Non-holonomic equations for the normal extremals in geometric control theory

Jan Slovák
Masaryk University, Brno, Czech Republic
following the joint paper with A. Rod Gover, arXiv:1909.06592

January 12, 2020
Srní, Czech Republic
(1) Tractor like view
(2) Special connections
(3) Non-holonomic equations

4 Example

(1) Tractor like view

(2) Special connections
(3) Non-holonomic equations
(4) Example

Subriemannian geometry

Definition

Subriemannian geometry (M, D, S) on a manifold M is given by a distribution D, and (positive definite) metric h on D.

Subriemannian geometry

Definition

Subriemannian geometry (M, D, S) on a manifold M is given by a distribution D, and (positive definite) metric h on D.

Sheaf $\mathcal{D}^{-1}=\mathcal{D}$ of vector fields valued in D generates the filtration by sheafs

$$
\mathcal{D}^{j}=\left\{[X, Y], X \in \mathcal{D}^{j+1}, Y \in \mathcal{D}^{-1}\right\}, \quad j=-2,-3, \ldots
$$

We say that D is a bracket generating distribution if for some k, \mathcal{D}^{k} is the sheaf of all vector fields on M.

Bracket generating distribution D defines the filtration of subspaces

$$
T_{x} M=D_{x}^{k} \supset \cdots \supset D_{x}^{-1}
$$

at each point $x \in M$.
The associated graded tangent space

$$
\operatorname{gr} T_{x} M=T_{x} M / D_{x}^{k+1} \oplus \cdots \oplus D_{x}^{-1}
$$

comes equipped with the structure of a nilpotent Lie algebra.

The sub-Riemannian metric can be viewed as $h: T^{*} M \rightarrow T M$ with the image D.
There are the equivalent short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow K \rightarrow T^{*} M \xrightarrow{h} D \rightarrow 0 \\
& 0 \rightarrow D \rightarrow T M \xrightarrow{q} Q \rightarrow 0 .
\end{aligned}
$$

There is also the D-valued Levi-form defined by projecting the Lie bracket of vector fields in D

$$
L: D \times D \rightarrow Q
$$

Splittings of the sequences correspond to splittings of $T M$ or $T^{*} M$.

A change of splitting from s to another $\widehat{s}: Q \rightarrow T M$ may be naturally identified with a bundle map $f: Q \rightarrow D$.
Changes of splitting induce:
$[T M]_{s} \ni[v]_{s}=\binom{\sigma^{a}}{u^{i}}_{s} \mapsto\binom{\widehat{\sigma}^{a}}{\widehat{u}^{i}}_{\widehat{s}}=\binom{\sigma^{a}}{u^{i}-f_{a}^{i} \sigma^{a}}_{\widehat{s}}=[v]_{\widehat{s}} \in[T M]_{\widehat{s}}$
and similarly

$$
\binom{u^{i}}{\nu_{a}} \mapsto\binom{u^{i}}{\nu_{a}+f_{a}^{i} u_{i}} \quad \text { where } \quad u_{i}=h_{i j} u^{j}
$$

(1) Tractor like view

(2) Special connections

(3) Non-holonomic equations
(4) Example

Non-holonomic Riemannian structure (M, g, D, D^{\perp}) Choose $E=T M$ and for $\alpha \geq 0$

$$
\Phi_{\alpha}= \begin{cases}\operatorname{id}_{D} & \text { on } D \\ \alpha \operatorname{id}_{D^{\perp}} & \text { on } D^{\perp} .\end{cases}
$$

When α approaches zero we charge each of the D^{\perp} components of the velocities $\dot{c}(t)$ by a $1 / \alpha$ multiple of its original size with respect to g. At the $\alpha=0$ limit we obtain the original sub-Riemannian geometry.

Theorem

Given a sub-Riemannian geometry (M, D, h), let g be a Riemannian metric on TM that restricts to h on D and write D^{\perp} for the orthogonal complement of D. Then there is the unique metric connection ∇ on $T M$ such that both D and D^{\perp} are preserved, and

$$
\begin{gathered}
T_{D D}^{D}=0 \\
T_{D^{\perp} D^{\perp}}^{D^{\perp}}=0
\end{gathered}
$$

$T_{D D^{\perp}}^{D^{\perp}}$ is symmetric with respect to $g_{\mid D^{\perp}}$ $T_{D D^{\perp}}^{D}$ is symmetric with respect to $g_{\mid D}$.

This connection ∇ is invariant with respect to constant rescalings of g on D or D^{\perp}.

(1) Tractor like view

(2) Special connections
(3) Non-holonomic equations
(4) Example

Fix extension metric g of the given sub-Riemannian metric h, write $T M=D \oplus D^{\perp}$, consider the family of metrics $g_{\mid D}^{\epsilon}=g$ and $g_{\mid D^{\perp}}^{\epsilon}=\epsilon g$. They all share the special connection ∇. We rewrite the geodesic equation for the metric minimizers of g^{ϵ} in term of ∇ and its torsion.
Write D^{ϵ} for the Levi Civita connection of g^{ϵ} and $A^{\epsilon}: T M \otimes T M \rightarrow T M$ be the contorsion tensor,

$$
D_{X}^{\epsilon} Y=\nabla_{X} Y+A^{\epsilon}(X, Y)
$$

Consider local non-holonomic frames spanning D and D^{\perp} and use indices i, j, k, \ldots and a, b, c, \ldots in relation to D and D^{\perp}, respectively, i.e., $u=u^{i}+u^{a}$ is the tangent curve $u=\dot{c}$, $\nabla=\nabla_{i}+\nabla_{a}$.
Similarly, write $g_{i j}$ and $\epsilon g_{a b}$, and torsions

$$
T^{i}{ }_{j k}+T^{i}{ }_{j a}+T^{i}{ }_{a b}+T^{a}{ }_{j k}+T^{a}{ }_{j b}+T^{a}{ }_{b c} .
$$

The variational equations $D_{u}^{\epsilon} u=0$ for the tangent curves $u=\dot{c}^{\epsilon}$ of the g^{ϵ} critical curves c^{ϵ} are

$$
\begin{aligned}
& 0=g_{i j} u^{k} \nabla_{k} u^{j}+g_{i j} u^{a} \nabla_{a} u^{j}+g_{k j} u^{k} T^{j}{ }_{i a} u^{a} \\
& \quad+\epsilon g_{a b} u^{a} T^{b}{ }_{i c} u^{c}+\epsilon g_{a b} u^{a} T^{b}{ }_{i k} u^{k} \\
& \begin{array}{r}
0=\epsilon g_{a b} u^{k} \nabla_{k} u^{b}+\epsilon g_{a b} u^{c} \nabla_{c} u^{b}+g_{i j} u^{i} T^{j}{ }_{a b} u^{b} \\
\\
\quad+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+\epsilon g_{c b} u^{b} T^{c}{ }_{a k} u^{k} .
\end{array}
\end{aligned}
$$

The variational equations $D_{u}^{\epsilon} u=0$ for the tangent curves $u=\dot{c}^{\epsilon}$ of the g^{ϵ} critical curves c^{ϵ} are

$$
\begin{aligned}
& 0=g_{i j} u^{k} \nabla_{k} u^{j}+g_{i j} u^{a} \nabla_{a} u^{j}+g_{k j} u^{k} T^{j}{ }_{i a} u^{a} \\
&+\epsilon g_{a b} u^{a} T^{b}{ }_{i c} u^{c}+\epsilon g_{a b} u^{a} T^{b}{ }_{i k} u^{k} \\
& 0=\epsilon g_{a b} u^{k} \nabla_{k} u^{b}+\epsilon g_{a b} u^{c} \nabla_{c} u^{b}+g_{i j} u^{i} T^{j}{ }_{a b} u^{b} \\
&+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+\epsilon g_{c b} u^{b} T^{c}{ }_{a k} u^{k} .
\end{aligned}
$$

Now we "renormalize" the D^{\perp} component u^{a} as $u^{a}=\frac{1}{\epsilon} \nu^{a}$ and $\delta=1 / \epsilon$. In the limit $\delta=0$ we arrive at

$$
\begin{aligned}
& 0=g_{i j} u^{k} \nabla_{k} u^{j}+g_{a b} \nu^{a} T^{b}{ }_{i k} u^{k} \\
& 0=g_{a b} u^{k} \nabla_{k} \nu^{b}+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+g_{c b} \nu^{b} T^{c}{ }_{a k} u^{k}
\end{aligned}
$$

With the help of g, we can view this as equations coupling the components $\left(u^{i}\right) \in \mathcal{D}$ with $\left(\nu_{a}\right)$ in the annihilator of \mathcal{D} in $T^{*} M$.

Theorem

For each set of initial conditions $x \in M, u(0) \in \mathcal{D} \subset T_{x} M$, and $\nu(0) \in \mathcal{D}^{\perp} \subset T_{x}^{*} M$, the component $u(t)$ of the unique solution of the equations

$$
\begin{align*}
& 0=u^{k} \nabla_{k} u^{i}+h^{i j} \nu_{a} L^{a}{ }_{i k} u^{k} \\
& 0=u^{k} \nabla_{k} \nu_{a}+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+\nu_{b} T^{b}{ }_{a k} u^{k} \tag{1}
\end{align*}
$$

projects to a locally defined normal extremal $c(t)$ of the sub-Riemannian geometry with $c(0)=x$ and $\dot{c}(t)=u(t)$.
(1) Tractor like view
(2) Special connections
(3) Non-holonomic equations
(4) Example

generalized Heisenberg in 5D

Holonomic coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}, z\right), D$ spanned by

$$
\begin{array}{ll}
x_{1}=\frac{\partial}{\partial x^{1}}-x^{3} \frac{\partial}{\partial z} & x_{2}=\lambda\left(\frac{\partial}{\partial x^{2}}-x^{4} \frac{\partial}{\partial z}\right) \\
x_{3}=\frac{\partial}{\partial x^{3}}+x^{1} \frac{\partial}{\partial z} & x_{4}=\lambda\left(\frac{\partial}{\partial x^{4}}+x^{2} \frac{\partial}{\partial z}\right)
\end{array}
$$

generalized Heisenberg in 5D

Holonomic coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}, z\right), D$ spanned by

$$
\begin{array}{ll}
x_{1}=\frac{\partial}{\partial x^{1}}-x^{3} \frac{\partial}{\partial z} & x_{2}=\lambda\left(\frac{\partial}{\partial x^{2}}-x^{4} \frac{\partial}{\partial z}\right) \\
x_{3}=\frac{\partial}{\partial x^{3}}+x^{1} \frac{\partial}{\partial z} & x_{4}=\lambda\left(\frac{\partial}{\partial x^{4}}+x^{2} \frac{\partial}{\partial z}\right)
\end{array}
$$

The set of first 5 equations reads (here $u(t)=\alpha^{i} X_{i}$ in the non-holonomic frame)

$$
\begin{aligned}
\dot{x}^{1} & =\alpha^{1}, \quad \dot{x}^{2}=\lambda \alpha^{2}, \quad \dot{x}^{3}=\alpha^{3}, \quad \dot{x}^{4}=\lambda \alpha^{4}, \\
\dot{z} & =x^{1} \alpha^{3}-x^{3} \alpha^{1}+\lambda x^{2} \alpha^{4}-\lambda x^{4} \alpha^{2},
\end{aligned}
$$

Our "non-holonomic equations" then get

$$
\begin{aligned}
\dot{\alpha}^{1}= & \frac{\lambda_{x^{1}}-x^{3} \lambda_{z}}{\lambda}\left(\alpha^{2} \alpha^{2}+\alpha^{4} \alpha^{4}\right)-\nu \alpha^{3}, \\
\dot{\alpha}^{2}= & -\frac{\lambda_{x^{1}}-x^{3} \lambda_{z}}{\lambda} \alpha^{1} \alpha^{2}-\frac{\lambda_{x^{3}}+x_{1} \lambda_{z}}{\lambda} \alpha^{2} \alpha^{3}-\left(\lambda_{x^{3}}+x^{2} \lambda_{z}\right) \alpha^{2} \alpha^{4} \\
& -\left(x^{4} \lambda_{z}-\lambda_{x^{2}}\right) \alpha^{4} \alpha^{4}-\lambda^{2} \nu \alpha^{4}, \\
\dot{\alpha}^{3}= & \frac{\lambda_{x^{3}}-x^{1} \lambda_{z}}{\lambda}\left(\alpha^{2} \alpha^{2}+\alpha^{4} \alpha^{4}\right)-\nu \alpha^{1}, \\
\dot{\alpha}^{4}= & -\frac{\lambda_{x^{1}}-x^{3} \lambda_{z}}{\lambda} \alpha^{1} \alpha^{4}-\frac{\lambda_{x^{3}}+x_{1} \lambda_{z}}{\lambda} \alpha^{3} \alpha^{4}+\left(\lambda_{x^{4}}+x^{2} \lambda_{z}\right) \alpha^{2} \alpha^{2} \\
& \quad+\left(x^{4} \lambda_{z}-\lambda_{x^{2}}\right) \alpha^{2} \alpha^{4}+\lambda^{2} \nu \alpha^{2}, \\
\dot{\nu}= & \frac{2 \lambda_{z}}{\lambda}\left(\alpha^{2} \alpha^{2}+\alpha^{4} \alpha^{4}\right) .
\end{aligned}
$$

In particular, if $\lambda_{z}=0$ then ν is a free constant parameter. These equations coincide with the standard ones if λ is a constant function.

