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Abstract

The BV-formalism associates to any Lagrangian field theory an L∞-

algebra. Any L∞-algebra comes with minimal models, and the minimal

models of L∞-algebras originating from Lagrangian field theories capture

the scattering amplitudes of these. The minimal models are easily com-

puted using the homological perturbation lemma, which leads to recursive

formulas helpful for their studies.

Pointers to literature (containing references to the original papers):

[1]: Review, conventions, technical details, classical field theory

[2]: shorter version of above

[3]: tree level amplitudes, scalar and Yang–Mills theory, Berends–Giele recursion

[4]: loop level amplitudes, homological perturbation lemma, non-planar diagrams

1. Lecture I

1.1. Motivation: Scattering amplitudes

Particle Accelerator (LHC at CERN):

• Beams of protons at very high velocity (0.99999999c) circulate in ring with

diameter 27km.

• Collision in a small area, particles deflected and decay into new particles

(“scatter”)

• Detector measures these particles and their properties

• Initial and final particles are asymptotic and “free,” i.e. non-interacting, not

feeling potential
∗Heriot–Watt University, Edinburgh, UK, email: c.saemann@hw.ac.uk
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Transition from asymptotic incoming to asymptotic outgoing particle configurations

via S-matrix (“scattering matrix”):

|asymptotic out〉 = S |asymptotic in〉 , (1.1)

Note:

• | . . . 〉 denote asymptotic (i.e. t = ±∞) configurations.

• | . . . 〉 are vectors/rays in a Hilbert space H
• H is infinite dimensional (labeled e.g. by momentum of particle, spin, . . . )

• S is a unitary operator

Scattering amplitude (probability amplitude) and probability:

A := 〈asymptotic out|S|asymptotic in〉 and |A|2 . (1.2)

Scattering amplitudes A
• are crucial to understand nature

• have interesting and surprising structures.

• computed via heuristics dubbed Quantum Field Theory

Various prescriptions for computing A, but usually involving much machinery

• Classical action

• Quantization of fields

• Wick’s theorem

• (amputated) Feynman diagrams

• Dyson series

• LSZ reduction

• ...

This is complicated, hard to explain to mathematicians. Better:

• field theory actions
BV formalism←−−−−−−−−−−−→ L∞-algebras

• L∞-algebras have minimal models (from homological perturbation lemma)

• Minimal models encode scattering amplitudes

Also: exposes many structural results on scattering amplitudes
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1.2. Homotopy algebras

(Name: generalizations of the classical algebras: associative, Lie, Leibniz, commuta-

tive, etc., in which the identities hold only “up to homotopy”)

Strict L∞-algebras: Differential graded Lie algebra (g, [−,−], d):

• graded vector space: g = ⊕i∈Zgi
• a ∈ gi, b ∈ gj: da ∈ gi+1 [a, b] ∈ gi+j

• [a, b] = (−1)ab[b, a] [a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]]

• d2 = 0 d[a, b] = [da, b] + (−1)a[a, db]

• Maurer–Cartan: da+ 1
2
[a, a] for a ∈ g1

Metric/quadratic extension: (“cyclic”)

• graded symmetric bilinear form 〈−,−〉 : g× g→ R

• compatibility: 〈da, b〉+ (−1)a〈db, a〉 = 0 〈[a, b], c〉+ (−1)ab〈b, [a, c]〉 = 0

• Maurer–Cartan action: S = 1
2
〈a, da〉+ 1

3!
〈a, [a, a]〉.

Alternative description I: Codifferential on cocommutative coalgebra:

• d of degree 1, [−,−] of degree 2

• grade-shift: g[1], defined via (g[i])j := gi+j, all have grade 1

• combine into codifferential D = d + [−,−] on �•(g[1]) D2 = 0

Alternative description II, Dually: Differential graded commutative algebra:

• basis τα of g, coordinate functions ξα ∈ g[1]∗, ξα : g[1]→ R

• Q = D∗ is differential on �•(g[1]∗), Q2 = 0

• actually: vector field on g: Q = dβαξ
α ∂
∂ξβ

+ 1
2
fγαβξ

αξβ ∂
∂ξγ

• cyclic structure is a symplectic form ω on g[1].

• “Chevalley–Eilenberg algebra CE(g) of g”

Extensions:

• general L∞-algebra: allow for arbitrary polynomial coefficients in Q

get totally antisymmetric linear “products” µi : g∧i → g

D = µ1 + µ2 + µ3 + . . . D2 = 0 ⇔ µ2
1 = 0 , . . . , µ1µ3 = µ2µ2

• L∞-algebroids: allow for graded vector bundle over manifold

• A∞-algebra: replace � by ⊗ everywhere

Analogue of matrix algebras for matrix Lie algebras, Antisymmetrization: L∞
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Special cases:

• trivial: ∗, gi = ∗.
• strict: µi = 0 for i > 2: differential graded Lie algebras

• skeletal: µ1 = 0

example: g = (R[1]
0−−→ su(n)), µ1 = 0, µ2 = [−,−], µ3 = 〈−, [−,−]〉

(“string Lie 2-algebra”)

• linearly contractible: µi = 0 for i ≥ 2, H•µ1(g) is trivial

example: R[q]
id−−→ R[q − 1]

Relation of L∞-algebras to other concepts:

• differential graded commutative algebras

• codifferential graded cocommutative coalgebras

• L∞-algebras are useful models of ∞-categorified Lie algebras:

g = g−k ⊕ · · · ⊕ g0 is a “Lie (k + 1)-algebra.

• Differentiation ∞-groups/-oids yields L∞-algebras/-oids.

• Strict L∞-algebras crossed modules, hypercrossed modules of Lie algebras

• Relation to operads.

1.3. Quasi-isomorphisms

g, g̃: L∞-algebras. Note: µ1, µ̃1 are differentials!

Appropriate notion of morphisms:

• strict morphism: φ : g → g̃ such that µ̃i(φ(a1), . . . , φ(ai)) = φ(µi(a1, . . . , ai))

corresponds to morphism φ∗ : CE(g̃)→ CE(g) linear in the generators ξα.

• general morphism: φ∗ : CE(g̃)→ CE(g) without linear restriction

corresponds to morphism φ encoded in maps φi : g∧i → g of degree 1− i

Quasi-isomorphism (appropriate notion of isomorphism for L∞-algebras):

• (General) morphism of L∞-algebras, inducing isomorphism on cohomologies:

φ∗ : H•µ1(g) ∼= H•µ̃1(g̃)

Structural theorems: Any L∞/A∞-algebra is

• isomorphic to linearly contractible⊕skeletal

• quasi-isomorphic to a skeletal one (“minimal model”)

• quasi-isomorphic to a strict one
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Examples:

• R[q]
id−−→ R[q− 1] is quasi-isomorphic to ∗ (“trivial pairs” in BV gauge fixing)

• R[1]→ g is quasi-isomorphic to L̂0g[1]→ P0g

1.4. Higher Chern–Simons theory

Ingredients:

• compact d ≥ 3-dimensional manifold M

• higher gauge algebra g = gd−3 ⊕ · · · ⊕ g0, 〈−,−〉
• Note: dgca ⊗ L∞-algebra carries L∞-structure:

◦ µ̂1 = d⊗ 1 + 1⊗ µ1

◦ µ̂i = 1⊗ µi
◦ 〈α⊗ a, β ⊗ b〉 =

(∫
M
α ∧ β

)
〈a, b〉

• Maurer–Cartan action:

◦ action: S =
∑

k≥1
1

(k+1)!
〈a, µk(a, . . . , a)〉, a ∈ g1 (not S-matrix!!)

◦ Critical points: δS
δa

=
∑

k≥1
1
k!
µk(a, . . . , a) =: f

◦ Invariance of action S under a→ a + δa

with δa =
∑

k≥0
1
k!
µk+1(a, . . . , a, c0), c0 ∈ g0

• This defines higher Chern–Simons theory in any dimension!

Example: d = 3

• g = g0 is Lie (1-)-algebra, µ2 = [−,−]

• a = A ∈ Ω1(M, g)

• f = F = dA+ 1
2
[A,A]

• S =
∫
M

1
2
〈A, dA〉g + 1

3!
〈A, [A,A]〉g =:

∫
M

cs(A)

• d cs(A) = 〈F, F 〉

Example: d = 4.

• g = g−1 ⊕ g0

• a ∈ Ω•(M, g)1: a = A+B ∈ Ω1(M, g0)⊕ Ω2(M, g−1)

• f = dA+ 1
2
[A,A] + µ1(B) + dB + µ2(A,B) + 1

3!
µ3(A,A,A)

• S =
∫
M
〈B, dA+ 1

2
µ2(A,A) + 1

2
µ1(B)〉g + 1

4!
〈µ3(A,A,A), A〉g =:

∫
M

cs(A,B).

• d cs(A,B) = 〈F,H〉
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2. Lecture II

2.1. Field Theory

A classical field theory is given by:

• space-time M , e.g. M = R1,3, better M : compact.

• set of “fields” F (connections on some principal fiber bundle or sections of

associated vector bundles)

• action functional S : F→ R defined via a Lagrangian L : F→ Ωtop(M):

S =

∫
M

L . (2.1)

• Classical equations of motion: δS
δφ

= 0 for all φ ∈ F.

• Example:

◦ Scalar field ϕ : R1,3 → R

◦ Action:

S =

∫
R1,3

d4x

1
2
ϕ(−�−m2)ϕ︸ ︷︷ ︸
kinetic term

− κ
3!
ϕ3 − λ

4!
ϕ4︸ ︷︷ ︸

interaction term

 , (2.2)

κ, λ ∈ R, λ > 0.

• Connections:

◦ encoded in local, Lie-algebra valued 1-forms A ∈ Ω1(M, g)

◦ redundancy: gauge equivalence. Infinitesimal gauge transformations:

A→ A+ δA with δA = dc+ [A, c], c ∈ Ω0(M, g)

◦ Yang–Mills Action: S =
∫
R1,3〈F, ?F 〉g, “curvature” F := dA+ 1

2
[A,A]

• Observables: Functions on F which satisfy the equations of motion and which

are invariant under gauge transformations.

Quantum Field Theory:

• want to compute expressions like (“path integrals”):∫
DΦ︸︷︷︸

measure on F

f(Φ) e−
i
~S[Φ] (2.3)

• Not rigorously possible, heuristics from finite Gaussian integrals, stationary

phase formula, perturbation theory.

• Very roughly: sum over all Feynman diagrams: graphs constructed from ver-

tices given by the monomials in the interaction term.
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2.2. The Batalin–Vilkovisky formalism – classical part

For QFT, we first need to describe observables. Thus:

• Divide out redundancy / gauge equivalence

• Impose classical equations of motion

Gauge equivalence via Chevalley–Eilenberg resolution:

• Bad idea: divide field space by gauge transformations

• Note: Fields+gauge transformations: action Lie groupoid

• Infinitesimal: Lie algebroid

FBRST = FBRST
−1︸ ︷︷ ︸

gauge trafos

⊕ FBRST
0︸ ︷︷ ︸

fields

(2.4)

• Dually:

◦ coordinate functions c and A (degrees 1 and 0)

◦ differential:

QBRSTA = δA = dc+ [A, c] and QBRSTc = −1
2
[c, c] (2.5)

◦ complex:

0 −−−−−→ C∞0 (FBRST)
QBRST−−−−−→ C∞1 (FBRST)

QBRST−−−−−→ · · · , (2.6)

• Chevalley–Eilenberg resolution: C∞(F/gauge) ∼= H0(FBRST)

Equations of motion via Koszul–Tate resolution:

• Add to each field ΦA an “anti-field” Φ+
A

• symplectic form ω = dΦA ∧ dΦ+
A → Poisson bracket (“anti-bracket”)

• Q = { S︸︷︷︸
original action

+ . . .︸︷︷︸
at least linear in Φ+

, − }

Both put together: BV-complex FBV, ωBV, SBV, QBV := {SBV,−}
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2.3. Homotopy algebras from field theories

The BV-complex is a dgca. There is a dual L∞-algebra:

· · · g−1 g0 g1 g2 g3 g4 · · ·
· · · gauge-of-gauge gauge physical equations of Noether higher · · ·

transf. transf. fields motion identities Noether

More direct computation:

• Guess n-ary products to recover action as homotopy Maurer–Cartan

• Example:

S =

∫
R1,3

d4x

(
1
2
ϕ(−�−m2)ϕ− κ

3!
ϕ3 − λ

4!
ϕ4

)
, (2.7)

has L∞-algebra

∗︸︷︷︸
=: g0

−−−−→ C∞(R1,3)︸ ︷︷ ︸
=: g1

−2−m2

−−−−−−→ C∞(R1,3)︸ ︷︷ ︸
=: g2

−−−−→ ∗︸︷︷︸
=: g3

(2.8a)

with higher products

µ1(ϕ1) := (−2−m2)ϕ1 , µ2(ϕ1, ϕ2) := −κϕ1ϕ2 ,

µ3(ϕ1, ϕ2, ϕ3) := −λϕ1ϕ2ϕ3

(2.8b)

Yang–Mills theory: often more useful to work with A∞-algebras:

• Action: (gauge algebra: gl(N,C)

S =

∫
M

(F, ?F ) =

∫
M

tr(F ∧ ?F ) (2.9)

• Higher products (some examples):

m1(A) = d†dA+ . . . ,

m2(A1, A2) = d†(A1 ∧ A2) + ?(A1 ∧ ?dA2) + . . . ,

m3(A1, A2, A3) = ?(A1 + ?(A2 ∧ A3)) + . . .

(2.10)

• Full gauge fixed, suitable for A∞:

SYM,gf :=

∫
tr
{

1
2
F ∧ ?F − (A+ + dc̄) ∧ ?∇c− κ

2
c+ ∧ ?[c, c]

− b ∧ ?
(
c̄+ + d†A− ξ

2
b
)}
,

(2.11)
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2.4. First results

• Equivalent Field Theories ←→ Quasi-isomorphic L∞-algebras

Example: 1st/2nd order Yang–Mills theory. Easier than integrating out etc.

• Strictification theorem ⇒ Any field theory is equivalent to a field theory with

only cubic vertices.

Example: 1st/2nd order Yang–Mills theory

3. Lecture III

3.1. Homological Perturbation Lemma

Scattering amplitudes: encoded in minimal models of theory:

A(φ0, . . . , φk) = 〈φ0, µ
◦
k(φ1, . . . , φk)〉◦

How to compute? Homological Perturbation Lemma:

• Start from A∞-algebra a.

• Focus: underlying complex (a,m1).

• Link to minimal model via contracting homotopy

(a,m1) (a◦, 0),h
p

e

1 = m1 ◦ h + h ◦m1 + e ◦ p, p ◦ e = 1,

p ◦ h = h ◦ e = h ◦ h = p ◦m1 = m1 ◦ e = 0.

(3.1)

• Lift to codifferential coassociative coalgebra T(a) := ⊗•(a[1]), D0 = m1:

(T(a),D0) (T(a◦), 0),H0

P0

E0

P0|Tk(a) := p⊗
k

, E0|Tk(a◦) := e⊗
k

, H0|Tk(a) :=
∑

i+j=k−1

1⊗
i ⊗ h⊗ (e ◦ p)⊗

j

.

(3.2)

• D = µ1 + µ2 + µ3 + · · · = D0 + Dint, regard Dint as perturbation

• Homological perturbation lemma: Dint yields deformations

P = P0 ◦ (1 + Dint ◦ H0)−1, H = H0 ◦ (1 + Dint ◦ H0)−1,

E = (1 + H0 ◦ Dint)
−1 ◦ E0, D◦ = P ◦ Dint ◦ E0.

(3.3)

Proof: Computation. Note: existence of (1 + Dint ◦ H0)−1 for small Dint.

• Outlook:

D◦ = P0 ◦ Dint ◦ E E = E0 − H0 ◦ Dint ◦ E (3.4)

⇒ Recursion relations!
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3.2. Field theory and Feynman diagrams

Recall:

• Field theory in A∞-algebra a

• a◦: kernel of m1, “free fields,” a◦ = kerc(m1)

• a: all fields, some choice, e.g. a = kerc(m1) + S(R1,3)

• contracting homotopy: inverse of m1: “propagator”

• Claim: Amplitudes

A(φ0, . . . , φk) = 〈φ0, µ
◦
k(φ1, . . . , φk)〉◦ =

∑
σ∈Sk

〈φ0,m
◦
k(φσ(1), . . . , φσ(k))〉 (3.5)

• Feynman diagrams from recursion relation:

D◦ = P0 ◦ Dint ◦ E E = E0 − H0 ◦ Dint ◦ E (3.6)

Construct “current” m◦k(φ1, . . . , φk) (by chopping off one leg of amplitude).

Example: Scalar fields, Dint = m2 + m3

• 4-point tree-level amplitude:

ϕ0 ϕ1

ϕ3 ϕ2

κ κ

ϕ0 ϕ1

ϕ3 ϕ2

κ

κ

ϕ0 ϕ1

ϕ3 ϕ2

κ

κ

ϕ0 ϕ1

ϕ3 ϕ2

λ

(3.7)

• D◦ = P0 ◦ Dint ◦ (E0 − H0 ◦ Dint ◦ E0 + . . . ) = · · ·+ m◦3 + . . .

–sketch–

Note:

• Indeed amplitudes, “amputated diagrams”

• Recursion relation E = E0 −H0 ◦Dint ◦ E was observed for Yang–Mills in 1988,

Nucl. Phys. B, same journal as birthplace of L∞-algebras!

• Berends–Giele recursion lead to Parke–Taylor formula, hugely important, in-

spired many things, etc. twistor strings.

3.3. Full quantum amplitudes

This all was “tree-level,” i.e. our diagrams did not contain any loops. To get these:
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• Recall in BV: classical master equation to quantum master equation:

QBV := {SBV,−} , Q2
BV = 0 −→ ~∆+{SBV,−} , 2~∆SBV+{SBV, SBV} = 0

(3.8)

∆ = ωAB δ
δΦA

δ
δΦB

= δ
δΦa

δ
δΦ+

a
, “takes away” field-antifield pairs.

• In homological perturbation lemma, replace Dint by Dint + ~∆∗

∆∗ inserts field-antifield pairs in all possible ways.

• Structures in HPL get distorted:

◦ P, E no longer algebra morphisms

◦ minimal model as “quantum L∞-algebra”

◦ homotopy Jacobi identities distorted.

• Still: recursion relation

D◦ = P0 ◦ Dint ◦ E E = E0 − H0 ◦ (Dint + ~∆∗) ◦ E (3.9)

Example: Scalar field theory with Dint = µ2 + µ3:

• Restrict E, D to Ei,j, Di,j with i, j out/inputs.

• l: # of loops, v: # of vertices

• Recursion relation:

Ei,j`,v = δ0
` δ

0
vδ
ijEi,i0 − H0 ◦

i+2∑
k=2

Di,k
int ◦ E

k,j
`,v−1 + i~H0 ◦∆∗ ◦ Ei−2,j

`−1,v (3.10)

— sketch : 1-loop correction to propagator —

Note: not properly amputated. Can be implemented, but irrelevant for combinatorics

Thus: We get Berends–Giele for any Lagrangian field theory and at loop level!

Applications

• Planar vs non-planar diagrams —sketch—

`-loop, n-point have maximally t = max{`, n} traces

Thus: come with a factor of N `−t+1

• Relation between planar and non-planar diagrams at 1-loop, knowing planar

is sufficient!

• Hopefully: double copy

• Rewrite QFT books using homotopy algebras.

11



References
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