
Generalized Killing spinors
on 3-Sasakian manifolds

Petr Zima
(joint with P. Somberg and I. Agricola)

39th Winter School Geometry and Physics
January 12–19, 2019



(M,д) a (pseudo-) Riemannian spin manifold,
∇д the Levi-Civita and the induced spin connection
Killing spinors

∇
д
XΨ = a X · Ψ (1)

I Killing number a ∈ C ∼ eigenvalue of the Dirac operator
I 1st integrability condition: RX ,Y Ψ = −a2 [X ·,Y ·]Ψ

⇒ (M,д) is Einstein with Scal = 4a2 n(n − 1)

Generalized Killing spinors

∇
д
XΨ = S(X ) · Ψ (2)

I S(X ) is a section of symmetric endomorphisms of TM
I Not invariant!

(unless we consider S(X ) as a part of the solution)



V a vector bundle over M , ∇V a linear connection in V ,
extend ∇V by ∇д also to V -valued di�erential forms
Let Φ ∈ Ωp(M,V ) and Ξ ∈ Ωp+1(M,V )

Killing(-Yano) forms

∇VXΦ = X y Ξ (3)

∗-Killing forms

∇VXΞ = X [ ∧ Φ (4)

Special Killing forms

∇VXΦ = X y Ξ, ∇VXΞ = −c X
[ ∧ Φ (5)

I Does not imply Einstein, but we have Scal = c n(n − 1)
I Cone construction: spec. Killing⇔ parallel on the cone
⇒ Holonomy classi�cation via Berger’s list



Ordinary special Killing forms
All the examples where M is compact are:
I Round spheres: a solution for arbitrary (Φ0,Ξ0)

I Sasakian: Φ(k) = η ∧ (dη)k , η the contact form
I Exceptional: nearly Kähler in dim = 6, G2 in dim = 7

Spinor-valued special Killing forms
V = Σ is the spinor bundle and ∇V the Killing spinor connection

∇VXΨ = ∇
д
XΨ − a X · Ψ, a ∈ C (6)

I The cone construction works only when c = 4a2.
I Round spheres: again a solution for arbitrary (Φ0,Ξ0)

I Q: Can c = 4a2 = 1
n(n−1) Scal be deduced in general from

the integrability conditions?



“2nd order Killing spinors”
≡ spinor-valued spec. K. 0-forms; combining the equations⇔

(∇д)2X ,YΨ = −a
2X · Y · Ψ +

+ a (Y · (∇
д
XΨ) + X · (∇

д
YΨ)) − c д(X ,Y )Ψ

(7)

I 1st integrability condition the same as for Killing spinors,
so again⇒ (M,д) is Einstein.

I Includes Killing spinors with Killing number a′ = −a .
⇒ Invariant generalization of Killing spinors.

I Future research: Higher order equations derived from
rank ≥ 2 symmetric Killing tensor-spinors.

Holonomy classi�cation:
I 3-Sasakian: Admit an additional solution!
I Sasakian, G2: No additional solutions possible.
I Nearly Kähler: Remains to be checked.



Sasakian manifolds
(M,д,φ, ξ ,η), dimM = 2m + 1, such that:
I almost contact: φ2 = − IdTM +η ⊗ ξ , η(ξ ) = 1

I normal: Nijenhuis torsion Nφ = [φ,φ] + dη ⊗ ξ = 0

I compatible metric: д(φ(X ),φ(Y )) = д(X ,Y ) − η(X )η(Y )

I contact: dη = 2Φ where Φ(X ,Y ) = д(X ,φ(Y ))

⇔ |ξ | = 1, η = ξ [ is a special Killing 1-form with c = 1
⇒ reduction of the structure group to U(m)
3-Sasakian manifolds
(M,д,φi, ξi,ηi), dimM = 4m + 3, i = 1, 2, 3, such that each
(φi, ξi,ηi) is a Sasakian structure compatible with д and

φk = φiφj − ηj ⊗ ξi = −φjφi + ηi ⊗ ξj,

ξk = φiξj = −φjξi, ηk = ηiϕj = −ηjφi .

⇒ reduction of the structure group to Sp(m); always Einstein!



3-(α, δ )-Sasakian manifolds
Split TM = V ⊕H, the vertical and horizontal distribution,

V = 〈ξ1, ξ2, ξ3〉, H = kerη1 ∩ kerη2 ∩ kerη3.

Rescale д on V and H 2-parameter family of metrics 
 3-(α, δ )-Sasakian manifolds
Proposition
(M,д) is Einstein i� δ = α or δ = (2m + 3)α .
Dimension 7
δ = α = 1 д = д1 the original 3-Sasakian structure
δ = 5α д̃ = д1:5 canonical cocalibrated G2-structure

I The cocalibrated G2-structure with metric д̃ possesses
the so called canonical spinor satisfying ∇cΨ0 = 0 .

I With respect to the original 3-Sasakian metric д the
spinor �eld Ψ0 becomes a generalized Killing spinor.



Canonical spinor
I Ψ0 is a generalized Killing spinor.

∇
д
ξ
Ψ0 =

1
2 ξ · Ψ0, ∇

д
YΨ0 = −

3
2 Y · Ψ0, ξ ∈ V, Y ∈ H (8)

I Reeb vector �elds ξi are special Killing with c = 1 .
I Ψi = ξi · Ψ0 are Killing spinors with a = 1

2 .

∇
д
XΨi =

1
2 X · Ψi, X ∈ TM ; i = 1, 2, 3 (9)

Proposition
Ψ0 is also a 2nd order Killing spinor with a = −1

2 and c = 1
which is not a Killing spinor.
I Invariant description of the canonical spinor Ψ0.
I WIP: Describe Ψ0 in general for dimM = 4m + 3 without

the detour to the G2-structure.
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