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1 January 12

In these lectures we are going to talk about string field theory, a quantum
field theory of strings. Our specific objective is to understand how homotopy
algebras emerge as defining the gauge principles of string theory. We will not
assume familiarity with string quantisation of perturbative quantum field theory.
Unfortunately these topics are necessary. So we will introduce the basics and
that will take up the majority of these lectures. We begin by drawing a table

Definition 1. Fermat’s Principle: The path that light particles choose is the
one of least time between given points

This is also known as the principle of least time. If light travels with constant
speed in a vacuum, the shortest path is a straight line. There is an analogue
principle called

Definition 2. The principle of least area: As a string travels in time, it sweeps
out a surface. The world-sheet that the string chooses should be the one of
minimal area.

On the other side, light can be understood as a disturbance of the electro-
magnetic field. This is Maxwell’s equations and theory. If we include quantum
effects, we get quantum electrodynamics Other fundamental forces can also be
understood as quantum disturbances of a field, such as non-abelian gauge the-
ories. Even gravity can be understood as a gauge theory, but in that case we
don’t know how to include quantum effects. In these days the framework of
quantum field theories has mostly superseded the particle ideas. But it turns
out that particle ideas can in fact reproduce a lot of results from QFT. It’s
not necessarily wrong, just less useful, because in physics we have situations
where we are interested in an unbounded number of particles with strong inter-
actions. In such situations, the particle notions start to lose their utility, while

Particles Strings
Fermat’s Principle Principle of least area
Quantum Electrodynamics (and non-abelian gauge theories) String field theory
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the QFT framework remains effective. On the other hand, most string theorists
understand string theory from the principle of least area (Fermat’s principle).
If we are interested in situations containing an unbounded number of strings,
the principle of least area loses utility in the sense that it doesn’t lead to useful
understanding. A resolution to this problem is to understand string theory as
a quantum field theory. If we can do this, then we will understand what string
theory is as a complete theory. In practice string field theory is a rather abstract
formalism, and in the minds of most physicists it has not yet superseded the
principle of least area.

1.1 Gauge symmetry

We will describe our physical system using dynamical variables that redun-
dantly parametrize the set of physically in-equivalent situations. In other words
you can have two unequal sets of dynamical variables that describe the same
situation. However there is a transformation between physically equivalent dy-
namical variables which forms a group. This is called a a gauge group. We
require that physically measurable quantities are invariant with respect to this
gauge group. This can provide constraints to the form of the theory.

Remark 1. In string theory, the gauge symmetry fixes the form of the theory
uniquely. This is via homotopy algebras.

1.2 Particle actions

One thing that Fermat didn’t appreciate when he formulated his principle is
that light not only follows a trajectory, but also has a polarisation. That is,
photons have spin. So unfortunately Fermat’s principle doesn’t accommodate
this. We won’t be able to derive Maxwell’s equations. Still, we can describe
particles with vanishing spin. This means particles of spin 0 and mass m.

Remark 2. On the other hand strings have internal motion that allow us to
parametrize things like spin.

A particle can follow a trajectory from xµi to xµf , xµ(s), s ∈ [0, 1]. The action
is given by

S[xµ(s)] = m

∫ 1

0

ds
√
ẋµ(s)ẋµ(s) (1)

We will Wick-rotate to Euclidean signature. The action principle tells you that
the path is a straight line, but it does not provide a parameterization s.

1.3 Gauge symmetry

Our parametrized curve redundantly describes the set of equivalent objects,
i.e unparametrized paths. There is an action by the diffeomorphism group
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Diff([0, 1]). So in particular if f(s) is a diffeomorphism of [0, 1], the action is to
re-parametrize the path:

f ◦ xµ(s) = xµ(f(s)) (2)

And this action leaves the Action invariant:

f ◦ S[xµ(s)] = S[xµ(s)] (3)

Now we want to include quantum effects. What we should do is take some kind
of average between all paths between the two points: “sum over histories”∫

[dxµ(s)]e−S[x
µσ] (4)

We will introduce a new but equivalent action instead.

S[e(s), xµ(s)] =
1

2

∫ 1

0

ds(
1

2
e(s)−1ẋµ(s)ẋµ(s) +m2e(s)) (5)

The einbein e(s) > 0 represents the distance on a world-line between s and
s + ds. We can require that the action is extremal, and then the einbein is in
fact determined to be

e(s) =

√
ẋµ(s)ẋµ(s)

m
(6)

The advantage of the new formulation is that the action is now a quadratic form
in the path of the variable, which we know how to evaluate. This action still
admits a gauge invariance under diffeomorphisms of the line segment:

f ◦ xµ(s) = xµ(f(s))

f ◦ e(s) = (
df(s)

ds
)−1e(f(s))

f ◦ S[e(s), xµ(s)] = S[e(s), xµ(s)]

Now we can integrate∫
[dxµ(s)][de(s)]e−S[e(s),x

µ(s)] ≡ G(xµi , x
µ
f ) (7)

This is almost the amplitude for a quantum particle to pass from the initial point
to our final point. What is amplitude? If one rotates this quantity and takes
the square of its magnitude, it should represent a probability. Unfortunately
it’s not a physically meaningful statement to say that a particle is located xµi at
time s = 0. If we had this, then what we have would in fact be the amplitude.
Thus what we have is something more formal, called the

• “Off-shell amplitude”

• (2-point) Green’s function
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• propagator

It is a building block that will allow us to compute other quantities. Our task
is now to evaluate this path integral.

Problem 1. We get a divergent factor proportional to the volume of the group
of diffeomorphisms of the unit line segment.

You are supposed to assume that this factor is divided out. How do we
remove volume factor?

Observation 1. For a given configuration e(s), there is a unique diffeomor-
phism f(s) such that if you transform f ◦ e(s) = τ you get a constant equal to
the invariant length of [0.1].

f−1(s) =
1

τ

∫ s

0

ds′e(s′) (8)

We can make the einbein constant, but we can not make it equal to one.
Thus there is a moduli space given by the length, modulo diffeomorphisms.
Thus we can write

[de(s)] = dτ [df(s)](determinant) (9)

The determinant can be accounted for by introducing what are called “ghost
fields” b(s), c(s) on the world-line with BRST symmetry. This is the origin of
the homotopy algebra structures. In our particle example however this will be
trivial, and we can more or less ignore it as it is too degenerate to be useful.

G(xµi , x
µ
f ) =

∫ ∞
0

dτ

∫
[dxµ(s)]e−S[τ,x

µ(s)] (10)

2 January 13

In our previous lecture we reduced the path integral to the form

G(xi, xf ) =

∫ ∞
0

dτ

∫
[dxµ(s)]e−

1
2

∫ 1
0
ds( 1

τ ẋ
µ(s)ẋµ(s)+m

2τ) (11)

Here we integrate over the modulus τ which represents the invariant length of the
world-line interval. The trick to evaluate this further is to make a substitution,

xµ(s) = xµcl(s) + yµ(s) (12)

Where the first term is the classical path. If you do this and normalize the
integral over yµ, G will evaluate to

G =

∫
dDp

(2π)D
eipa(x

µ
i −x

µ
f )

∫ ∞
0

dτe−τ(p
µpµ+m

2) =
dDp

(2π)D
eipa(x

µ
i −x

µ
f )

1

p2 +m2

(13)
which is the propagator of scalar QFT.
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2.1 Higher point Green’s functions

Suppose we have multiple points, x1, x2, x3, x4. And suppose that particles
don’t just move from one point to another, but may be created or destroyed.
We describe this by different diagrams and coupling constants. To compute the
4-point Green’s function, we would have to evaluate a lot of terms coming from
different diagrams of multi-particle interactions. In principle we could consider
an n-point Green’s function:

G(x1, x2, . . . , xn) =
∑

sum over graphs

Γ (14)

This is generally an asymptotic and divergent series. Graphs with loops can
occur, in particular “tadpole graphs”. This has one cubic vertex coming with a
coupling constant g03. We integrate over the interaction point

g03

∫
dpyG(y, y)G(y, y) (15)

and

G(y, y) =

∫
dDp

(2π)D

∫ ∞
0

dτe−τ(p
2+m2) =

∫ ∞
0

dτe−τm
2 Vol(SD−1)

(2π)D

∫
d|p||p|De−τ |p|

2

(16)
yielding

G(y, y) =

∫ ∞
0

dτ

τD/2
e−τm

2

(
Vol(SD−1)

(2π)D

∫ ∞
0

dααD−1e−α
2

) (17)

which is divergent if D ≥ 2. This is the famous ultraviolet divergence. We want
to emphasize that this appears when the length of the loop shrinks down to 0. To
deal with this divergence we introduce a “counter-term” which cancels out the
divergence, which comes with a coupling constant g1,1 representing the fact that
it absorbs one term. We may need to introduce counter-terms systematically
for each order in perturbation theory for all graphs with some coupling constant
g3n. It could happen that the coupling constants are chosen in such a way that
you only need a finite number of counter-terms. In that case the theory is called
renormalizable. Theories which do not have this property have no predictive
power in general.

2.2 Quantum states

We computed Green’s functions for particles connecting specific positions. But
in the quantum setting a particle might be in a distributed superposition of
locations. This is described by a wavefunction

φ(x) : RD → C (18)

This is also called the quantum state. They are elements of an infinite dimen-
sional vector space H. In principle we would like this to be a Hilbert space so
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that we can take squares. However this space is not physical, and in fact in
string theory the space will turn out to not be Hilbert. In the formalism of
quantum field theory, φ(x) is a spacetime field. We know that quantum states
evolve according to the Schrödinger equation,

Hφ =
∂

∂t
φ (19)

In our case the time parameter t = s is equal to the world-line parameter. The
Hamiltonian H can be derived from our action

S =
1

2

∫
ds(ẋ2 +m2) (20)

and it is
H = −∂µ∂µ +m2 (21)

It is not meaningful to say that any physical configuration is changing with
respect to the world-line parameter s. This motivates a distinction between
physical quantum states and unphysical quantum states. The physical quantum
states, also called “on-shell” quantum states, satisfy

(−∂µ∂µ +m2)φ = 0 (22)

The space of physical states Hphys ⊂ H forms a subset of the full space of
quantum states. It might seem that if we want to compute physical quantities,
we should compute Green’s functions . . .

3 January 15

So far we have started with Fermat’s principle and tried to derive quantum
field theory. Hopefully this will aid in understanding the sketch of string theory
which will follow.

1. Fermat → Action → Quadratic form in position and einbein

2. Evaluate propagator (path integral) for particle starting at xi and ending
at xf . This involved integrating over a modulus or length τ of the particle
world-line.

3. Higher point Green’s functions Gn(x1, . . . , xn). This involved several par-
ticles at many positions. This involved summing over all the ways the
particles could split and join. We discussed loops and ultraviolet diver-
gences and counter-terms.

4. We discussed the notion of a wavefunction (quantum state) φ(x) ∈ H.
Inside H there is a subspace of physical quantum states Hphys. These
are states which satisfy the Klein-Gordon equation (∂µ∂µ +m2)φ(x) = 0.
These quantum states allow us to deal with superpositions.
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We may consider Gn to be a multilinear map:

Gn : H⊗n → C (23)

Where

Gn(φ1, . . . φn) =

∫
dx1 . . . dxnG(x1, . . . , xn)φ1(x) . . . φn(x) (24)

If we want to work with something where the probabilities make sense, you might
think that we should substitute physical wavefunctions into this equation. This
is incorrect. The problem is that physical wavefunctions make a divergence due
to not evolving in time. Basically you are integrating

∫∞
0
τdτ . What we will do

is “amputate” the Green’s function to define “physical amplitudes”. A physical
amplitude can be regarded as a linear map

An : H⊗nphys → C (25)

Taking multiple physical states to a number. This is our first physically mea-
surable quantum quantity.

Gn(x1, . . . , xn) 7→ (∂21 +m2)(∂22 +m2) . . . (∂2n +m2)Gn(x1, x2, . . . , xn) (26)

The above is a naive procedure, because amputating the propagator is not
general enough, it only fixes divergences from loops. What needs to be done is
to remove each external propagator and replace them with physical states.

Remark 3. The analogous problem is difficult to deal with in conventional
string theory. In that case, the resolution seems to be best understood by applying
string field theory, which allows you to compute the quantum corrections to the
mass of highly excited strings.

Now we have

An(φ1, . . . , φn) =
∑

moduli space of that graph

∫
amputated graphs (27)

This has a close analogue in string theory.

3.1 Ward identities

Suppose your system has some symmetries. These symmetries yield some iden-
tities for An. There are not that many symmetries for particles, but there is
translation symmetry. We know that there is not preferred choice of origin in
spacetime, so if we translate all φi, the probability amplitude should be the
same.

Example 1.

An(∂µφ1, . . . , φn)+An(φ1, ∂µφ2, . . . , φn)+ · · ·+An(φ1, φ2, . . . , ∂µφn) = 0 (28)
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Such equalities are called Ward identities. It means that G(xi, xf ) only
depends on xµi −x

µ
f . Ward identities imply identities for vertices where particles

interact. We may write a vertex as a multilinear map:

Vg,n : H⊗n → C (29)

where g is the genus.

V0,3(φ1, φ2, φ3) = g0,3

∫
dDxφ1(x)φ2(x)φ3(x) (30)

Translation identity for An implies

Vg,n(∂µφ1, . . . , φn) + · · ·+ Vg,n(φ1, . . . , ∂µφ3) = 0 (31)

This is essentially how homotopy algebras appear. The Ward identities that
appear force the operators to satisfy A∞ or L∞ relations.

3.2 Quantum field theory

We promote our quantum states φ(x) ∈ H to a field. Our theory is defined by
integrating over φ(x). It is governed by an action principle

S[φ] =
1

2!

∫
dxφ(x)(∂µ∂µ +m2)φ(x) +

1

3!
V0,3(φ, φ, φ) +

1

4!
V0,4(φ, φ, φ, φ) . . .

(32)

+
1

1!
V1,1(φ) +

1

2!
V1,2(φ, φ) +

1

3!
V1,3(φ, φ, φ) + · · ·+ 1

1!
V2,2(φ) + . . . (33)

Where the latter terms are counter-terms. We get Green’s functions

Gn(x1, . . . , xn) =

∫
[dφ(x)]e−S[φ]φ(x1) . . . φ(xn) (34)

See a textbook for this.

3.3 String theory

1. We start with the principle of least area. → quadratic action Xµ with
world-sheet metric gab.

2. Action is invariant under diffeomorphisms of the world-sheet and local
scale transformations.

3. The action is defined on a Riemann surface.

4. We may compute the path integral of this action modulo diffeomorphisms
and scale transforms. This yields

∫
moduli space of Riemann surfaces.

The Jacobian determinant from equation 9 is now important, and this
introduces ghost fields and BRST symmetry.
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5. The space of quantum states of the string is a graded vector space once
you account for the ghosts, and inside there are physical states that turn
out to be invariant under BRST operators. Two physical states can be
equivalent if they differ by the BRST difference of another state. This
means that all our physical states are equivalent by addition of a BRST
exact term, which implies a Ward identity.
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