Cohomology rings of some oriented Grassmann manifolds

Tomáš Rusin

January 16, 2020

Introduction

Let us denote $G_{n, k}$ the Grassmann manifold of k-dimensional vector subspaces in \mathbb{R}^{n}, i.e. the space $O(n) /(O(k) \times O(n-k))$.
Denote $\widetilde{G}_{n, k}$ the oriented Grassmann manifold of oriented k-dimensional vector subspaces in \mathbb{R}^{n}, the space $S O(n) /(S O(k) \times S O(n-k))$. We may suppose that $k \leq n-k$ for both of them.

Introduction

The manifolds $G_{n, k}$ and $\widetilde{G}_{n, k}$ come equipped with their canonical k-plane bundles, which we denote $\gamma_{n, k}$ and $\widetilde{\gamma}_{n, k}$. We will denote $w_{i}=w_{i}\left(\gamma_{n, k}\right)$ and $\widetilde{w}_{i}=w_{i}\left(\widetilde{\gamma}_{n, k}\right)$ the Stiefel-Whitney classes of those vector bundles. Similarly, we will abbreviate $H^{j}\left(X ; \mathbb{Z}_{2}\right)$ to $H^{j}(X)$.

Introduction

Cohomology ring of $G_{n, k}$

The cohomology ring of the Grassmann manifold $G_{n, k}$ is

$$
H^{*}\left(G_{n, k}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}, \ldots, w_{k}\right] / I_{n, k}
$$

where $\operatorname{dim}\left(w_{i}\right)=i$ and the ideal $I_{n, k}$ is generated by k homogeneous polynomials $\bar{w}_{n-k+1}, \bar{w}_{n-k+2}, \ldots, \bar{w}_{n}$, where each \bar{w}_{i} denotes the i-dimensional component of the formal power series

$$
\left(1+w_{1}+w_{2}+\cdots+w_{k}\right)^{-1}=1+\left(w_{1}+w_{2}+\cdots+w_{k}\right)+\left(w_{1}+w_{2}+\cdots+w_{k}\right)^{2}+\cdots .
$$

Cohomology ring of $\widetilde{G}_{n, 2}$

The cohomology ring of $G_{n, k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle. However the same is not true for the oriented Grassmann manifolds $\widetilde{G}_{n, k}$. As an example, the cohomology ring of $\widetilde{G}_{n, 2}$ is as follows.

Theorem

For n odd we have $H^{*}\left(\widetilde{G}_{n, 2}\right) \cong \mathbb{Z}_{2}\left[\widetilde{w}_{2}\right] /\left(\widetilde{w}_{2}^{\frac{n-1}{2}}\right) \otimes \Lambda_{\mathbb{Z}_{2}}\left(a_{n-1}\right)$, where $a_{n-1} \in H^{n-1}\left(\widetilde{G}_{n, 2}\right)$ is an anomalous class.
For $n \equiv 0(\bmod 4)$ we have $H^{*}\left(\widetilde{G}_{n, 2}\right) \cong \mathbb{Z}_{2}\left[\widetilde{w}_{2}\right] /\left(\widetilde{w}_{2}^{\frac{n}{2}}\right) \otimes \Lambda_{\mathbb{Z}_{2}}\left(a_{n-2}\right)$. For $n \equiv 2(\bmod 4)$ the cohomology ring is generated by \widetilde{w}_{2} and an anomalous class $a_{n-2} \in H^{n-2}\left(\widetilde{G}_{n, 2}\right)$ such that $a_{n-2}^{2}=\widetilde{w}_{2}^{\frac{n-2}{2}} a_{n-2}$ is the generator of the top cohomology group $H^{2(n-2)}\left(\widetilde{G}_{n, 2}\right)$.

Cohomology ring of $\widetilde{G}_{n, 2}$

There is a covering projection $p: \widetilde{G}_{n, k} \longrightarrow G_{n, k}$ which induces homomorphism $p^{*}: H^{*}\left(G_{n, k}\right) \longrightarrow H^{*}\left(\widetilde{G}_{n, k}\right)$ that maps each class w_{i} to \widetilde{w}_{i}.
Note that $H^{1}\left(\widetilde{G}_{n, k}\right)=0$ and $\widetilde{w}_{1}=0$.
Denoting g_{i} the reduction of the polynomial \bar{w}_{i} from the description of $H^{*}\left(G_{n, k}\right)$ we see that $H^{*}\left(\widetilde{G}_{n, k}\right)$ contains $\mathbb{Z}_{2}\left[\widetilde{w}_{2}, \ldots, \widetilde{w}_{k}\right] / J_{n, k}$, where $J_{n, k}=\left(g_{n-k+1}, \ldots, g_{n}\right)$.

Characteristic rank

The notion of characteristic rank quantifies the degree up to which the cohomology ring is generated by the Stiefel-Whitney classes.

Definition

Let X be a connected, finite CW-complex and ξ a vector bundle over X. The characteristic rank of the vector bundle ξ, denoted charrank (ξ), is the greatest integer $q, 0 \leq q \leq \operatorname{dim}(X)$, such that every cohomology class in $H^{j}(X)$ for $0 \leq j \leq q$ can be expressed as a polynomial in the Stiefel-Whitney classes $w_{i}(\xi)$ of ξ.

Thus for $\widetilde{G}_{n, k}$ the degree in which the first anomalous class a_{i} appears is given by $i=\operatorname{charrank}\left(\widetilde{\gamma}_{n, k}\right)+1$.

Cohomology ring of $\widetilde{G}_{n, 3}$

Computing the characteristic rank will determine the first occurrence of an anomalous class in $H^{*}(X)$, but it does not determine the degrees of any other that might exist. In $H^{*}\left(\widetilde{G}_{n, 3}\right)$ we already encounter multiple different anomalous generators of the cohomology ring.

For $n=2^{t}$ there is one anomalous generator in degree $2^{t}-1$.
For $n=2^{t}-1,2^{t}-2,2^{t}-3$ there is one anomalous generator in degree $2^{t}-4$.
For $2^{t-1}<n \leq 2^{t}-4$ there is one anomalous generator in degree $2^{t}-4$ and one anomalous generator in degree $3 n-2^{t}-1$.

Cohomology ring of $\widetilde{G}_{n, 3}$

$$
\begin{array}{rrrrr}
H^{*}\left(\widetilde{G}_{6,3}\right) & H^{*}\left(\widetilde{G}_{7,3}\right) & H^{*}\left(\widetilde{G}_{8,3}\right) & H^{*}\left(\widetilde{G}_{9,3}\right) & H^{*}\left(\widetilde{G}_{10,3}\right) \\
a_{4} & a_{4} &
\end{array}
$$

$$
a_{7}
$$

$$
a_{10}
$$

$$
a_{12}
$$

$$
a_{12}
$$

$$
a_{13}
$$

Cohomology ring of $\widetilde{G}_{n, 3}$

Note that since dimension of $\widetilde{G}_{n, 3}$ is $3 n-9$, the Poincaré dual to anomalous generator $a_{3 n-2^{t}-1}$ is a class in degree $2^{t}-8$. That is, there exists $v_{2^{t}-8} \in H^{2^{t}-8}\left(\widetilde{G}_{n, 3}\right)$ such that $a_{3 n-2^{t}-1} v_{2^{t}-8} \neq 0$. Moreover $v_{2^{t}-8}$ is always from the "characteristic" part $p^{*}\left(H^{2^{t}-8}\left(G_{n, 3}\right)\right)$ and it appears to be "stable". For example, the Poincaré dual to a_{7}, a_{10}, a_{13} is $\widetilde{w}_{2} \widetilde{w}_{3}^{2}$.

Generators of $H^{j}\left(\widetilde{G}_{8,4}\right)$

Theorem

We have the following generators of $H^{j}\left(\widetilde{G}_{8,4}\right)$.

j	$g e n$.	j	gen.
0	\widetilde{w}_{0}	9	$a_{4} \widetilde{w}_{2} \widetilde{w}_{3}, \widetilde{w}_{2} \widetilde{w}_{3} \widetilde{w}_{4}$
1	-	10	$a_{4} \widetilde{w}_{2}^{3}, a_{4} \widetilde{w}_{2} \widetilde{w}_{4}, \widetilde{w}_{2}^{3} \widetilde{w}_{4}$
2	\widetilde{w}_{2}	11	$a_{4} \widetilde{w}_{3} \widetilde{w}_{4}$
3	\widetilde{w}_{3}	12	$a_{4} \widetilde{w}_{2}^{4}, a_{4} \widetilde{w}_{2}^{2} \widetilde{w}_{4}, \widetilde{w}_{2}^{4} \widetilde{w}_{4}$
4	$a_{4}, \widetilde{w}_{2}^{2}, \widetilde{w}_{4}$	13	$a_{4} \widetilde{w}_{2} \widetilde{w}_{3} \widetilde{w}_{4}$
5	$\widetilde{w}_{2} \widetilde{w}_{3}$	14	$a_{4} \widetilde{w}_{2}^{3} \widetilde{w}_{4}$
6	$a_{4} \widetilde{w}_{2}, \widetilde{w}_{2}^{3}, \widetilde{w}_{2} \widetilde{w}_{4}$	15	-
7	$a_{4} \widetilde{w}_{3}, \widetilde{w}_{3} \widetilde{w}_{4}$	16	$a_{4} \widetilde{w}_{2}^{4} \widetilde{w}_{4}$
8	$a_{4} \widetilde{w}_{2}^{2}, a_{4} \widetilde{w}_{4}, \widetilde{w}_{2}^{4}, \widetilde{w}_{2}^{2} \widetilde{w}_{4}$		

Generators of $H^{j}\left(\widetilde{G}_{9,4}\right)$

Theorem

0	\widetilde{w}_{0}	11	$a_{8} \widetilde{w}_{3}$
1	-	12	$a_{8} \widetilde{w}_{2}^{2}, a_{8} \widetilde{w}_{4}, \widetilde{w}_{2}^{4} \widetilde{w}_{4}$
2	\widetilde{w}_{2}	13	$a_{8} \widetilde{w}_{2} \widetilde{w}_{3}$
3	\widetilde{w}_{3}	14	$a_{8} \widetilde{w}_{2}^{3}, a_{8} \widetilde{w}_{2} \widetilde{w}_{4}$
4	$\widetilde{w}_{2}^{2}, \widetilde{w}_{4}$	15	$a_{8} \widetilde{w}_{3} \widetilde{w}_{4}$
5	$\widetilde{w}_{2} \widetilde{w}_{3}$	16	$a_{8} \widetilde{w}_{2}^{4}, a_{8} \widetilde{w}_{2}^{2} \widetilde{w}_{4}$
6	$\widetilde{w}_{2}^{3}, \widetilde{w}_{2} \widetilde{w}_{4}$	17	$a_{8} \widetilde{w}_{2} \widetilde{w}_{3} \widetilde{w}_{4}$
7	$\widetilde{w}_{3} \widetilde{w}_{4}$	18	$a_{8} \widetilde{w}_{2}^{3} \widetilde{w}_{4}$
8	$a_{8}, \widetilde{w}_{2}^{4}, \widetilde{w}_{2}^{2} \widetilde{w}_{4}$	19	-
9	$\widetilde{w}_{2} \widetilde{w}_{3} \widetilde{w}_{4}$	20	$a_{8} \widetilde{w}_{2}^{4} \widetilde{w}_{4}$
10	$a_{8} \widetilde{w}_{2}, \widetilde{w}_{2}^{3} \widetilde{w}_{4}$		

$H^{*}\left(\widetilde{G}_{10,4}\right)$ and $H^{*}\left(\widetilde{G}_{11,4}\right)$

In $H^{*}\left(\widetilde{G}_{10,4}\right)$ there are two anomalous generators a_{12} and b_{12} of degree 12 . The dual to a_{12} is $\widetilde{w}_{2}^{4} \widetilde{w}_{4}$ and the dual to b_{12} is \widetilde{w}_{2}^{6}.
In $H^{*}\left(\widetilde{G}_{11,4}\right)$ there are two anomalos generators a_{12} and a_{16}. The latter can be chosen such that $a_{16} \widetilde{w}_{2}^{4} \widetilde{w}_{4} \neq 0, a_{16} \widetilde{w}_{2}^{6}=0$ and $a_{16} \widetilde{w}_{2}^{3} \widetilde{w}_{3}^{2}=0$.

Conclusion

We may formulate some conjectures about $H^{*}\left(\widetilde{G}_{n, 4}\right)$.
We observe there is one anomalous generator $a_{2 t}$ in $H^{2^{t}}\left(\widetilde{G}_{2 t+1,4}\right)$ for $t=3$ reflecting the general case for $H^{*}\left(\widetilde{G}_{2^{t}, 3}\right)$.
It appears that for $2^{t}+1<n \leq 2^{t+1}-4$ there are at least two anomalous generators $a_{4 n-3 \cdot 2^{t-4}} \in H^{4 n-3 \cdot 2^{t}-4}\left(\widetilde{G}_{n, 4}\right)$ and $a_{2^{t+1}-4} \in H^{2^{t+1}-4}\left(\widetilde{G}_{n, 4}\right)$. Note that previously mentioned $a_{2 t}$ can be thought of as also being of the form $a_{4 n-3 \cdot 2^{t}-4}$ for $n=2^{t}+1$.
From observing that the Poincaré dual to those $a_{4 n-3 \cdot 2^{t-1}-4}$ in our examples for $n=9,10,11$ was always of the form $\widetilde{w}_{2}^{3} \widetilde{w}_{4}$, we may reasonably anticipate these duals will exhibit some kind of stability in general.

Conclusion

Thank you.

