Initial data for closed conformal Killing-Yano 2-forms (cf. arXiv:1912.04752 with A. García-Parrado)

Igor Khavkine

Institute of Mathematics
Czech Academy of Sciences, Prague

17 Jan 2020
40th Winter School on Geometry and Physics
11-18 Jan 2020, Srní, Czechia

Killing-Yano and Conformal Killing-Yano Operators

Operator on 2-forms $Y_{[a b]}=Y_{a b}$ on a Lorentzian manifold ($M, g_{a b}$):
$\mathrm{YK}_{a:[b c]}[Y]=C \mathrm{YK}_{a: b c}[Y]:=2 \nabla_{a} Y_{b c}-\nabla_{b} Y_{c a}+\nabla_{c} Y_{b a}$

Most general covariant, first order operators:

Killing-Yano and Conformal Killing-Yano Operators

Operator on 2-forms $Y_{[a b]}=Y_{a b}$ on a Lorentzian manifold $\left(M, g_{a b}\right)$:

$$
\mathrm{YK}_{a:[b c]}[Y]=C \mathrm{YK}_{a: b c}[Y]:=2 \nabla_{a} Y_{b c}-\nabla_{b} Y_{c a}+\nabla_{c} Y_{b a}
$$

Most general covariant, first order operators:

$$
\left(\nabla_{a}\right)\left(Y_{b c}\right)=\frac{1}{3}\left(\left(C \mathrm{YK}_{a: b c}[Y]\right)+\frac{1}{6}(\mathrm{~d} Y)_{a b c}\right.
$$

Killing-Yano and Conformal Killing-Yano Operators

Operator on 2-forms $Y_{[a b]}=Y_{a b}$ on a Lorentzian manifold $\left(M, g_{a b}\right)$:

$$
\mathrm{YK}_{a:[b c]}[Y]=C \mathrm{YK}_{a: b c}[Y]:=2 \nabla_{a} Y_{b c}-\nabla_{b} Y_{c a}+\nabla_{c} Y_{b a}
$$

Most general covariant, first order operators:

$$
\left(\nabla_{a}\right)\left(Y_{b c}\right)=\frac{1}{3}\left(\square \mathrm{YK}_{a: b c}[Y]\right)+\frac{1}{6}(\mathrm{~d} Y)_{a b c}
$$

Tensor fields are pointwise irreps of $O(g) \subset G L(n)$: $\square, \boxplus, \boxminus, \boxplus, \boxplus$ - traceless, Young symmetrized tensors
of irreps:

Killing-Yano and Conformal Killing-Yano Operators

Operator on 2-forms $Y_{[a b]}=Y_{a b}$ on a Lorentzian manifold $\left(M, g_{a b}\right)$:

$$
\mathrm{YK}_{a:[b c]}[Y]=C \mathrm{YK}_{a: b c}[Y]:=2 \nabla_{a} Y_{b c}-\nabla_{b} Y_{c a}+\nabla_{c} Y_{b a}
$$

Most general covariant, first order operators:

$$
\left(\nabla_{a}\right)\left(Y_{b c}\right)=\frac{1}{3}\left(\square \mathrm{YK}_{a: b c}[Y]\right)+\frac{1}{6}(\mathrm{~d} Y)_{a b c}
$$

Tensor fields are pointwise irreps of $O(g) \subset G L(n)$:
$\square, \varpi, \mathrm{B}, \boxplus, \boxplus$ - traceless, Young symmetrized tensors
Tensor product of irreps: $\quad \square \otimes \mathrm{B}=\mathrm{\theta}+\mathrm{B}$

Killing-Yano and Conformal Killing-Yano Operators

Operator on 2-forms $Y_{[a b]}=Y_{a b}$ on a Lorentzian manifold $\left(M, g_{a b}\right)$:

$$
\mathrm{YK}_{a:[b c]}[Y]=C \mathrm{YK}_{a: b c}[Y]:=2 \nabla_{a} Y_{b c}-\nabla_{b} Y_{c a}+\nabla_{c} Y_{b a}
$$

Most general covariant, first order operators:

$$
\left(\square \nabla_{a}\right)\left(\boxminus Y_{b c}\right)=\frac{1}{3}\left(\boxplus \subset \mathrm{YK}_{a: b c}[Y]\right)+\frac{1}{6}(\mathrm{~B} \mathrm{~d} Y)_{a b c}
$$

Tensor fields are pointwise irreps of $O(g) \subset G L(n)$:
$\square, \varpi, \mathrm{B}, \boxplus, \boxplus$ - traceless, Young symmetrized tensors
Tensor product of irreps: $\quad \square \otimes \mathrm{B}=甲+$ 日

Killing-Yano and Conformal Killing-Yano Operators

Operator on 2-forms $Y_{[a b]}=Y_{a b}$ on a Lorentzian manifold $\left(M, g_{a b}\right)$:

$$
\begin{aligned}
\mathrm{CYK}_{\mathrm{a}:[b c]}[Y]=\mathrm{CYK}_{a: b c}[Y]:= & 2 \nabla_{a} Y_{b c}-\nabla_{b} Y_{c a}+\nabla_{c} Y_{b a} \\
& +\frac{3}{n-1} g_{a b} \nabla^{d} Y_{c d}-\frac{3}{n-1} g_{c a} \nabla^{d} Y_{b d}
\end{aligned}
$$

Most general covariant, first order operators:

$$
\left(\square \nabla_{a}\right)\left(\boxminus Y_{b c}\right)=\frac{1}{3}\left(\oplus \mathrm{CYK}_{a: b c}[Y]\right)+\frac{1}{6}(\boxminus \mathrm{~d} Y)_{a b c}-\frac{2}{n-1} g_{a[b}(\square \delta Y)_{c]}
$$

Tensor fields are pointwise irreps of $O(g) \subset G L(n)$:
$\square, \varpi, \boxminus, \boxplus, \boxplus$ - traceless, Young symmetrized tensors
Tensor product of irreps: $\quad \square \otimes 日=\Psi+B+\square$

Why Closed Conformal Killing-Yano tensors?

- Killing tensors generalize the Killing vector equation:
- Killing-Stäckel (SK): symmetric k-tensors
- (Conformal) Killing-Yano (YK, CYK): p-forms

- SUSY extension of geodesic motion (Gibbons et al, 1993):

\rightarrow Hodge duality: Killing-Yano \leftrightarrow closed conformal Killing-Yano

$$
\mathrm{YK}[Y]=0 \Longleftrightarrow \mathrm{CYK}[* Y]=0, \mathrm{~d} * Y=0
$$

- Higher dimensional, Einstein vacuum, rotating

metric

Why Closed Conformal Killing-Yano tensors?

- Killing tensors generalize the Killing vector equation:
- Killing-Stäckel (SK): symmetric k-tensors
- (Conformal) Killing-Yano (YK, CYK): p-forms
- Geodesic motion:
$\mathrm{SK}[S]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(S_{a_{1} \cdots a_{k}} \dot{x}^{a_{1}} \cdots \dot{x}^{a_{k}}\right)=0$
$\begin{aligned} & \text { SUSY extension of geodesic motion (Gibbons et al, 1993): } \\ & \text { YK }[Y]=0 \Longrightarrow \frac{d}{d t}\left(Y_{a_{1} \ldots a_{p}} \theta^{a_{1}} \ldots \theta^{a_{p}}\right)=0 \quad \text { for odd } \theta^{a} \\ > & \text { Hodge duality: Killing-Yano } \leftrightarrow \text { closed conformal Killing-Yano }\end{aligned}$

$$
\mathrm{YK}[Y]=0 \Longleftrightarrow \mathrm{CYK}[* Y]=0, \mathrm{~d} * Y=0
$$

- Higher dimensional, Einstein vacuum, rotating

Why Closed Conformal Killing-Yano tensors?

- Killing tensors generalize the Killing vector equation:
- Killing-Stäckel (SK): symmetric k-tensors
- (Conformal) Killing-Yano (YK, CYK): p-forms
- Geodesic motion:
$\mathrm{SK}[S]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(S_{a_{1} \cdots a_{k}} \dot{x}^{a_{1}} \cdots \dot{x}^{a_{k}}\right)=0$
- SUSY extension of geodesic motion (Gibbons et al, 1993): $\mathrm{YK}[Y]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(Y_{a_{1} \ldots a_{p}} \boldsymbol{\theta}^{a_{1}} \cdots \boldsymbol{\theta}^{a_{p}}\right)=0 \quad$ for odd $\boldsymbol{\theta}^{a}$
- Higher dimensional, Einstein vacuum, rotating

Why Closed Conformal Killing-Yano tensors?

- Killing tensors generalize the Killing vector equation:
- Killing-Stäckel (SK): symmetric k-tensors
- (Conformal) Killing-Yano (YK, CYK): p-forms
- Geodesic motion:
$\mathrm{SK}[S]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(S_{a_{1} \cdots a_{k}} \dot{x}^{a_{1}} \cdots \dot{x}^{a_{k}}\right)=0$
- SUSY extension of geodesic motion (Gibbons et al, 1993):
$\mathrm{YK}[Y]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(Y_{a_{1} \cdots a_{p}} \boldsymbol{\theta}^{a_{1}} \cdots \boldsymbol{\theta}^{a_{p}}\right)=0 \quad$ for odd $\boldsymbol{\theta}^{a}$
- Hodge duality: Killing-Yano \leftrightarrow closed conformal Killing-Yano

$$
\mathrm{YK}[Y]=0 \Longleftrightarrow \mathrm{CYK}[* Y]=0, \mathrm{~d} * Y=0 \quad(\mathrm{cCYK})
$$

- Higher dimensional, Einstein vacuum, rotating

Why Closed Conformal Killing-Yano tensors?

- Killing tensors generalize the Killing vector equation:
- Killing-Stäckel (SK): symmetric k-tensors
- (Conformal) Killing-Yano (YK, CYK): p-forms
- Geodesic motion:
$\mathrm{SK}[S]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(S_{a_{1} \cdots a_{k}} \dot{x}^{a_{1}} \cdots \dot{x}^{a_{k}}\right)=0$
- SUSY extension of geodesic motion (Gibbons et al, 1993):
$\mathrm{YK}[Y]=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(Y_{a_{1} \cdots a_{p}} \boldsymbol{\theta}^{a_{1}} \cdots \boldsymbol{\theta}^{a_{p}}\right)=0 \quad$ for odd $\boldsymbol{\theta}^{a}$
- Hodge duality: Killing-Yano \leftrightarrow closed conformal Killing-Yano

$$
\mathrm{YK}[Y]=0 \Longleftrightarrow \mathrm{CYK}[* Y]=0, \mathrm{~d} * Y=0 \quad(\mathrm{cCYK})
$$

- Higher dimensional, Einstein vacuum, rotating black holes:

$$
R_{a b}=\frac{2 \wedge}{n-2} g_{a b},\left[\begin{array}{c}
\mathrm{CYK}[Y] \\
\mathrm{d} Y
\end{array}\right]=0, \exists\left(Y_{a b}\right)^{-1} \Longleftrightarrow \begin{gathered}
\text { locally } \\
\text { Kerr-NUT-(A) } \mathrm{dS} \\
\text { metric }
\end{gathered}
$$

Initial Data Conditions

- Observation (1970s): given an initial data set ($\Sigma \subset M, g_{A B}$), $\pi_{A B}=\left.\partial_{t} g_{A B}\right|_{t=0}$ for the vacuum Einstein equations on $\left(M, g_{a b}\right)$, there exists a linear PDE on Σ for v_{0}, v_{A} whose solutions are in bijection with the restriction $v_{a} \mid \Sigma$ of a Killing vector on $\left(M, g_{a b}\right)$.

Initial Data Conditions

- Observation (1970s): given an initial data set ($\Sigma \subset M, g_{A B}$), $\pi_{A B}=\left.\partial_{t} g_{A B}\right|_{t=0}$ for the vacuum Einstein equations on $\left(M, g_{a b}\right)$, there exists a linear PDE on Σ for v_{0}, v_{A} whose solutions are in bijection with the restriction $\left.v_{a}\right|_{\Sigma}$ of a Killing vector on $\left(M, g_{a b}\right)$.
- This Killing initial data (KID) system has found applications to
- the rigidity of black hole solutions,
- the study of singular strata of the manifold of admissible initial data for the Einstein equations,
- the characterization of the initial data for special solutions.
\square
- Today: Killing vectors \rightsquigarrow closed conformal Killing-Yano 2-forms

Initial Data Conditions

- Observation (1970s): given an initial data set ($\Sigma \subset M, g_{A B}$), $\pi_{A B}=\left.\partial_{t} g_{A B}\right|_{t=0}$ for the vacuum Einstein equations on $\left(M, g_{a b}\right)$, there exists a linear PDE on Σ for v_{0}, v_{A} whose solutions are in bijection with the restriction $\left.v_{a}\right|_{\Sigma}$ of a Killing vector on $\left(M, g_{a b}\right)$.
- This Killing initial data (KID) system has found applications to
- the rigidity of black hole solutions,
- the study of singular strata of the manifold of admissible initial data for the Einstein equations,
- the characterization of the initial data for special solutions.
- What other geometric PDEs have analogous initial data systems?

Initial Data Conditions

- Observation (1970s): given an initial data set ($\Sigma \subset M, g_{A B}$), $\pi_{A B}=\left.\partial_{t} g_{A B}\right|_{t=0}$ for the vacuum Einstein equations on $\left(M, g_{a b}\right)$, there exists a linear PDE on Σ for v_{0}, v_{A} whose solutions are in bijection with the restriction $\left.v_{a}\right|_{\Sigma}$ of a Killing vector on $\left(M, g_{a b}\right)$.
- This Killing initial data (KID) system has found applications to
- the rigidity of black hole solutions,
- the study of singular strata of the manifold of admissible initial data for the Einstein equations,
- the characterization of the initial data for special solutions.
- What other geometric PDEs have analogous initial data systems?
- Today: Killing vectors \rightsquigarrow closed conformal Killing-Yano 2-forms

Propagation Identity

Lemma (Propagation Identity)

Consider an Einstein vacuum spacetime $\left(M, g_{a b}\right)$ with Cauchy surface Σ. The existence of identities (modulo $R_{a b}=\frac{2 \Lambda}{n-2} g_{a b}$)

$$
P[\psi]=0
$$

where $P[\psi]=0$ and \ldots have well-posed initial value problems
(IVPs), guarantees that
$\psi=0$ on M
with vanishing P-initial data
$\left.\psi\right|_{\Sigma},\left.\quad \partial_{t} \psi\right|_{\Sigma},\left.\partial_{t}^{2} \psi\right|_{\Sigma}, \ldots$.
The above vanishing conditions can be collected into a PDE system $E^{\Sigma}\left[\left.\phi\right|_{\Sigma},\left.\partial_{t} \phi\right|_{\Sigma}, \ldots\right]=0$ intrinsic to $\left(\Sigma, g_{A B}, \pi_{A B}\right)$, which we call an E-initial data system.

Propagation Identity

Lemma (Propagation Identity)

Consider an Einstein vacuum spacetime $\left(M, g_{a b}\right)$ with Cauchy surface Σ. The existence of identities (modulo $R_{a b}=\frac{2 \Lambda}{n-2} g_{a b}$)

$$
P[E[\phi]]=0,
$$

where $P[\psi]=0$ and \ldots have well-posed initial value problems
(IVPs), guarantees that

$$
E[\phi]=0 \text { on } M
$$

with vanishing P-initial data
$\psi=\left.E[\phi]\right|_{\Sigma},\left.\partial_{t} \psi\right|_{\Sigma},\left.\partial_{t}^{2} \psi\right|_{\Sigma}, \ldots$.
The above vanishing conditions can be collected into a PDE system $E^{\Sigma}\left[\left.\phi\right|_{\Sigma},\left.\partial_{t} \phi\right|_{\Sigma}, \ldots\right]=0$ intrinsic to $\left(\Sigma, g_{A B}, \pi_{A B}\right)$, which we call an E-initial data system.

Propagation Identity

Lemma (Propagation Identity)

Consider an Einstein vacuum spacetime ($M, g_{a b}$) with Cauchy surface Σ. The existence of identities (modulo $R_{a b}=\frac{2 \Lambda}{n-2} g_{a b}$)

$$
P[E[\phi]]=\sigma[Q[\phi]],
$$

where $P[\psi]=0$ and $Q[\phi]=0$ have well-posed initial value problems (IVPs), guarantees that $\quad E[\phi]=0$ on M with Q-initial data $\left.\phi\right|_{\Sigma},\left.\partial_{t} \phi\right|_{\Sigma},\left.\partial_{t}^{2} \phi\right|_{\Sigma}, \ldots$ with vanishing P-initial data $\psi=\left.E[\phi]\right|_{\Sigma},\left.\partial_{t} \psi\right|_{\Sigma},\left.\partial_{t}^{2} \psi\right|_{\Sigma}, \ldots$.

The above vanishing conditions can be collected into a PDE system $E^{\Sigma}\left[\left.\phi\right|_{\Sigma},\left.\partial_{t} \phi\right|_{\Sigma}, \ldots\right]=0$ intrinsic to $\left(\Sigma, g_{A B}, \pi_{A B}\right)$, which we call an E-initial data system.

Propagation Identity

Lemma (Propagation Identity)

Consider an Einstein vacuum spacetime ($M, g_{a b}$) with Cauchy surface Σ. The existence of identities (modulo $R_{a b}=\frac{2 \Lambda}{n-2} g_{a b}$)

$$
P[E[\phi]]=\sigma[Q[\phi]], \quad Q[\phi]=\rho[E[\phi]],
$$

where $P[\psi]=0$ and $Q[\phi]=0$ have well-posed initial value problems (IVPS), guarantees that solutions of $E[\phi]=0$ on M are in bijection with Q-initial data $\left.\phi\right|_{\Sigma},\left.\partial_{t} \phi\right|_{\Sigma},\left.\partial_{t}^{2} \phi\right|_{\Sigma}, \ldots$ with vanishing P-initial data $\psi=\left.E[\phi]\right|_{\Sigma},\left.\partial_{t} \psi\right|_{\Sigma},\left.\partial_{t}^{2} \psi\right|_{\Sigma}, \ldots$.

The above vanishing conditions can be collected into a PDE system $E^{\Sigma}\left[\left.\phi\right|_{\Sigma},\left.\partial_{t} \phi\right|_{\Sigma}, \ldots\right]=0$ intrinsic to $\left(\Sigma, g_{A B}, \pi_{A B}\right)$, which we call an E-initial data system.

Killing Equation

An infinitesimal isometry v^{a} satisfies $(E[\phi]=0)$

$$
\mathrm{K}_{a b}[v]:=\nabla_{a} v_{b}+\nabla_{b} v_{a}=0 .
$$

Propagation identity ($P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$):

$$
\begin{gathered}
\square \mathrm{K}_{a b}[v]-2 R_{a b}^{c}{ }^{d} \mathrm{~K}_{c d}[v]=\mathrm{K}_{a b}[\square v], \\
\square v_{a}=\nabla^{b} \mathrm{~K}_{a b}[v]-\frac{1}{2} \nabla_{a} \mathrm{~K}_{b}^{b}[v] .
\end{gathered}
$$

Both P and Q are normally hyperbolic ($\square+$ I.o.t), hence have well-posed IVPs.

Killing Initial Data (KID)

In Gaussian normal coordinates $\left(x^{a}\right)=\left(x^{0}=t, x^{A}\right)$, we have $\Sigma=\{t=0\}$, a unit normal $n_{a}=(\mathrm{d} t)_{a}$, and the splittings

$$
v_{a} \rightarrow\left[\begin{array}{l}
v_{0} \\
v_{A}
\end{array}\right], \quad g_{a b} \rightarrow\left[\begin{array}{cc}
-1 & 0 \\
0 & g_{A B}
\end{array}\right]
$$

Let D_{A} be the covariant derivative on $\left(\Sigma, g_{A B}\right), \pi_{A B}=\partial_{t} g_{A B}$ (second fundamental form) with $\pi=\pi_{A}{ }^{A},(\pi \cdot \pi)_{A B}=\pi_{A} C_{C B}$, and $r_{A B C D}, r_{A B}$ spatial Riemann and Ricci tensors.

KID system (modulo $\mathrm{K}_{00}[v]=\mathrm{K}_{0 B}[v]=0$)

$$
\begin{aligned}
D_{A} v_{B}+ & D_{B} v_{A}-2 \pi_{A B} v_{0}=0 \\
D_{A} D_{B} v_{0}+ & \left(2(\pi \cdot \pi)_{A B}-\pi \pi_{A B}-r_{A B}\right) v_{0} \\
& -2 \pi_{(B}^{C} D_{A)} v_{C}-\left(D^{C} \pi_{A B}\right) v_{C}=0
\end{aligned}
$$

Old result: due to Berezdivin (1974), Moncrief (1975), Coll (1977).

cCYK Propagation Identity

- Propagation identities: $P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$.

Goal: exhaustive search for P, Q, ρ, σ
\rightarrow covariant in $\nabla_{a}, g_{a b}, R_{a b c d}, \nabla_{e} R_{a b c d}$,

- 1st order $\sigma, \rho ;$ 2nd (total) order P, Q
- hyperbolic P, Q

Total order: $\left|g_{a b}\right|=0,|\nabla|=1,\left|R_{a b c a}\right|=|\Lambda|=2$, respected by composition.
> Use representation theory of $O(g)$ to parametrize ansatz.

cCYK Propagation Identity

- Propagation identities: $P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$.
- Goal: exhaustive search for P, Q, ρ, σ
- covariant in $\nabla_{a}, g_{a b}, R_{a b c d}, \nabla_{e} R_{a b c d}, \ldots$
- 1st order σ, ρ; 2nd (total) order P, Q
- hyperbolic P, Q

Total order: $\left|g_{a b}\right|=0,|\nabla|=1,\left|R_{a b c d}\right|=|\Lambda|=2$, respected by composition.

- Use
of $O(g)$ to parametrize ansatz.

cCYK Propagation Identity

- Propagation identities: $P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$.
- Goal: exhaustive search for P, Q, ρ, σ
- covariant in $\nabla_{a}, g_{a b}, R_{a b c d}, \nabla_{e} R_{a b c d}, \ldots$
- 1st order σ, ρ; 2nd (total) order P, Q
- hyperbolic P, Q

Total order: $\left|g_{a b}\right|=0,|\nabla|=1,\left|R_{a b c d}\right|=|\Lambda|=2$, respected by composition.

- Use representation theory of $O(g)$ to parametrize ansatz.

cCYK Propagation Identity

－Propagation identities：$P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$ ．
－Goal：exhaustive search for P, Q, ρ, σ
－covariant in $\nabla_{a}, g_{a b}, R_{a b c d}, \nabla_{e} R_{a b c d}, \ldots$
－1st order σ, ρ ；2nd（total）order P, Q
－hyperbolic P, Q
Total order：$\left|g_{a b}\right|=0,|\nabla|=1,\left|R_{a b c d}\right|=|\Lambda|=2$ ，respected by composition．
－Use representation theory of $O(g)$ to parametrize ansatz．

$$
\begin{aligned}
& \underset{⿴ 囗 十}{\text { P }}\left[\begin{array}{cc}
P^{1,2,3,4,5,6} & P^{7,8} \\
\hat{P}^{5,6} & \hat{P}^{1,2,3,4}
\end{array}\right] \text { 目 }\left[\begin{array}{c}
\mathrm{CYK} \\
\mathrm{~d}
\end{array}\right] \text { 日 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 日 } Q^{1,2,3,4} \text { 日 }=\text { 日 }\left[\begin{array}{ll}
\rho^{1} & \rho^{2}
\end{array}\right]_{\mathrm{Z}}^{\mathrm{P}}\left[\begin{array}{c}
\mathrm{CYK} \\
\mathrm{~d}
\end{array}\right] \text { 日 }
\end{aligned}
$$

cCYK Propagation Identity

－Propagation identities：$P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$ ．
－Goal：exhaustive search for P, Q, ρ, σ
－covariant in $\nabla_{a}, g_{a b}, R_{a b c d}, \nabla_{e} R_{a b c d}, \ldots$
－1st order σ, ρ ；2nd（total）order P, Q
－hyperbolic P, Q
Total order：$\left|g_{a b}\right|=0,|\nabla|=1,\left|R_{a b c d}\right|=|\Lambda|=2$ ，respected by composition．
－Use representation theory of $O(g)$ to parametrize ansatz．

$$
\begin{aligned}
& \underset{⿴ 囗 十}{\text { P }}\left[\begin{array}{cc}
P^{1,2,3,4,5,6} & P^{7,8} \\
\hat{P}^{5,6} & \hat{P}^{1,2,3,4}
\end{array}\right] \text { 目 }\left[\begin{array}{c}
\mathrm{CYK} \\
\mathrm{~d}
\end{array}\right] \text { 日 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 日 } Q^{1,2,3,4} \text { 日 }=\text { 日 }\left[\begin{array}{ll}
\rho^{1} & \rho^{2}
\end{array}\right]_{\mathrm{B}}^{\mathrm{B}}\left[\begin{array}{c}
\mathrm{CYK} \\
\mathrm{~d}
\end{array}\right] \text { 日 }
\end{aligned}
$$

Representation Theory

- Use $O(g)$ tensor product rules to build complete operator bases.
- Bianchi identities: $\boxplus W_{a b: c d}=R_{a b c d}$ - traces, $\boxplus \nabla_{a} W_{b c: d e}$.
$n>8$: valid by Littlewood's rule (1958)
$>n=4,5, \phi, 7,8:$ checked by LiE/SAGE; $n=6:$ exception! (\quad reducible)

Representation Theory

- Use $O(g)$ tensor product rules to build complete operator bases.
- Bianchi identities: $\boxplus W_{a b: c d}=R_{a b c d}$ - traces, $\boxplus \nabla_{a} W_{b c: d e}$.
- $n=1,2,3$: degenerate cases
$n=4,5,6,7,8$: checked by LiE/SAGE; $n=6$: exception! (E reducible)

Representation Theory

- Use $O(g)$ tensor product rules to build complete operator bases.
- Bianchi identities: $\boxplus W_{a b: c d}=R_{a b c d}$ - traces, $\boxplus \nabla_{a} W_{b c: d e}$.
- $n=1,2,3$: degenerate cases
- $n>8$: valid by Littlewood's rule (1958)

Representation Theory

- Use $O(g)$ tensor product rules to build complete operator bases.
- Bianchi identities: $\boxplus W_{a b: c d}=R_{a b c d}$ - traces, $\boxplus \nabla_{a} W_{b c: d e}$.
- $n=1,2,3$: degenerate cases
- $n>8$: valid by Littlewood's rule (1958)
- $n=4,5, \varnothing, 7,8$: checked by LiE/SAGE;

Representation Theory

- Use $O(g)$ tensor product rules to build complete operator bases.
- Bianchi identities: $\boxplus W_{a b: c d}=R_{a b c d}$ - traces, $\boxplus \nabla_{a} W_{b c: d e}$.
- $n=1,2,3$: degenerate cases
- $n>8$: valid by Littlewood's rule (1958)
- $n=4,5, \not \subset, 7,8$: checked by LiE/SAGE; $n=6$: exception! (日 reducible)

Generalized Normal Hyperbolicity

- Normally hyperbolic operators: 2nd order $\boldsymbol{P}[\psi]=\square \psi+$ l.o.t Well studied IVP (e.g., Bär-Ginoux-Pfäffle, EMS 2007).
- Higher order normally hyperbolic: $P[\psi]=\square^{k} \psi+$ l.o.t
- Generalized normally hyperbolic: $\exists P^{\prime}: P^{\prime} \circ P[\psi]=\square^{k} \psi+$ l.o.t IVP reduces to normally hyperbolic case.
- Example:

Q is generalized normally hyperbolic iff $s \neq 0, t \neq 0$.

Generalized Normal Hyperbolicity

- Normally hyperbolic operators: 2nd order $\boldsymbol{P}[\psi]=\square \psi+$ l.o.t Well studied IVP (e.g., Bär-Ginoux-Pfäffle, EMS 2007).
- Higher order normally hyperbolic: $P[\psi]=\square^{k} \psi+$ I.o.t IVP reduces to normally hyperbolic case.
reduces to normally hyperbolic case.
- Example:
$Q[Y]=s \square Y-(s-t) \mathrm{d} \delta Y+$ I.o.t,

Q is generalized normally hyperbolic iff $s \neq 0, t \neq 0$.

Generalized Normal Hyperbolicity

- Normally hyperbolic operators: 2nd order $\boldsymbol{P}[\psi]=\square \psi+$ l.o.t Well studied IVP (e.g., Bär-Ginoux-Pfäffle, EMS 2007).
- Higher order normally hyperbolic: $P[\psi]=\square^{k} \psi+$ I.o.t IVP reduces to normally hyperbolic case.
- Generalized normally hyperbolic: $\exists P^{\prime}: P^{\prime} \circ P[\psi]=\square^{k} \psi+$ l.o.t IVP reduces to normally hyperbolic case.
- Example:
$Q[Y]=s \square Y-(s-t) \mathrm{d} \delta Y+$ I.o.t, $Q^{\prime} \circ Q[Y]=\square^{2} y+1.0 . t$
Q is generalized normally hyperbolic iff $s \neq 0, t \neq 0$.

Generalized Normal Hyperbolicity

- Normally hyperbolic operators: 2nd order $\boldsymbol{P}[\psi]=\square \psi+$ l.o.t Well studied IVP (e.g., Bär-Ginoux-Pfäffle, EMS 2007).
- Higher order normally hyperbolic: $P[\psi]=\square^{k} \psi+$ l.o.t IVP reduces to normally hyperbolic case.
- Generalized normally hyperbolic: $\exists P^{\prime}: P^{\prime} \circ P[\psi]=\square^{k} \psi+$ l.o.t IVP reduces to normally hyperbolic case.
- Example:

$$
\begin{gathered}
Q[Y]=s \square Y-(s-t) \mathrm{d} \delta Y+\text { l.o.t, } \quad Q^{\prime}[Y]=s^{\prime} \square Y-\left(s^{\prime}-t^{\prime}\right) \mathrm{d} \delta Y \\
Q^{\prime} \circ Q[Y]=\square^{2} Y+\text { l.o.t } \Longleftrightarrow s^{\prime}=\frac{1}{s}, t^{\prime}=\frac{1}{t}
\end{gathered}
$$

Q is generalized normally hyperbolic iff $s \neq 0, t \neq 0$.

Main Result

Solutions of $P \circ E-\sigma \circ \rho \circ E=0 \leftrightarrow$ left kernel of this numerical matrix:

cCYK Propagation Identity
－Propagation identities：$P[E[\phi]]=\sigma[Q[\phi]], Q[\phi]=\rho[E[\phi]]$ ．

composition．
－Use representat on theory of $O(g)$ to parametrize ansatz．
$\underset{\text { 田 }}{\text { 日 }}\left[\begin{array}{cc}P^{1,2,3,4,5,6} & P^{7,8} \\ \hat{P}^{5,6} & \hat{P}^{1,2,3,4}\end{array}\right] \underset{\text { 日 }}{\text { 甲 }}\left[\begin{array}{c}\mathrm{CYK} \\ \mathrm{d}\end{array}\right]$ 日

$$
\begin{aligned}
- & \stackrel{\square}{\mathrm{B}}\left[\begin{array}{c}
\sigma^{1} \\
\hat{\sigma}^{1}
\end{array}\right] \text { (}
\end{aligned}
$$

Main Result

Solutions of $P \circ E-\sigma \circ \rho \circ E=0 \leftrightarrow$ left kernel of this numerical matrix:

Main Result

Solutions of $P \circ E-\sigma \circ \rho \circ E=0 \leftrightarrow$ left kernel of this numerical matrix:

Theorem (IK \& A. Garcá Parrado, 2019)
(a) There exists a 5-narameter cCYK nronagation identity for $n>3$.
(b) Generic P, Q are generalized normally hyperbolic for $n>4$.
(c) It is exhaustive for $n>4(n \neq 6)$.

Main Result

Solutions of $P \circ E-\sigma \circ \rho \circ E=0 \leftrightarrow$ left kernel of this numerical matrix:

Theorem (IK \& A. Garcá Parrado, 2019)
(a) There exists a 5-parameter cCYK propagation identity for $n>3$.
(b) Generic P, Q are generalized normally hyperbolic for $n>4$.
(c) It is exhaustive for $n>4(n \neq 6)$.

Discussion

- $O(g)$ representation theory helps with exhaustive search for covariant propagation identities of geometric PDEs.
- We have succeeded for the cCYK equation in dimension $n>4$, with a propagation identity of total order 2.
- In $n=4$, a special trick produces a 4th order propagation identity for non-closed CYK.
- Can this trick be systematically extend to $n>4$?
- Other interesting geometric PDEs?
- For which equations $E[\phi]=0$ does there not exist a (covariant) propagation identity?

Discussion

- $O(g)$ representation theory helps with exhaustive search for covariant propagation identities of geometric PDEs.
- We have succeeded for the cCYK equation in dimension $n>4$, with a propagation identity of total order 2.
- In $n=4$, a special trick produces a 4th order propagation identity for non-closed CYK.
- Can this trick be systematically extend to $n>4$?
- Other interesting geometric PDEs?
- For which equations $E[\phi]=0$ does there not exist a (covariant) propagation identity?

Discussion

- $O(g)$ representation theory helps with exhaustive search for covariant propagation identities of geometric PDEs.
- We have succeeded for the cCYK equation in dimension $n>4$, with a propagation identity of total order 2.
- In $n=4$, a special trick produces a 4th order propagation identity for non-closed CYK.
- Can this trick be systematically extend to $n>4$?
- Other interesting geometric PDEs?
- For which equations $E[\phi]=0$ does there not exist a (covariant) propagation identity?

Discussion

- $O(g)$ representation theory helps with exhaustive search for covariant propagation identities of geometric PDEs.
- We have succeeded for the cCYK equation in dimension $n>4$, with a propagation identity of total order 2.
- In $n=4$, a special trick produces a 4th order propagation identity for non-closed CYK.
- Can this trick be systematically extend to $n>4$?
- Other interesting geometric PDEs?
- For which equations $E[\phi]=0$ does there not exist a (covariant) propagation identity?

Thank you for your attention!

