustin-Witten twist of $\mathcal{N}=4$ SYM \rightsquigarrow vertex operator algebra at the corner

$$
\begin{aligned}
& \times \underset{x_{0}, x_{1}}{C} \quad \times \begin{array}{c}
x_{7}^{3} \\
x_{7}, x_{8}, x_{9}
\end{array}
\end{aligned}
$$

- Mikhaylov-Witten: degress of freedom associated to $(k, 1)$ interface: $U(N \mid L)_{\Psi_{+k}}$ Chern-Simons theory
- Chern-Simons theory at 2d boundary produces vertex operator algebra
- 5-branes meeting at 2 dimensional subspace \rightsquigarrow gluing of $U(N \mid L)_{\Psi} \times U(M \mid L)_{\Psi+1}$ VOA; bc: Gaiotto-Witten
- Gaiotto-Rapčák proposal (for $N>M$):
.

$$
Y_{L M N}[\Psi]=\frac{W_{N-M}^{D S}\left[U(N \mid L)_{\Psi}\right]}{U(M \mid L)_{\Psi-1}}
$$

(1) Start with $U(N \mid L)_{\Psi} \times U(M \mid L)_{1-\psi}$
(2) Drinfeld-Sokolov reduction in $U(N-M) \subset U(N)(B R S T)$
(3) Perform BRST coset, gluing $U(M \mid L) \subset U(N \mid L)$ with $U(M \mid L)$

- comparing vacuum characters, special choices of N as well as large N limits, one concludes that these $Y_{L M N}$ can be identified with the truncations of $\mathcal{W}_{1+\infty}$ discussed above

Gluing

We can now consider more complicated interfaces and their associated VOAs:

- vertices: degrees of freedom at junction described by $Y_{L M N}$ algebras
- internal edges: degrees of freedom associated to line operators along the interfaces - bi-modules

- the resulting VOA is obtained by conformally extending $Y_{L M N}$ algebras (vertices) by bi-modules associated to internal edges \rightsquigarrow the total central charge is a sum of individual central charges (no contribution from the line ops) and can be read off directly from the diagram

Vertex and edge

- five-brane charge conservation at vertex $\sum_{j}\left(p_{j}, q_{j}\right)=0$
- parameters of the vertex algebra are given by $\left(\Psi \equiv-\epsilon_{2} / \epsilon_{1}\right)$

$$
\lambda_{j}=\frac{\sum_{k}\left(N_{k} p_{k} \epsilon_{1}+N_{k} q_{k} \epsilon_{2}\right)}{p_{j} \epsilon_{1}+q_{j} \epsilon_{2}}
$$

- the conformal dimension of \square is (half-)integral (independent of Ψ) and the statistics of the gluing matter (boson/fermion) depends on the relative orientation of the two vertices

Example $-\mathcal{N}=2$ superconformal algebra

An extension of Virasoro algebra by spin 1 current J and two charge ± 1 fermionic spin $\frac{3}{2}$ supercurrents $G^{ \pm}$

$$
\begin{aligned}
J(z) J(w) & \sim \frac{c}{3(z-w)^{2}} \\
G^{+}(z) G^{-}(w) & \sim \frac{2 c}{3(z-3)^{3}}+\frac{2 J(w)}{(z-w)^{2}}+\frac{2 T(w)+\partial J(w)}{z-w} \\
G^{ \pm}(z) G^{ \pm}(w) & \sim r e g .
\end{aligned}
$$

The vacuum character (generic c)

$$
\chi=\prod_{n=0}^{\infty} \frac{\left(1-z q^{\frac{3}{2}+n}\right)\left(1-z^{-1} q^{\frac{3}{2}+n}\right)}{\left(1-q^{1+n}\right)\left(1-q^{2+n}\right)}
$$

is up to an $U(1)$ factor exactly what one gets from the gluing

Example - Bershadsky-Polyakov $\mathcal{W}_{3}^{(2)}$

- an extension of Virasoro algebra by spin 1 current J and two charge ± 1 bosonic spin $\frac{3}{2}$ currents $G^{ \pm}$
- the same spin content as $\mathcal{N}=2$ SCA but different statistics of the gluing fields
- can be obtained from $U(3)$ Kac-Moody by DS reduction using the non-principal embedding $3=2+1$

$\mathcal{N}=2 \mathcal{W}_{\infty}$

- $\mathcal{N}=2 \mathcal{W}_{\infty}$ symmetry algebra of Kazama-Suzuki coset models is glued from two copies of bosonic \mathcal{W}_{∞}
- the central charge can be decomposed as

$$
c=\frac{c(\mu+1)(c+6 \mu-3)}{3(c+3 \mu)^{2}}-\frac{(c-3 \mu)(c(\mu-2)-3 \mu)}{3\left(c+3 \mu^{2}\right)}+1
$$

corresponding to central charges of the two \mathcal{W}_{∞} vertices

- the symmetry of the diagram is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ which is also the duality symmetry of the algebra
- the four basic minimal representations correspond to four external legs

Other examples and questions

$\widehat{U(4 \mid 2)}$
more general DS reduction

Further progress

- free field representations of $Y_{N_{1} N_{2} N_{3}}$ by modification of Miura transformation \rightsquigarrow free field representations of a very large class of algebras by gluing
- even spin \mathcal{W}_{∞} (orthosymplectic) a subalgebra of $\mathcal{W}_{1+\infty}$
- W-algebras associated to $A_{n}, B_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, G_{2}$ subalgebras of $\widehat{\mathfrak{u}(1)} \times \mathcal{W}_{n-1}$
- $W\left[F_{4}\right]$? Grassmannian cosets? gluing of $N=3$ and $N=4$ SCA? higher spin square?
- Yangian description of even \mathcal{W}_{∞} ?

Thank you!

