
Cartan geometries
Conformal structures and parabolic geometries

Parabolic geometries
and geometric compactifications

lecture 1

Andreas Čap
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This first lecture starts with an introduction to the general
concept of a Cartan geometry associated to a homogeneous
space.

In particular, I will outline how Riemannian geometry can be
encoded in that way.

The example of conformal structures shows how Cartan
geometries can be used to encode “higher order information”
leading to unusual geometric objects.

The homogeneous model for conformal structures is of rather
special type (a generalized flag manifold) and taking more
general homogeneous spaces of this type leads to parabolic
geometries.
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In the spirit of F. Klein’s Erlangen program, a classical
geometry is specified by a homogeneous space G/P.

If G is a Lie group, there is a definition of an associated
geometric structure due to E. Cartan based on the following.

p : G → G/P is an P-principal bundle that carries the left
Maurer-Cartan form ω ∈ Ω1(G , g) with g = Lie(G ).

The left actions of elements of G are exactly the
diffeomorphisms of G/P that admit a P-equivariant lift
Φ : G → G such that Φ∗ω = ω.

Observe that dω(ξ, η) + [ω(ξ), ω(η)] = 0 by the
Maurer-Cartan equation.

The definition of a Cartan geometry is obtained by replacing G/P
by a manifold M of the same dimension and requiring exactly
those properties of the Maurer Cartan form that make sense in the
general setting.
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Definition

(1) A Cartan geometry of type (G ,P) on a smooth manifold M is
given by a principal P-bundle p : G → M and a Cartan connection
ω ∈ Ω1(G, g), i.e.

each ω(u) : TuG → g is a linear isomorphism

(rg )∗ω = Ad(g)−1 ◦ ω for all g ∈ P (equivariancy)

ω(ζX ) = X for all X ∈ p ⊂ g (fundamental fields)

(2) The curvature K ∈ Ω2(G, g) of the geometry (G, ω) is defined
by K (ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

Such geometries exist only for dim(M) = dim(G/P).

There is an obvious notion of morphisms, and morphisms
induce local diffeomorphisms between the base spaces.

The curvature of a Cartan geometry vanishes identically if and
only if it is locally isomorphic to its homogeneous model G/P.
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Example

The nature of the concept of Cartan geometries is illustrated nicely
by the example related to Euclidean geometry. Put G = Euc(n)
and P = O(n), so G/P is Euclidean space En. Consider an
n-manifold M and a Cartan geometry (p : G → M, ω) of type G/P.

g = o(n)⊕ Rn (semi-direct sum) and splitting ω = γ ⊕ θ
accordingly, both components are O(n)-equivariant

θ is equivalent to making G the orthonormal frame bundle of
a Riemannian metric g on M

γ defines a metric linear connection ∇ on TM

The curvature K encodes curvature and torsion of ∇.

Existence and uniqueness of the Levi-Civita connection ⇐⇒
n-dimensional Riemannian manifolds are (categorically) equivalent
to Cartan geometries of type (G ,P) for which K has values in
p ⊂ g. This similarly works for G = O(n + 1) and G = O(n, 1).
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Cartan geometries
Conformal structures and parabolic geometries

General features of Cartan geometries

K defines a fundamental and complete invariant

representations of P induce natural vector bundles

For the representation on g/p induced by Ad, one obtains
G ×P (g/p) ∼= TM, so all tensor bundles are associated.

Starting from distinguished curves in G/P, one obtains
general notions of distinguished curves in Cartan geometries.

Natural notion of infinitesimal automorphisms of a Cartan
geometry in X(G). Automorphisms of (G, ω) form a Lie group
of dimension ≤ dim(G ) with Lie algebra formed by complete
infinitesimal automorphisms.

Several constructions relating geometries of different type
(Correspondence spaces, Fefferman constructions, extension
functors).
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The conformal sphere

Put G := SO0(n + 1, 1) for a Lorentzian inner product on Rn+2.
Then G acts transitively on Sn, viewed as a space of isotropic rays.
Hence Sn = G/P, where P ⊂ G is the stabilizer of one such ray.
Elementary arguments show that the action `g of g ∈ G on Sn

sends the round metric of Sn to a conformally related metric.

Denoting by o ∈ Sn the point fixed by P, the map g 7→ To`g
defines a surjective homomorphism P → G0 := CO(n).

The kernel of this homomorphism is normal subgroup P+ ⊂ P
isomorphic to Rn∗ and P = G0 n P+.

For any g ∈ P+, `g coincides with idSn to first order in o, but
for g 6= e, they are different on any open neighborhood of o.
In particular, there is no G -invariant linear connection on TSn.

This “higher order issue” will be crucial in what follows.
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Let (p : G → M, ω) be a Cartan geometry of type (G ,P).
Factoring by the action of P+ ⊂ P, we obtain G0 := G/P+ and
p0 : G0 → M is a principal bundle with structure group
P/P+

∼= CO(n). Projecting the values of ω to g/p ∼= Rn, the
result descends to a strictly horizontal form θ ∈ Ω1(G0,Rn)G0 .
Hence we obtain an underlying conformal structure on M (i.e. an
inner product up to scale on each tangent space).

Theorem (E. Cartan)

Any conformal structure arises in this way. Imposing a
normalization condition on the curvature K makes the inducing
Cartan geometry unique up to isomorphism and one obtains an
equivalence of categories.

There are two approaches to proving this, which are very different
in spirit. Since each of them has interesting advantages, we’ll
sketch both of them, starting with the classical approach.
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Sketch of classical proof

Starting from a conformal structure (G0, θ), one first observes
that there are torsion-free principal connections γ on G0.

For each u0 ∈ G0, the values γ(u0) form an n-dimensional
affine space. Attaching this to u0 one constructs a bundle
G → M and extending the action of G0 on G0 defines a
principal right action of P on G.

Using the connection forms of the γ, one defines a natural
form ω0 ∈ Ω1(G, g0). For each u ∈ G over u0, θ(u0)⊕ ω0(u)
defines a linear isomorphism Tu0G0 → g−1 ⊕ g0.

The possible lifts to a linear isomorphism TuG → g that is
compatible with fundamental fields form an affine space and
the corresponding curvature K always has values in g0 ⊕ g1.

One then shows that there is a unique such lift for which the
g0-component of K has vanishing Ricci-type contraction.
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Sketch of “abstract” proof

Starting from (G0, θ), define G := G0 ×G0 P, so G/P+
∼= G0.

Choose a principal principal connection on G and use it and θ
to define a Cartan connection ω̂ on G. Then (G, ω̂) has
underlying structure (G0, θ).

Cartan connections on G inducing θ form an affine space and
there is a concept of homogeneity, which also applies to
curvature. The change of curvature in lowest homogeneity is
tensorial and induced by a Lie algebra cohomology differential.

Finding a normalization condition becomes a purely algebraic
problem. Having done this, one can normalize ω̂ homogeneity
by homogeneity to obtain a normal Cartan connection ω on G.

Using information on H1(Rn, g) one shows that two normal
Cartan connections on G that induce θ are related by an
automorphism covering the identity on (G0, θ).
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tractor bundles

We know that for the representation of P on g/p induced by Ad,
we get G ×P (g/p) ∼= TM. This representation factors through
P → P/P+

∼= G0, so to recover higher order information, other
constructions are needed:

Via equivariant extension, the Cartan connection ω induces a
principal connection ω̃ on G̃ := G ×P G . Taking a representation V
of G and restricting to P, we obtain VM := G ×P V = G̃ ×G V, so
this inherits a canonical linear connection. (“tractor bundles and
tractor connections”)

Choosing g in the conformal class, its Levi-Civita connection
∇ defines a section G0 → G.

Using this, one identifies VM with a bundle associated to G0

and describes the canonical connection in terms of ∇.

It can be made explicit how all this changes when rescaling g .
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The abstract proof is robust and in particular applies to all pairs
(G ,P) where G is semisimple and P ⊂ G is a parabolic subgroup.
Here the relevant information on Lie algebra cohomology is
provided by Kostant’s theorem. Interpretations in the spirit of the
classical proof can then be recovered via so-called Weyl structures.

Parabolic subgroups are characterized by the fact that there is a
Lie algebra grading g = ⊕k

i=−kgi such that p = ⊕i≥0gi . Putting

gi := ⊕j≥igj makes g into a filtered Lie algebra. Since p = g0, the
filtration is P-invariant and there are natural subgroups
G0,P+ ⊂ P corresponding to g0 and p+ := g1.

Filtrations and associated graded objects are crucial for the theory.
Recall that for a filtration by smooth subbundles
TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M such that
[Γ(T iM), Γ(T jM)] ⊂ T i+jM the Lie bracket induces a tensorial
bracket on gr(TxM) = ⊕i (T

i
xM/T i+1

x M) (“symbol algebra at x”).
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The underlying structure for parabolic geometries

Given a type (G ,P) corresponding to g = ⊕igi , the underlying
structure consists of

1 A filtration TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M such
that gr(TM) becomes a locally trivial bundle of Lie algebras
modeled on g− = ⊕i<0gi .

2 This then has a natural frame bundle with structure group
Autgr (g−) that contains G0 as a subgroup and the second
ingredient is a reduction to that structure group.

A standard example arises from G = SU(n + 1, 1) with P the
stabilizer of an isotropic complex line. Here g− is a Heisenberg
algebra, so 1 is a contact structure H ⊂ TM. G0 consists of
those automorphisms that are complex linear on g−1

∼= Cn, so 2

is an almost complex structure on H.
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Conformal structures are among the examples in which 1 is
vacuous, and one obtains just a G0-structure (“AHS structures”).
There are examples for which 2 is vacuous since G0 = Autgr (g−),
e.g. various generic distributions.

Projective structures are one of two examples in which the Cartan
geometry is not determined by the underlying structure. Here
G = SL(n + 1,R) and P is the stabilizer of a ray in Rn+1, so
G0 = GL+(n,R). Then G0 → M is the full oriented frame bundle
of M. Any G0-equivariant section G0 → G pulls back the
g0-component of ω to a principal connection on G0.

Hence there is a class of distinguished connections on TM. It turns
out that they all are torsion-free and have the same geodesics up
to parametrization. This leads to a “projective equivalence class”
of torsion-free connections, which is equivalently encoded by the
Cartan geometry.
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Description via tractors

Recap / program

In the first lecture, we have discussed the description of
conformal structures as Cartan geometries and the
generalization to parabolic geometries.

Today’s lecture will start with a fundamental example of
geometric compactifications. Starting from the example of
hyperbolic space, I will introduce the concept of conformally
compact metrics and of Poincaré-Einstein metrics, which are
of interest in a broad variety of slightly different settings.

We then show an efficient description of such metrics via the
standard tractor bundle associated to the conformal Cartan
geometry. This relates Poincaré-Einstein metrics to parallel
tractors and hence to reductions of conformal holonomy.

I’ll briefly outline work of R. Gover and A. Waldron on a
resulting boundary calculus and generalizations of the
Willmore energy.
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2 Description via tractors

Andreas Čap



Conformal compactness and Poincaré-Einstein metrics
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The model example for a geometric compactification is adding the
sphere Sn as a boundary at infinity to hyperbolic space Hn+1. Let
M ⊂ Rn+1 be the closed unit ball, Hn+1 its interior endowed with
the hyperbolic metric g := 4

(1−r2)2 gEuc and Sn its boundary.

The function ρ := 1− r2 is an example of a defining function for
the boundary Sn ⊂ M. This means that ρ : M → R is smooth with
zero set Sn and dρ|Sn is nowhere vanishing. Any other defining
function is of the form f ρ, where f : M → R is smooth and
nowhere vanishing (locally around Sn).

Turning things around, g has the property that ρ2g admits a
smooth extension to all of M with the boundary values defining a
Riemannian metric on Sn (the round one). This then holds for any
defining function, but one obtains a metric on Sn conformal to the
round one. Then Isom(Hn+1) ∼= Conf (Sn). Observe that ραg
does not extend for α < 2, while for α > 2 it extends, but the
boundary values are zero.
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There is a general concept of local defining functions (and sections
of line bundles) for arbitrary hypersurfaces Σ ⊂ M. In particular,
this applies to the boundary in any manifold with boundary. The
crucial feature of those is that any smooth function f such that
f |Σ = 0 can be written as ρh for a smooth function h. This leads
to a notion of order of vanishing on Σ and of growth towards Σ.

Definition

Let M be a smooth manifold with boundary ∂M and interior M. A
Riemannian metric g on M is called conformally compact if for any
local defining function ρ for ∂M, the metric ρ2g admits a smooth
extension to all of M, whose restrict to T∂M is non-degenerate. If
g in addition is Einstein with negative scalar curvature, then it is
called a Poincaré-Einstein metric (PE metric).

This leads to a well defined conformal structure [ρ2g |T∂M ] on ∂M,
the conformal infinity of g . One is led to a variety of interesting
problems in different settings:
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Conformal compactness and Poincaré-Einstein metrics
Description via tractors

Starting from (M, g), one studies asymptotic aspects of
Riemannian geometry, in particular in the PE case.

Looking for asymptotic invariants of metrics that are
asymptotic to the hyperbolic metric leads to a hyperbolic
version of mass. (Here the PE case is trivial.)

Given a conformal structure on ∂M, one can try to “fill in” a
PE metric on M. This is interesting both on a formal level
(Fefferman-Graham) and on an analytical level.

The picture is the setup for the AdS/CFT correspondence and
various versions of holography in physics.

This is the model for compactifications of symmetric spaces.
In general, the boundary structure is much more involved and
it is difficult to endow boundary components with reasonable
geometric structures.

We will next describe the setup from the point of view of
conformal geometry.
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Description via tractors

densities

A metric g on N defines a volume density volg =
√

det(gij).

Forming powers and duals of the resulting line bundle, one
obtains a family E [w ]→ N of line bundles for w ∈ R. The
standard convention is that volg ∈ Γ(E [−n]).

E [w ] is associated to G0 via a representation of Z (CO(n)).

For a choice of metric g , (volg )−w/n is a nowhere vanishing section
of E [w ], thus identifying Γ(E [w ]) with C∞(N,R). Changing from
g to ĝ = f 2g , this identification changes as σ̂ = f −wσ, which
explains the convention.

Conversely, for w 6= 0, any nowhere vanishing σ ∈ Γ(E [w ])
determines a unique metric g in the class such that σ is parallel for
the connection induced by the Levi-Civita connection ∇g .
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We will use abstract indices, so Ea = TN, Ea = T ∗N and so on.
Adding [w ] indicates a tensor product with E [w ].

The conformal class spans a line subbundle of E(ab) isomorphic to
E [−2]. This defines a tautological section gab ∈ Γ(E(ab)[2])

(“conformal metric”). This has an inverse gab ∈ Γ(E(ab)[−2]).
Hence we may raise and lower indices at the expense of a weight.

We next describe the standard tractor bundle EA which is an
equivalent encoding of the Cartan geometry associated to a
conformal structure. Recall that this has type (G ,P), where
G = SO0(n + 1, 1). Restricting the standard representation gives a
representation of P on V := Rn+2 and EA = G ×P V and we get:

A Lorentzian bundle metric hAB with inverse hAB .

A line subbundle ∼= E [−1] (isotropic for h) whose inclusion
defines XA ∈ Γ(EA[1]).

A surjection EA → E [1] given by XA = hABX
B .
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The natural line subbundle in EA is isotropic, thus contained in its
orthocomplement and defining a filtration. We write this as a
composition series EA = E [1] +

�� Ea[1] +
�� E [−1]. Choosing a metric

in the conformal class defines a splitting of the filtration, thus
identifying EA with a direct sum, which we denote by vectors.

Changing from g to ĝ = f 2g , we put Υa = f −1df and the

splitting changes as

(
σ̂
µ̂a
ρ̂

)
=

(
σ

µa+Υaσ

ρ−gab(Υaµb+ 1
2

ΥaΥbσ)

)
. EA carries

the canonical tractor connection. In the splitting for g this is given
in terms of ∇ = ∇g and the Schouten tensor Pab of g as

∇a

( σ
µb
ρ

)
=

( ∇aσ−µa
∇aµb+gabρ+Pabσ

∇aρ−gijPaiµj

)
. Next, DAτ :=

(
w(n+2w−2)τ
(n+2w−2)∇aτ

−gij (∇i∇j+Pij )τ

)

defines a natural operator DA : Γ(E [w ])→ Γ(EA[w − 1]).

We will mainly use this on E [1] and put IA := 1
nD

Aσ, which has σ
as its top component (“BGG splitting operator”). Of course, we
can then form |I |2 := hAB I

AIB , which is a smooth function.
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To interpret |I |2, we first look at U := {x : σ(x) 6= 0}. The metric
gab := (1/σ2)gab on U satisfies ∇aσ = 0, and in this scale, it is
evident that |I |2 is a negative multiple of Scal(g). For x /∈ U,
∇aσ(x) is independent of the choice of metric and outside of U,
we get |I |2 = gij(∇iσ)(∇jσ).

Parallel sections of EA are closely related to Einstein metrics in the
conformal class:

Any parallel section is of the form IA as above. (Determined
by the top component.)

For U and g as above, ∇aI
A|U = 0 is equivalent to the

Schouten tensor Pab of g being proportional to gab and hence
to g being Einstein.

If IA is parallel, then |I |2 is constant and on U is a negative
multiple of the Einstein constant of g .
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Consider a conformal manifold M = M ∪ ∂M with boundary, let g
be a metric in the class on M and take σ := (volg )−1/n ∈ Γ(E [1]).

Then g is conformally compact iff σ extends by zero to a defining
density for ∂M.

Proof: For a local defining function ρ for ∂M put ĝ := ρ2g . If g is
conformally compact, ĝ is a metric in our class defined on all of
M. Thus σ̂ is nowhere vanishing. But volĝ = ρn volg and hence
σ = ρσ̂ on M, which shows that σ extends as required. Conversely,
if σ extends to a defining density, then ρ−1σ smoothly extends to
M and the metric it determines coincides with ρ2g on M.
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Theorem

For M = M ∪ ∂M let g be a negative Einstein metric on M such
that the conformal class [g ] smoothly extends to M, but g itself
does not admit a smooth extension to any neighborhood of a
boundary point (e.g. because g is complete).
Then g is conformally compact and hence Poincaré-Einstein.

EA and the tractor connection are defined on M.

The tractor IA determined by g is parallel over M hence can
be smoothly extended to a parallel tractor on M.

Projecting IA to Γ(E [1]) provides a (unique) smooth extension
of σ to all of M.

If σ(x) 6= 0 for some x ∈ ∂M, one obtains a smooth extension
of g to a neighborhood of x , so all boundary values are zero.

Since |I |2 is constant on M and nonzero on M, σ is a defining
density.
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Description via tractors

The setup described here is the starting point for a detailed
analysis in several articles of R. Gover and A. Waldron: Given
M = M ∪ ∂M and a conformally compact metric g on M, take the
corresponding conformal structure on M, the defining density
σ ∈ Γ(E [1]) for ∂M selected by g and put IA := 1

nD
Aσ. We

assume that |I |2 is nowhere vanishing.

Consider I · D : Γ(E [w ])→ Γ(E [w − 1]), τ 7→ hAB I
ADBτ . This

naturally extends to sections of weighted tractor bundles.

On M, this is a Yamabe type operator associated to g .

If |I |2 ≡ 1 close to ∂M, then it restricts to the conformally
invariant Robin operator on a neighborhood of ∂M.

Together with multiplication by σ and a weight operator, I ·D
forms an sl2-triple. This allows for very efficient computations
(analysis of eigenfunctions, problems of harmonic extension,
operators acting tangentially, etc.)
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There are very interesting applications to the study of (oriented)
hypersurfaces Σ in a conformal manifold (N, [g ]). The natural
question here is whether one can find a defining density
σ ∈ Γ(E [1]) for Σ ⊂ N such that the corresponding tractor
IA = 1

nD
Aσ satisfies |I |2 ≡ 1 (singular Yamabe problem).

Starting from any defining density σ0 for Σ the problem can be
studied formally along Σ:

If n = dim(N), there exists σ (unique up to O(σn+1)) such
that |I |2 = 1 +O(σn).

For this σ, σ−n(|I |2 − 1) is a smooth section of E [−n] defined
locally around Σ, whose restriction to Σ is an invariant of
(N, [g ],Σ).

for n = 3, this produces the Willmore energy, so one obtains a
natural family of higher order Willmore energies and
invariants.
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Compactifications of homogeneous spaces

Recap / program

In the second lecture we have seen that Poincaré-Einstein
metrics can be described in terms of conformal structures that
admit a parallel section of the standard tractor bundle. This
provides a relation to holonomy reductions of Cartan
connections which will be discussed in the first part of today’s
talk.

In the second part of the talk, I will discuss how the holonomy
perspective leads to the concepts of projective compactness
that has been developed in several recent articles of R. Gover
and myself. I will also make some remarks on c-projective
compactness.

In the last part of the talk, I will sketch applications of the
holonomy theory to the study of compactifications of
symmetric spaces and more general homogeneous spaces.
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Projective compactness

Compactifications of homogeneous spaces

Let (p : G → M, ω) be a Cartan geometry of type (G ,P).
Since ω trivializes TG, it has no holonomy in a naive sense.

As we have seen, there is an induced principal connection ω̃
on G̃ := G ×P G , which has a holonomy group ⊂ G .

For conformal Cartan connections, this was studied since the early
2000’s under the name “conformal holonomy”. There were some
early results, including classification results on possible holonomy
groups (S. Armstrong), but some basic geometric features
remained unnoticed for a longer time.

The fact that a parallel standard tractor is equivalent to an
Einstein metric on a dense open subset was fundamental for the
classification results. But the relation to Poincaré-Einstein was first
noticed in a 2009 article of R. Gover, and the general holonomy
theory appeared in a 2014 article of R. Gover, M. Hammerl and
myself:
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Compactifications of homogeneous spaces

Let O be a homogeneous space of G . For a geometry (G, ω) of
type (G ,P), one gets G ×P O ∼= G̃ ×G O, so this inherits an
Ehresmann connection. One defines a holonomy reduction of type
O to be a parallel section of that bundle. This corresponds to a
P-equivariant smooth function f : G → O.

Let O = tOi be the decomposition of O into P-orbits. Then for
each x ∈ M, f (Gx) ⊂ O is one of these orbits and if this is Oi , we
say that i ∈ O/P is the P-type of x . Correspondingly, we get a
decomposition M = tMi according to P-types.

For G/P, one verifies that there is a unique holonomy reduction of
type O for each α ∈ O, corresponding to the P-equivariant
function G → O given by f (g) = g−1 · α. Putting H := Gα (so we
can identify O with G/H) we conclude that the decomposition of
G/P according to P-types coincides with the decomposition into
H-orbits. Thus P-types are indexed by H\G/P in general.
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Compactifications of homogeneous spaces

It is a general result that H-orbits in G/P are initial submanifolds,
and of course they are homogeneous spaces of H. In the curved
case, one uses a version of normal coordinates to prove:

Let x ∈ M be a point of P-type i , fix a holonomy reduction of
G/P corresponding to H for which eP has P-type i . Let Li be the
stabilizer of eP in H. Then

1 There are open neighborhoods U of x and V of eP and a
diffeomorphism ϕ : U → V that is compatible with the
decomposition into P-types. In particular, Mi ⊂ M is an
initial submanifold.

2 The initial submanifold Mi inherits a Cartan geometry of type
(H, Li ) from the holonomy reduction.

This motivates the terminology “curved orbit decomposition”. The
curved orbits Mi ⊂ M cannot look worse than the H-orbits in G/P.
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Compactifications of homogeneous spaces

For the case relevant to Poincaré-Einstein, G = SO0(n + 1, 1), P is
the stabilizer of a null ray and H ∼= SO(n, 1) is the stabilizer of a
positive vector in Rn+1,1. This gives

M = M− ∪M0 ∪M+, with M± open and M0 (if non-empty) a
separating hypersurface according to the inner product of the
vector with the ray.

L± ∼= SO(n), so H/L± is hyperbolic space and on M± obtains
induced Riemannian metrics. Einstein follows from normality
of the conformal Cartan connection.

L0 is the stabilizer of a null line in Rn,1, H/L0 is the conformal
(n − 1)-sphere and on M0 one obtains the normal Cartan
geometry associated to a conformal structure.

So this not only provides the picture for Poincaré-Einstein we had,
but it also leads to the canonical Cartan geometries associated to
all the geometric structures on the curved orbits.
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Projective structures are one of two examples of parabolic
geometries that are not determined by the underlying structure
discussed in lecture 1. Here G = SL(n + 1,R) and P is the
stabilizer of a ray in Rn+1, so G0 = GL+(n,R).

For a Cartan geometry of type (G ,P), the underlying bundle
G0 → N is the full oriented frame bundle of N. But one can use
G0-equivariant sections G0 → G to pull back the g0-component of
ω to a principal connection on G0.

This defines a family of linear connections ∇ on TN, that turn out
to be torsion free and have the same geodesics up to
parametrization. Thus they form a “projective equivalence class”
and it turns out that the Cartan geometry equivalently encodes
this class respectively the family of geodesic paths.
There are again density bundles E(w) and non-vanishing densities
select connections in the class.
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There are two relevant holonomy reductions here: First, we can
take the stabilizer H1 of a linear functional α on Rn+1. On the
homogeneous model, this decomposes Sn into two open
hemispheres which inherit flat connections and the totally geodesic
equator.

On a curved geometry, such a reduction is given by a parallel
sections of G ×P R(n+1)∗ and provides

M = M− ∪M0 ∪M+ with M± open and M0 a totally geodesic
separating hypersurface.

Ricci flat connections in the projective class on M±.

The normal Cartan geometry associated to a projective
structure on M0.

If the connections on M± are Levi-Civita for some metric, there is
an induced holonomy reduction for the Cartan geometry on M0.
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For the stabilizer H2 of a non-degenerate bilinear form of signature
(n, 1) on Rn+1, the orbit structure on G/P is more complicated:

Two copies of Riemannian hyperbolic space (negative rays)

two copies of a Riemannian conformal sphere (null rays)

One copy of Lorentzian de Sitter space (positive rays)

On curved geometries, such holonomy reductions are equivalent to
Klein-Einstein metrics. The setup looks similar to the PE case:
Open curved orbits inherit Einstein metrics and there are
separating hypersurfaces that inherit the normal Cartan geometries
associated to a conformal structure.

From a geometric point of view, there are several remarkable
differences to the Poincaré-Einstein case:
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Here the metrics on the open orbits have different signature
(Riemannian and Lorentzian). Crossing a boundary, the
signature changes.

What one actually gets on the open orbits are is a connection
∇ with non-degenerate, parallel Schouten-tensor (which then
is an Einstein metric).

The induced conformal structure on M0 can be described in
terms of the projective second fundamental form (which is
well defined up to scale).

The conformal tractor bundle on M0 is the projective standard
tractor bundle endowed with the the parallel bundle metric
defining the holonomy reduction.

Trying to weaken the two types of holonomy reductions to obtain
an analog of conformal compactness, it turns out that they both fit
into a broader picture:
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A projective modification of ∇ is described by a one-form Υ via
∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ. One defines projective compactness
by the requirement that certain modifications admit a smooth
extension, but this allows for an additional parameter.

Fix α ∈ (0, 2]. For M = M ∪ ∂M a connection ∇ on M is called
projectively compact of order α if for a local defining function ρ for
∂M, the projective modification of ∇ determined by Υ := dρ

αρ

admits a smooth extension to M.

α is related to the rate of volume growth, α ∈ (0, 2] is needed
for the boundary to be at infinity.

The holonomy reductions from before are special cases for
α = 1 (Ricci flat) and α = 2 (Einstein), respectively.

If ∇ preserves a volume form, projective compactness of order
α is equivalent to a defining density in E(α).
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Selected results on projective compactness

Asymptotic forms for metrics that are sufficient for projective
compactness of any order α, thus many local examples.

For α = 2, the asymptotic form is equivalent to projective
compactness.

If the projective structure [∇] determined by a metric g on M
admits a smooth extension to M, then Scal(g) extends to M.
Locally around boundary points in which this extension is
non-zero, g is projectively compact of order 2.

Suppose that g is Einstein on M, [∇] extends to M but ∇
does not extend to any open subset of ∂M. Then g is
projectively compact of order 1 if Ric(g) = 0 and of order 2 if
Ric(g) 6= 0 (different rates of volume growth are forced).

Explicit description of the conformal boundary tractor bundle
and connection from the projective data in the interior.

Andreas Čap
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There is an almost complex analog of projective compactness of
order 2, which involves c-projective geometry (“c-projective
compactness”). In its metric version, this involves (quasi-)Kähler
metrics in the interior and (almost) CR structures on the boundary.

Results

The complete Kähler metrics on smoothly bounded domains
constructed from defining functions are c-projectively
compact.

Equivalent characterization via an asymptotic form.

Holonomy reductions to U(p, q) ⊂ SL(n,C) are contained as
a special case. These lead to Kähler-Einstein metrics in the
interior.
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Suppose that G/P is a generalized flag manifold and H ⊂ G is a
subgroup that acts with finitely many orbits on G/P. Then there
are open H-orbits H/L which inherit a (locally flat) parabolic
geometry of type (G ,P) and the closure in G/P defines a
compactification of H/L. This is not a rare situation:

Theorem (J. Wolf, 1976)

Let G be a real simple Lie group and θ an involutive automorphism
of G with fixed point group H ⊂ G . Then for each parabolic
subgroup P ⊂ G , H acts on G/P with finitely many orbits.

Example: For p ≤ q put n = p + q, take G := SL(n,R) and P
such that G/P = Gr(p,Rn). Let H := SO(p, q) ⊂ G defined by a
bilinear form b on Rn. H-orbits in G/P are determined by rank
and signature of the restriction of b, and for positive definite
restriction, one gets the Riemannian symmetric space H/K ,
K = S(O(p)× O(q)).
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Hence we get a compactification of H/K , in which all positive
semi-definite subspaces are added as boundary components. The
space H/K carries an invariant Grassmannian structure
(decomposition of TM as a tensor product), which admits a
smooth extension across the boundary.

Results

b can be used to construct parallel sections of tractor bundles
that project to solutions of invariant operators.

Description of orbit-closures as zero sets of such solutions.

Construction of defining sections for orbits, which lead to slice
theorems that describe the neighborhood of each orbit in the
compactification.

Local models turn out to be symmetric matrices decomposed
according to rank.
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