BGG complexes in singular blocks of category \mathcal{O}

Rafael Mrden
Uppsala University
University of Zagreb
40th Winter School Geometry and Physics, Srní
11-18 January 2020

A joint work with Volodymyr Mazorchuk arXiv:1907. 04121 [math.RT] (2019)

I acknowledge support from the QuantiXLie Center of Excellence grant no. KK.01.1.1.01.0004 funded by the European Regional Development Fund.

Introduction

- BGG complexes: Bernstein-Gelfand-Gelfand '75, Lepowsky '77, Rocha-Charidi '80
- Invariant differential operators \longleftrightarrow homomorphisms of (gen.) Verma modules
- Čap-Slovak-Souček '01 - geometric construction on curved spaces.
- Penrose transform: singular blocks of some maximal parabolic cases (Krump, Salač, Souček, Pandžić, Husadžić, M.) (cf. talks of L. Krump and V. Souček)
- This talk concerns singular blocks for the Borel case (minimal parabolic)

Category \mathcal{O}

- $\mathfrak{g}=$ semisimple Lie algebra (fin.dim., over \mathbb{C})
- $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}\left(\Leftrightarrow\right.$ choosing \mathfrak{h} and $\left.R^{+}(\mathfrak{g}, \mathfrak{h})\right)$
- Category \mathcal{O} : Finitely generated $U(\mathfrak{g})$-modules, \mathfrak{h}-semisimple, locally-finite for \mathfrak{n}^{+}
- For $\lambda \in \mathfrak{h}^{*}$ we have:
- the Verma module $\Delta(\lambda):=U(\mathfrak{g}) \otimes_{U\left(\mathfrak{h} \oplus \mathfrak{n}^{+}\right)} \mathbb{C}_{\lambda}$
- the unique irreducible quotient $\Delta(\lambda) \rightarrow L(\lambda)$
- the indecomposable projective cover $P(\lambda) \rightarrow \Delta(\lambda) \rightarrow L(\lambda)$
- $\mathfrak{g}=\mathfrak{u}^{-} \oplus \mathfrak{l} \oplus \mathfrak{u}^{+}, \mathfrak{p}:=\mathfrak{l} \oplus \mathfrak{u}^{+}$gives the parabolic version of category \mathcal{O}, denoted by \mathcal{O}^{p}

Weyl group

A lot of structure of category \mathcal{O} reduces to the combinatorics of the Weyl group.

- For each $\alpha \in R$ we have the reflection s_{α} on \mathfrak{h}^{*} with respect to the hyperplane α^{\perp}.
- The Weyl group W is the group generated by all s_{α}.
- Fact: It is enough to take only simple reflections.
- This gives us the length function 1 , and the Bruhat order \leq (subword order) on W.
- Write $u \rightarrow v$ if $u \leq v$ and $l(v)=1(u)+1$ (so we consider W as a directed graph)

Blocks

- $\mathcal{O} \cong$

\mathcal{O}_{χ}
$\chi: Z(U(\mathfrak{g})) \rightarrow \mathbb{C}$
- $\{\chi: Z(U(\mathfrak{g})) \rightarrow \mathbb{C}\} \cong \mathfrak{h}^{*} / W$ (Harish-Chandra)
- Fact: $\Delta(\lambda), L(\lambda), P(\lambda)$ have χ corresponding to $\lambda+\rho$
- If $\lambda+\rho$ is dominant, denote the corresponding block by \mathcal{O}_{λ}
- Denote $w \cdot \lambda:=w(\lambda+\rho)-\rho$
- $\mathcal{O} \cong \bigoplus_{\lambda+\rho \text { dominant }} \mathcal{O}_{\lambda}$
$\left(\mathcal{O}_{\lambda}\right.$ contains $\left.\Delta(w \cdot \lambda), L(w \cdot \lambda), P(w \cdot \lambda), w \in W\right)$
- We always assume λ integral (i.e. $\frac{2\langle\lambda+\rho, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$ for $\alpha \in R^{+}$) (WLOG, Soergel)

Regular blocks

Assume that $\langle\lambda+\rho, \alpha\rangle>0$ for all $\alpha \in R^{+}$

- There exists $\Delta(w \cdot \lambda) \rightarrow \Delta(v \cdot \lambda) \Leftrightarrow v \leq w$ (Verma, BGG) (If \exists, the map is unique up to scalar and injective)
- There is a choice of scalars for which

$$
\cdots \rightarrow \bigoplus_{1(x)=i+1} \Delta(x \cdot \lambda) \rightarrow \bigoplus_{1(x)=i} \Delta(x \cdot \lambda) \rightarrow \ldots \rightarrow \Delta(\lambda) \rightarrow L(\lambda) \rightarrow 0
$$

is an exact sequence (BGG resolution)

- Analogous statement holds in $\mathcal{O}^{\mathfrak{p}}$ (Lepowsky, Rocha-Caridi)
- Fix $w \in W$. There is a choice of scalars for which

$$
\cdots \rightarrow \bigoplus_{\substack{x \geq w \\ 1(w, x)=i+1}} \Delta(x \cdot \lambda) \rightarrow \bigoplus_{\substack{x \geq w \\ 1(w, x)=i}} \Delta(x \cdot \lambda) \rightarrow \ldots \rightarrow \Delta(w \cdot \lambda) \rightarrow L(w \cdot \lambda) \rightarrow 0
$$

is a chain complex. It is exact iff certain Kazhdan-Lusztig polynomials vanish (Boe-Hunziker, Enright)

Singular blocks

Assume $\langle\lambda+\rho, \alpha\rangle \geq 0$ for $\alpha \in R^{+}$

- $S:=\{\alpha$ simple: $\langle\lambda+\rho, \alpha\rangle=0\}$
- $W_{\lambda}:=$ the subgroup generated by $s_{\alpha}, \alpha \in S$
- Fact: $W_{\lambda}=\operatorname{Stab}_{W}(\lambda+\rho)$
- So, $L / \Delta / P$ in \mathcal{O}_{λ} are parametrized by W / W_{λ} (and homomorphisms by the induced order on cosets)
- $\tilde{W}^{\lambda}:=$ set of the longest representatives of cosets W / W_{λ}

Translation to the wall

\exists exact functor $T=T_{0}^{\lambda}: \mathcal{O}_{0} \rightarrow \mathcal{O}_{\lambda}$ s.t. (BG, Jantzen):

- $T(\Delta(w \cdot 0))=\Delta(w \cdot \lambda)$
- $T(L(w \cdot 0))= \begin{cases}L(w \cdot \lambda), & \text { if } w \in \tilde{W}^{\lambda} \\ 0, & \text { otherwise }\end{cases}$

Fix $w \in \tilde{W}^{\lambda}$. We want to resolve $L(w \cdot \lambda) \in \mathcal{O}_{\lambda}$ by direct sums of Vermas.

- Start with the Boe-Hunziker complex in \mathcal{O}_{0}

$$
\boldsymbol{\Delta}_{w}:=\ldots \rightarrow \bigoplus_{\substack{x \geq w \\ 1(x)=i}} \Delta(x \cdot 0) \rightarrow \ldots \rightarrow L(w \cdot 0) \rightarrow 0
$$

- If $\boldsymbol{\Delta}_{w}$ is exact, then $T\left(\boldsymbol{\Delta}_{w}\right)$ provides an answer.
- Problems: $T\left(\boldsymbol{\Delta}_{w}\right)$ does not respect Bruhat order? What if $\boldsymbol{\Delta}_{w}$ is not exact? Uniqueness?

Example

Type $A_{3}=\circ \backsim \square^{\circ}, \lambda+\rho=(2,1,1,0), S=\left\{\alpha_{2}\right\}, w=s_{1} s_{2}$.
$\Delta_{w}=$

Example

Lemma
If a sequence of modules

is a complex (resp. exact), then so is

$$
A \longrightarrow B \longrightarrow C \xrightarrow{f-h g} D \longrightarrow E \longrightarrow F .
$$

Example (continued)

Example (continued)

Example (continued)

Example (continued)

The remaining homomorphisms are non-zero, and do not depend on the order of "cutting off" the isomorphisms.

In general

(W, \leq), cosets W / W_{λ}
Fix $w \in \tilde{W}^{\lambda}$ and consider $\left[w, w_{0}\right]$ ($=$ shape of $\boldsymbol{\Delta}_{w}$)
Choose $x \in \tilde{W}^{\lambda}, x \geq w$
Lemma
$x W_{\lambda} \cap\left[w, w_{0}\right]$ contains
a unique minimal element
\Rightarrow The intersection is an interval
\Rightarrow If not singleton, it can be partitioned into subsets of the form $\{\bullet=\bullet\}$
\Rightarrow If not singleton, it can be completely "cleaned up"

Singular BGG complexes

Denote $X_{w}^{i}:=\left\{x \in \tilde{W}^{\lambda}: 1(x)=1(w)+i,\left|x W_{\lambda} \cap\left[w, w_{0}\right]\right|=1\right\}$
Theorem
Let $\lambda+\rho$ be dominant and integral and $w \in \tilde{W}^{\lambda}$.
(a) One can choose non-zero coefficients so that the singular BGG complex below is a cochain complex:
$\cdots \rightarrow \bigoplus_{x \in X_{w}^{i+1}} \Delta(x \cdot \lambda) \rightarrow \bigoplus_{x \in X_{w}^{i}} \Delta(x \cdot \lambda) \rightarrow \cdots \rightarrow \Delta(w \cdot \lambda) \rightarrow L(w \cdot \lambda) \rightarrow 0$.
(b) If the regular $B G G$ complex of $L(w \cdot 0)$ is exact, then so is the singular $B G G$ complex of $L(w \cdot \lambda)$.

$$
\mu(w, x)= \begin{cases}0, & \text { if } \exists z \notin \tilde{W}^{\lambda} \text { s.t. } w<z<x ; \\ (-1)^{I(x)-l(w)}, & \text { otherwise. }\end{cases}
$$

Proposition

$x \in X_{w}$ if and only if $\mu(x, w) \neq 0$.

Exactness

Theorem

For $w \in \tilde{W}^{\lambda}$, the following statements are equivalent:
(a) The singular BGG complex of $L(w \cdot \lambda)$ is exact.
(b) For all $i \geq 0$, we have

$$
H^{i}\left(\mathfrak{n}^{+}, L(w \cdot \lambda)\right)=\bigoplus_{x \in X_{w}^{i}} \mathbb{C}_{x \cdot \lambda},
$$

(c) For all $i \geq 0$ and $x \in \tilde{W}^{\lambda}$, we have

$$
\operatorname{dim} \operatorname{Ext}_{\mathcal{O}}^{i}(\Delta(x \cdot \lambda), L(w \cdot \lambda))= \begin{cases}1 & : x \in X_{w}^{i} \\ 0 & : \text { otherwise }\end{cases}
$$

(d) For all $x \in \tilde{W}^{\lambda}$ with $x \geq w$, we have $P_{x w_{0}, w w_{0}}^{w_{0} \cdot \lambda}(q)=|\mu(w, x)|$.

(Non-)Kostant modules in low rank

The calculations were performed in SageMath, version 8.4.

Type A_{4}	
Block (S)	Non-Kostant modules (w)
\emptyset	$(3),(2),(32),(23),(42),(31),(41),(342),(232),(231),(423),(421)$, $(312),(341),(431),(412),(2321),(2342),(4232),(4231),(3412)$, $(1232),(3431),(4121),(42321),(23431),(34121),(12342),(34312)$, $(41231),(343121),(123431)$
$\{1\}$	$(31),(41),(341),(431),(421),(2321),(3431),(4231),(4121)$, $(42321),(23431),(41231),(343121),(123431)$
$\{2\}$	$(2),(32),(42),(342),(232),(312),(412),(2342),(4232),(4121)$, $(3412),(1232),(34121),(12342),(34312),(343121)$
$\{1,2\}$	$(4121),(343121)$
$\{1,3\}$	$(31),(431),(2321),(3431),(4231),(23431),(42321),(41231)$, (123431)
$\{1,4\}$	$(41),(341),(421),(3431),(4121),(343121),(123431)$
$\{2,3\}$	$(232),(4232),(1232)$
$\{1,2,4\}$	$(4121),(343121)$

(up to the non-trivial isomorphism of $\stackrel{1}{0} \sim_{0}^{2} \sim_{0}^{3}$

Filtrations of projective modules

- Koszul duality: $\mathcal{O}_{\lambda} \longleftrightarrow \mathcal{O}_{0}^{\lambda}=$ regular block of the parabolic cat. (Beilinson-Ginzburg-Soergel)
- Objects in $\mathcal{O}_{0}^{\lambda}$ are parametrized by ${ }^{\lambda} W:=$ the shortest representatives of the cosets $W_{\lambda} \backslash W$
- \exists bijection $\tilde{W}^{\lambda} \xrightarrow{\sim}{ }^{\lambda} W$, given by $w \mapsto w^{-1} w_{0}$
- $\operatorname{dim} \operatorname{Ext}(\Delta, L) \longleftrightarrow(P: \Delta)$

Proposition

The singular BGG complex of $L(w \cdot \lambda) \in \mathcal{O}_{\lambda}$ is exact if and only if $P^{\lambda}\left(w^{-1} w_{0} \cdot 0\right) \in \mathcal{O}_{0}^{\lambda}$ has a multiplicity free Verma flag with parameters in $\left(X_{w}\right)^{-1} w_{0}$.

Proposition

The (Boe-Hunziker) BGG complex of $L\left(w^{-1} w_{0} \cdot 0\right) \in \mathcal{O}_{0}^{\lambda}$ is exact if and only if $P(w \cdot \lambda) \in \mathcal{O}_{\lambda}$ has a multiplicity free Verma flag.
(Stroppel: if and only if $\operatorname{End}(P(w \cdot \lambda))$ is commutative.)

Uniqueness of BGG resolution

- $\mathcal{P}_{\mu}:=$ the minimal projective resolution of $L(\mu)$ in \mathcal{O}_{λ}
- $T(\mu):=$ the indecomposable tilting module (self-dual, has a Verma flag) with $\Delta(\mu) \subseteq T(\mu)$
- $\mathcal{T}_{\mu}:=$ minimal complex of tilting modules $\cong L(\mu)$ in $D^{b}(\mathcal{O})$ (\exists, by Mazorchuk).
- If Δ is a BGG resolution of $L(\mu)$, then \exists ! quasi-isomorphisms

- Clearly $\Delta \cong \operatorname{Im}(\eta)$. We show that $\operatorname{Im}(\eta)$ does not depend on particular choice of Δ.
- It follows that all BGG resolutions of $L(\mu)$ are isomorphic as complexes to the canonical subcomplex of \mathcal{T}_{μ}.

Thank you!

References

:
I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand. Differential operators on the base affine space and a study of \mathfrak{g}-modules. Lie groups and their representations, pp. 21-64., 1975.

J. Lepowsky. A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra 49 (1977), No. 2, 496-511.
B. Boe and M . Hunziker. Kostant Modules in Blocks of Category \mathcal{O}_{S}. Commun. Algebr. 37 (2009), No. 1, 323-356.

R. Irving. Singular blocks of the category \mathcal{O}. Math. Z. 204 (1990), No. 1, 209-224.

A. Beilinson, V. Ginzburg, and W. Soergel. Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9 (1996), No. 2, 473-527.

V. Mazorchuk. Koszul duality for stratified algebras I. Balanced quasi-hereditary algebras. Manuscr. Math. 131 (2009), No. 1-2, 1-10.

V. Futorny, S. König, and V. Mazorchuk. \mathcal{S}-subcategories in \mathcal{O}. Manuscr. Math. 102 (2000), No. 4, 487-503.

V. Futorny and V. Mazorchuk. BGG-resolution for α-stratified modules over simply-laced finite-dimensional Lie algebras. J. Math. Kyoto Univ. 38 (1998), No. 2, 229-240.
N. Hemelsoet and R. Voorhaar. A computer algorithm for the BGG resolution. arXiv:1911.00871 [math.RT]

