Generalized Killing spinors on 3-Sasakian manifolds

Petr Zima (joint with P. Somberg and I. Agricola)

FACULTY OF MATHEMATICS AND PHYSICS Charles University

39th Winter School Geometry and Physics January 12–19, 2019

(M,g)a (pseudo-) Riemannian spin manifold,
 ∇^g the Levi-Civita and the induced spin connection

Killing spinors

$$7^g_X \Psi = a X \cdot \Psi \tag{1}$$

- ▶ *Killing number* $a \in \mathbb{C} \sim$ eigenvalue of the Dirac operator
- ► 1st integrability condition: $\mathcal{R}_{X,Y} \Psi = -a^2 [X \cdot, Y \cdot] \Psi$ $\Rightarrow (M, g)$ is **Einstein** with Scal = $4a^2 n(n-1)$

Generalized Killing spinors

$$\nabla^g_X \Psi = S(X) \cdot \Psi$$

(2)

• S(X) is a section of symmetric endomorphisms of TM

Not invariant!

(unless we consider S(X) as a part of the solution)

V a vector bundle over M, ∇^V a linear connection in *V*, extend ∇^V by ∇^g also to *V*-valued differential forms Let $\Phi \in \Omega^p(M, V)$ and $\Xi \in \Omega^{p+1}(M, V)$ Killing(-Yano) forms

 $\nabla_X^V \Phi = X \,\lrcorner\, \Xi \tag{3}$

***-Killing forms**

$$\nabla_X^V \Xi = X^\flat \wedge \Phi \tag{4}$$

Special Killing forms

$$\nabla_X^V \Phi = X \, \lrcorner \, \Xi, \qquad \qquad \nabla_X^V \Xi = -c \, X^\flat \wedge \Phi \tag{5}$$

- ▶ Does **not** imply Einstein, but we have Scal = c n(n 1)
- Cone construction: spec. Killing ⇔ parallel on the cone
 ⇒ Holonomy classification via Berger's list

Ordinary special Killing forms

All the examples where *M* is compact are:

- *Round spheres:* a solution for arbitrary (Φ_0, Ξ_0)
- Sasakian: $\Phi^{(k)} = \eta \wedge (d\eta)^k$, η the contact form
- Exceptional: *nearly Kähler* in dim = 6, G_2 in dim = 7

Spinor-valued special Killing forms

 $V = \Sigma \text{ is the spinor bundle and } \nabla^V \text{ the Killing spinor connection}$ $\nabla^V_X \Psi = \nabla^g_X \Psi - aX \cdot \Psi, \qquad a \in \mathbb{C} \qquad (6)$

- The cone construction works only when $c = 4a^2$.
- ▶ *Round spheres:* again a solution for arbitrary (Φ_0, Ξ_0)
- Q: Can $c = 4a^2 = \frac{1}{n(n-1)}$ Scal be deduced in general from the integrability conditions?

"2nd order Killing spinors"

 \equiv spinor-valued spec. K. 0-forms; combining the equations \Leftrightarrow

$$(\nabla^g)^2_{X,Y}\Psi = -a^2 X \cdot Y \cdot \Psi + + a \left(Y \cdot (\nabla^g_X \Psi) + X \cdot (\nabla^g_Y \Psi)\right) - c g(X, Y) \Psi$$
(7)

- ▶ 1st integrability condition *the same as for Killing spinors,* so again \Rightarrow (*M*, *g*) is **Einstein**.
- ► Includes Killing spinors with Killing number a' = -a.
 ⇒ Invariant generalization of Killing spinors.
- Future research: Higher order equations derived from rank ≥ 2 symmetric Killing tensor-spinors.

Holonomy classification:

- ► 3-Sasakian: Admit an additional solution!
- Sasakian, G₂: No additional solutions possible.
- ▶ *Nearly Kähler:* Remains to be checked.

Sasakian manifolds

 $(M, g, \varphi, \xi, \eta)$, dim M = 2m + 1, such that:

- almost contact: $\varphi^2 = -\operatorname{Id}_{TM} + \eta \otimes \xi$, $\eta(\xi) = 1$
- *normal*: Nijenhuis torsion $N_{\varphi} = [\varphi, \varphi] + d\eta \otimes \xi = 0$
- compatible metric: $g(\varphi(X), \varphi(Y)) = g(X, Y) \eta(X)\eta(Y)$
- *contact:* $d\eta = 2\Phi$ where $\Phi(X, Y) = g(X, \varphi(Y))$

 $\Leftrightarrow |\xi| = 1, \eta = \xi^{\flat} \text{ is a special Killing 1-form with } c = 1$ $\Rightarrow \text{ reduction of the structure group to U}(m)$

3-Sasakian manifolds

 $(M, g, \varphi_i, \xi_i, \eta_i)$, dim M = 4m + 3, i = 1, 2, 3, such that each $(\varphi_i, \xi_i, \eta_i)$ is a Sasakian structure compatible with g and

$$\varphi_k = \varphi_i \varphi_j - \eta_j \otimes \xi_i = -\varphi_j \varphi_i + \eta_i \otimes \xi_j,$$

$$\xi_k = \varphi_i \xi_j = -\varphi_j \xi_i, \quad \eta_k = \eta_i \phi_j = -\eta_j \varphi_i.$$

 \Rightarrow reduction of the structure group to Sp(*m*); always Einstein!

3- (α, δ) -Sasakian manifolds

Split $TM = \mathcal{V} \oplus \mathcal{H}$, the *vertical* and *horizontal distribution*,

 $\mathcal{V} = \langle \xi_1, \xi_2, \xi_3 \rangle, \qquad \mathcal{H} = \ker \eta_1 \cap \ker \eta_2 \cap \ker \eta_3.$

Rescale g on \mathcal{V} and $\mathcal{H} \rightsquigarrow$ 2-parameter family of metrics \rightsquigarrow $\rightsquigarrow 3-(\alpha, \delta)$ -Sasakian manifolds

Proposition

(M, g) is Einstein iff $\delta = \alpha$ or $\delta = (2m + 3)\alpha$.

Dimension 7

$\delta = \alpha = 1$	$g = g_1$	the original 3-Sasakian structure
$\delta = 5\alpha$	$\widetilde{g} = g_{1:5}$	canonical <i>cocalibrated</i> G ₂ -structure

- The cocalibrated G₂-structure with metric \tilde{g} possesses the so called **canonical spinor** satisfying $\nabla^c \Psi_0 = 0$.
- With respect to the original 3-Sasakian metric g the spinor field Ψ₀ becomes a generalized Killing spinor.

Canonical spinor

• Ψ_0 is a generalized Killing spinor.

$$\nabla_{\xi}^{g}\Psi_{0} = \frac{1}{2}\,\xi\cdot\Psi_{0}, \quad \nabla_{Y}^{g}\Psi_{0} = -\frac{3}{2}\,Y\cdot\Psi_{0}, \quad \xi\in\mathcal{V}, \ Y\in\mathcal{H} \quad (8)$$

• Reeb vector fields ξ_i are **special Killing** with c = 1.

•
$$\Psi_i = \xi_i \cdot \Psi_0$$
 are **Killing spinors** with $a = \frac{1}{2}$

$$\nabla_X^g \Psi_i = \frac{1}{2} X \cdot \Psi_i, \qquad X \in TM; \ i = 1, 2, 3 \tag{9}$$

Proposition

 Ψ_0 is also a 2^{nd} order Killing spinor with $a = -\frac{1}{2}$ and c = 1 which is not a Killing spinor.

- Invariant description of the canonical spinor Ψ_0 .
- WIP: Describe Ψ_0 in general for $\dim M = 4m + 3$ without the detour to the G₂-structure.

References

Agricola, I., Dileo, G. Generalizations of 3-Sasakian manifolds and skew torsion. *arXiv:1804.06700* (2018).

Agricola, I., Friedrich, T. 3-Sasakian manifolds in dimension seven, their spinors and G_2 -structures. J. Geom. Phys. **60** (2010), no. 2, 326–332.

Bär, C. Real Killing spinors and holonomy. Comm. Math. Phys. 154 (1993), no. 3, 509-521.

Semmelmann, U. Conformal Killing forms on Riemannian manifolds. *Math. Z.* 245 (2003), no. 3, 503–527.

Somberg, P., Zima, P. Killing spinor-valued forms and the cone construction. Arch. Math. (Brno) 52 (2016), no. 5, 341–355.

THANK YOU FOR YOUR ATTENTION!