Tractor like view 0000	Special connections	Non-holonomic equations	Example 00

Non-holonomic equations for the normal extremals in geometric control theory

Jan Slovák

Masaryk University, Brno, Czech Republic following the joint paper with A. Rod Gover, arXiv:1909.06592

January 12, 2020 Srní, Czech Republic

Tractor like view	Special connections	Non-holonomic equations	Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Tractor like view

2 Special connections

3 Non-holonomic equations

Tractor like view S	pecial connections	Non-holonomic equations	Example

2 Special connections

3 Non-holonomic equations

Tractor like view	Special connections	Non-holonomic equations	Example
●000	00		00
Subriemannian	geometry		

Definition

Subriemannian geometry (M, D, S) on a manifold M is given by a distribution D, and (positive definite) metric h on D.

Tractor	like	view
0000		

Special connections

Non-holonomic equations

Subriemannian geometry

Definition

Subriemannian geometry (M, D, S) on a manifold M is given by a distribution D, and (positive definite) metric h on D.

Sheaf $\mathcal{D}^{-1}=\mathcal{D}$ of vector fields valued in D generates the filtration by sheafs

$$\mathcal{D}^{j} = \{ [X, Y], X \in \mathcal{D}^{j+1}, Y \in \mathcal{D}^{-1} \}, \quad j = -2, -3, \dots$$

We say that D is a bracket generating distribution if for some k, D^k is the sheaf of all vector fields on M.

Tractor like view	Special connections	Non-holonomic equations	Example
0000	00	0000	00

Bracket generating distribution D defines the filtration of subspaces

$$T_{x}M=D_{x}^{k}\supset\cdots\supset D_{x}^{-1}$$

at each point $x \in M$. The associated graded tangent space

gr
$$T_x M = T_x M / D_x^{k+1} \oplus \dots \oplus D_x^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

comes equipped with the structure of a nilpotent Lie algebra.

Tractor like view	Special connections	Non-holonomic equations	Example
0000			

The sub-Riemannian metric can be viewed as $h: T^*M \rightarrow TM$ with the image D.

There are the equivalent short exact sequences:

$$0 \to K \to T^*M \stackrel{h}{\to} D \to 0$$

$$0 \to D \to TM \stackrel{q}{\to} Q \to 0.$$

There is also the D-valued Levi-form defined by projecting the Lie bracket of vector fields in D

$$L: D \times D \rightarrow Q.$$

Splittings of the sequences correspond to splittings of TM or T^*M .

Tractor like view	Special connections	Non-holonomic equations	Example
0000			

A change of splitting from s to another $\hat{s} : Q \to TM$ may be naturally identified with a bundle map $f : Q \to D$. Changes of splitting induce:

$$[TM]_{s} \ni [v]_{s} = \begin{pmatrix} \sigma^{a} \\ u^{i} \end{pmatrix}_{s} \mapsto \begin{pmatrix} \widehat{\sigma}^{a} \\ \widehat{u}^{i} \end{pmatrix}_{\widehat{s}} = \begin{pmatrix} \sigma^{a} \\ u^{i} - f^{i}_{a}\sigma^{a} \end{pmatrix}_{\widehat{s}} = [v]_{\widehat{s}} \in [TM]_{\widehat{s}}$$

and similarly

$$\begin{pmatrix} u^{i} \\ \nu_{a} \end{pmatrix} \mapsto \begin{pmatrix} u^{i} \\ \nu_{a} + f^{i}_{a}u_{i} \end{pmatrix} \quad \text{where} \quad u_{i} = h_{ij}u^{j},$$

Tractor like view	Special connections	Non-holonomic equations	Example

2 Special connections

3 Non-holonomic equations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Tractor like view	Special connections	Non-holonomic equations	Example
	•0		

Non-holonomic Riemannian structure (M, g, D, D^{\perp}) Choose E = TM and for $\alpha \ge 0$

$$\Phi_{lpha} = egin{cases} \operatorname{id}_D & \operatorname{on}\, D \ lpha \operatorname{id}_{D^{\perp}} & \operatorname{on}\, D^{\perp}. \end{cases}$$

When α approaches zero we charge each of the D^{\perp} components of the velocities $\dot{c}(t)$ by a $1/\alpha$ multiple of its original size with respect to g. At the $\alpha = 0$ limit we obtain the original sub-Riemannian geometry.

Tractor like view	Special connections	Non-holonomic equations	Example
0000	⊙●		00

Theorem

Given a sub-Riemannian geometry (M, D, h), let g be a Riemannian metric on TM that restricts to h on D and write D^{\perp} for the orthogonal complement of D. Then there is the unique metric connection ∇ on TM such that both D and D^{\perp} are preserved, and

$$T_{DD}^{D} = 0$$

$$T_{D^{\perp}D^{\perp}}^{D^{\perp}} = 0$$

$$T_{DD^{\perp}}^{D^{\perp}} \text{ is symmetric with respect to } g_{|D^{\perp}}$$

$$T_{DD^{\perp}}^{D} \text{ is symmetric with respect to } g_{|D}.$$

This connection ∇ is invariant with respect to constant rescalings of g on D or D^{\perp} .

Tractor like view	Special connections	Non-holonomic equations	Example

2 Special connections

3 Non-holonomic equations

Tractor like view	Special connections	Non-holonomic equations	Example
0000	00	●000	00

Fix extension metric g of the given sub-Riemannian metric h, write $TM = D \oplus D^{\perp}$, consider the family of metrics $g_{|D}^{\epsilon} = g$ and $g_{|D^{\perp}}^{\epsilon} = \epsilon g$. They all share the special connection ∇ . We rewrite the geodesic equation for the metric minimizers of g^{ϵ} in term of ∇ and its torsion.

Write D^{ϵ} for the Levi Civita connection of g^{ϵ} and $A^{\epsilon}: TM \otimes TM \rightarrow TM$ be the contorsion tensor,

 $D_X^{\epsilon}Y = \nabla_X Y + A^{\epsilon}(X,Y).$

Tractor like view	Special connections	Non-holonomic equations	Example
		0000	

Consider local non-holonomic frames spanning D and D^{\perp} and use indices i, j, k, \ldots and a, b, c, \ldots in relation to D and D^{\perp} , respectively, i.e., $u = u^i + u^a$ is the tangent curve $u = \dot{c}$, $\nabla = \nabla_i + \nabla_a$. Similarly, write g_{ij} and ϵg_{ab} , and torsions

$$T^{i}_{jk} + T^{i}_{ja} + T^{i}_{ab} + T^{a}_{jk} + T^{a}_{jb} + T^{a}_{bc}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The variational equations $D_u^{\epsilon} u = 0$ for the tangent curves $u = \dot{c}^{\epsilon}$ of the g^{ϵ} critical curves c^{ϵ} are

$$0 = g_{ij}u^{k}\nabla_{k}u^{j} + g_{ij}u^{a}\nabla_{a}u^{j} + g_{kj}u^{k}T^{j}{}_{ia}u^{a} + \epsilon g_{ab}u^{a}T^{b}{}_{ic}u^{c} + \epsilon g_{ab}u^{a}T^{b}{}_{ik}u^{k} 0 = \epsilon g_{ab}u^{k}\nabla_{k}u^{b} + \epsilon g_{ab}u^{c}\nabla_{c}u^{b} + g_{ij}u^{i}T^{j}{}_{ab}u^{b} + g_{ij}u^{i}T^{j}{}_{ak}u^{k} + \epsilon g_{cb}u^{b}T^{c}{}_{ak}u^{k}.$$

The variational equations $D_u^{\epsilon} u = 0$ for the tangent curves $u = \dot{c}^{\epsilon}$ of the g^{ϵ} critical curves c^{ϵ} are

$$0 = g_{ij}u^{k}\nabla_{k}u^{j} + g_{ij}u^{a}\nabla_{a}u^{j} + g_{kj}u^{k}T^{j}{}_{ia}u^{a} + \epsilon g_{ab}u^{a}T^{b}{}_{ic}u^{c} + \epsilon g_{ab}u^{a}T^{b}{}_{ik}u^{k} 0 = \epsilon g_{ab}u^{k}\nabla_{k}u^{b} + \epsilon g_{ab}u^{c}\nabla_{c}u^{b} + g_{ij}u^{i}T^{j}{}_{ab}u^{b} + g_{ij}u^{i}T^{j}{}_{ak}u^{k} + \epsilon g_{cb}u^{b}T^{c}{}_{ak}u^{k}.$$

Now we "renormalize" the D^{\perp} component u^a as $u^a = \frac{1}{\epsilon}\nu^a$ and $\delta = 1/\epsilon$. In the limit $\delta = 0$ we arrive at

$$0 = g_{ij}u^{k}\nabla_{k}u^{j} + g_{ab}\nu^{a}T^{b}{}_{ik}u^{k}$$
$$0 = g_{ab}u^{k}\nabla_{k}\nu^{b} + g_{ij}u^{i}T^{j}{}_{ak}u^{k} + g_{cb}\nu^{b}T^{c}{}_{ak}u^{k}$$

With the help of g, we can view this as equations coupling the components $(u^i) \in \mathcal{D}$ with (ν_a) in the annihilator of \mathcal{D} in T^*M .

Tractor like view	Special connections	Non-holonomic equations	Example
		0000	

Theorem

For each set of initial conditions $x \in M$, $u(0) \in D \subset T_xM$, and $\nu(0) \in D^{\perp} \subset T_x^*M$, the component u(t) of the unique solution of the equations

$$0 = u^k \nabla_k u^i + h^{ij} \nu_a L^a{}_{ik} u^k$$

$$0 = u^k \nabla_k \nu_a + g_{ij} u^i T^j{}_{ak} u^k + \nu_b T^b{}_{ak} u^k$$
(1)

- 日本 - 1 日本 - 1 日本 - 1 日本

projects to a locally defined normal extremal c(t) of the sub-Riemannian geometry with c(0) = x and $\dot{c}(t) = u(t)$.

Tractor like view	Special connections	Non-holonomic equations	Example

2 Special connections

3 Non-holonomic equations

Tractor like view 0000	Special connections	Non-holonomic equations	Example ●0
generalized Heisenberg in 5D			

Holonomic coordinates (x^1, x^2, x^3, x^4, z) , D spanned by

$$X_{1} = \frac{\partial}{\partial x^{1}} - x^{3} \frac{\partial}{\partial z} \qquad X_{2} = \lambda \left(\frac{\partial}{\partial x^{2}} - x^{4} \frac{\partial}{\partial z} \right)$$
$$X_{3} = \frac{\partial}{\partial x^{3}} + x^{1} \frac{\partial}{\partial z} \qquad X_{4} = \lambda \left(\frac{\partial}{\partial x^{4}} + x^{2} \frac{\partial}{\partial z} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tractor like view 0000	Special connections	Non-holonomic equations	Example ●0		
generalized Heisenherg in 5D					

Holonomic coordinates (x^1, x^2, x^3, x^4, z) , D spanned by

$$\begin{split} X_1 &= \frac{\partial}{\partial x^1} - x^3 \frac{\partial}{\partial z} \qquad X_2 = \lambda \left(\frac{\partial}{\partial x^2} - x^4 \frac{\partial}{\partial z} \right) \\ X_3 &= \frac{\partial}{\partial x^3} + x^1 \frac{\partial}{\partial z} \qquad X_4 = \lambda \left(\frac{\partial}{\partial x^4} + x^2 \frac{\partial}{\partial z} \right) \end{split}$$

The set of first 5 equations reads (here $u(t) = \alpha^i X_i$ in the non-holonomic frame)

$$\begin{split} \dot{x}^1 &= \alpha^1, \qquad \dot{x}^2 = \lambda \alpha^2, \qquad \dot{x}^3 = \alpha^3, \qquad \dot{x}^4 = \lambda \alpha^4, \\ \dot{z} &= x^1 \alpha^3 - x^3 \alpha^1 + \lambda x^2 \alpha^4 - \lambda x^4 \alpha^2, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Tractor like view	Special connections	Non-holonomic equations	Example
			00

Our "non-holonomic equations" then get

$$\begin{split} \dot{\alpha}^{1} &= \frac{\lambda_{x^{1}} - x^{3}\lambda_{z}}{\lambda} (\alpha^{2}\alpha^{2} + \alpha^{4}\alpha^{4}) - \nu\alpha^{3}, \\ \dot{\alpha}^{2} &= -\frac{\lambda_{x^{1}} - x^{3}\lambda_{z}}{\lambda} \alpha^{1}\alpha^{2} - \frac{\lambda_{x^{3}} + x_{1}\lambda_{z}}{\lambda} \alpha^{2}\alpha^{3} - (\lambda_{x^{3}} + x^{2}\lambda_{z})\alpha^{2}\alpha^{4} \\ &- (x^{4}\lambda_{z} - \lambda_{x^{2}})\alpha^{4}\alpha^{4} - \lambda^{2}\nu\alpha^{4}, \\ \dot{\alpha}^{3} &= \frac{\lambda_{x^{3}} - x^{1}\lambda_{z}}{\lambda} (\alpha^{2}\alpha^{2} + \alpha^{4}\alpha^{4}) - \nu\alpha^{1}, \\ \dot{\alpha}^{4} &= -\frac{\lambda_{x^{1}} - x^{3}\lambda_{z}}{\lambda} \alpha^{1}\alpha^{4} - \frac{\lambda_{x^{3}} + x_{1}\lambda_{z}}{\lambda} \alpha^{3}\alpha^{4} + (\lambda_{x^{4}} + x^{2}\lambda_{z})\alpha^{2}\alpha^{2} \\ &+ (x^{4}\lambda_{z} - \lambda_{x^{2}})\alpha^{2}\alpha^{4} + \lambda^{2}\nu\alpha^{2}, \\ \dot{\nu} &= \frac{2\lambda_{z}}{\lambda} (\alpha^{2}\alpha^{2} + \alpha^{4}\alpha^{4}). \end{split}$$

In particular, if $\lambda_z = 0$ then ν is a free constant parameter. These equations coincide with the standard ones if λ is a constant function.