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Twin Pillars of XX-century Physics

Quantum (field) theory

I Elementary particles and their fundamental interactions (excluding gravity)

General relativity

I Gravity: planetary orbits, black holes and the evolution of the entire universe itself

The fundamental forces of Nature are ostensibly described by two distinct frameworks



The Standard Model of Particle Physics

I The electroweak and strong forces: Maxwell/Yang–Mills gauge theoriesf
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General Relativity

I The Standard Model plays out on
fixed stage of spacetime

I Gravity is the stage itself: gravity is geometry

I 2017 Nobel: gravity waves detected LIGO/VIRGO
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A Schism in the Fundamental Forces of Nature

I General relativity is naively incompatible with quantum theory

Diverges at two loops [Goroff-Sagnotti ’85]

I Black holes challenge the very foundations of quantum theory

Hawking radiation appears to violate unitarity [Hawking ‘74]

I The problem of quantum gravity - can the forces be reunited?



Gravity and gauge theory

I Gravity as a gauge theory:

I Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries
[Utiyama ’56; Kibble ’61; MacDowell-Mansouri ’77; Chamseddine-West ’77;
Stelle-West 79]

I Holographic principle - AdS/CFT correspondence
[’t Hooft ’93; Susskind ’94; Maldacena ’97]

I Here, we appeal to a third and (superficially) independent perspective:

Gravity = Gauge ⇥ Gauge
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Gravity = Gauge ⇥ Gauge

gµ⌫ Aµ
a A⌫

b

I Is gravity the double copy of the other fundamental forces of Nature?

I Long history, many guises [Feynman, Papini, Kawai–Lewellen–Tye, Bern,
Hodges. . . ]

I Renaissance: Colour–Kinematics (CK) duality conjecture and double copy
of gauge theory and gravity scattering amplitudes
[Bern-Carrasco-Johansson ’08, ’10; Bern-Dennen-Huang-Kiermaier ’10]
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Scattering Amplitudes

! Physical observables tested at particle accelerators (e.g. Large Hadron
Collider)

! New insights into the underlying theories themselves
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Colour–Kinematics Duality

I Amplitude for gluons to scatter (very) schematically:

I Bern-Carrasco-Johansson CK duality conjecture 2008:

I Proven at tree level (zeroth order in ~)

I Conjectured at loop level (but see later!) with highly non-trivial examples
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The Double Copy Prescription

I Assuming CK duality is realised, gravity comes for free:

I ‘Gluons for (almost) nothing, gravitons for free’ JJ Carrasco



Implications and Applications

Computationally powerful: facilitates previously intractable calculations
I Miraculous cancellations: perturbatively finite quantum field theory of

gravity?

I Black holes collisions and gravity wave astronomy: pushing the precision
frontier

Conceptually provocative: is gravity really the square of gauge theory?
I Does CK duality and the double copy actually hold?

I What is CK duality?

I Can it be taken beyond amplitudes?

�! Lift CK duality and double copy to field theory?



Implications and Applications

Computationally powerful: facilitates previously intractable calculations
I Miraculous cancellations: perturbatively finite quantum field theory of

gravity?

I Black holes collisions and gravity wave astronomy: pushing the precision
frontier

Conceptually provocative: is gravity really the square of gauge theory?
I Does CK duality and the double copy actually hold?

I What is CK duality?

I Can it be taken beyond amplitudes?

�! Lift CK duality and double copy to field theory?



Field Theory Colour-Kinematics Duality and Double Copy

I Introduce field theory realisation of CK duality the double copy
[LB-Hughes-Duff-Nagy ’14; Anastasiou-LB-Hughes-Duff-Nagy ’14, 18’. . . ]
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Field Theory Colour-Kinematics Duality and Double Copy

I CK duality: can be realised as an infinite dimensional anomalous symmetry
of Yang–Mills Batalin–Vilkovisky (BV) action [LB, Branislav Jurčo, Hyungrok
Kim, Tommaso Macrelli, Christian Saemann, Martin Wolf (BJKMSW) ’21]

S
YM

BV [AAa,A+
Aa] ) FAB

C $ fab
c

I BV-action double copy [BJKMSW ’20; ’21]

I Double copy origin of symmetries to all orders in perturbation theory:

(gauge, global susy, R-sym. . . )| {z }
(super) Yang–Mills symmetries

�! (diffeomorphism, local susy, U-duality. . . )| {z }
(super)gravity symmetries
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Field Theory Colour-Kinematics Duality and Double Copy

I The double copy holds to all loops [BJKMSW ’20]

Quantum gravity is Yang-Mills theory squared!
(Well, perturbatively and coupled to the axion-dilaton)

=

Yang-Mills EinsteinYang-Mills

I Revealed mathematical structure: homotopy algebras [BJKMSW ’21]



Homotopy Algebras

I Higher symmetry and gauge theory is everywhere: condensed matter,
M-theory. . . (see lectures of Konrad Waldorf)

I Higher symmetry �! homotopy algebras: intersection of category theory,
topology, geometry and algebra Mac Lane, Stasheff, Kontsevich, Baez. . .

I Generalise familiar (matrix, Lie. . . ) algebras to include higher products:

[�,�] �! [�], [�,�], [�,�,�], [�,�,�,�] · · ·

Jacobi relation Homotopy Jacobi relations

I Homotopy Lie L1-algebras: string field theory, quantum field theory,
condensed matter/higher Berry connections. . .
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The Homotopy Algebra of Colour-Kinematics Duality

I CK duality: kinematic algebra
Hands on quantum field theory

I Q: but what is it?



The Homotopy Algebra of Colour-Kinematics Duality

I CK duality: kinematic algebra
Hands on quantum field theory

I A: BV⇤
1 homotopy algebra

Abstract mathematics [BJKMSW ’22 (to appear)]

I CK duality: a symmetry of Nature as a mug is a donut!

Michel Reiterer 19
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Future Directions

I Computational advantages for applications

I Zoology of CK dual and double copy theories,
e.g. Bagger–Lambert–Gustavsson Chern–Simons-matter theories

I Curved backgrounds, e.g. (anti) de Sitter

I ‘Closed = Open ⇥ Open’ string (field) theory
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Order of Events

Lecture 1 Colour–kinematics duality and the double-copy

Lecture 2 Off-shell colour–kinematics and the BRST Lagrangian double copy

Lecture 3 The homotopy algebra of colour–kinematics duality



§1.

Lecture 1: Colour–kinematics duality and the double-copy



Yang–Mills theory

I Classical Yang–Mills action

S
YM

classical :=
1

2g2

Z
trF ^ ?F

=

Z
dd

x

n
� 1

4
Faµ⌫F

aµ⌫
o

F := dA+A^A, F
a
µ⌫ := @µA

a
⌫�@⌫Aa

µ+fbc
a
gA

b
µA

c
⌫ , A = gA

a
µdx

µ⌦ta

I Invariant under gauge transformations

�✓A = r✓ = d✓ + [A, ✓], (rµ✓)
a = @µ✓

a + gfbc
a
A

b
µ✓

c

I Expanding:

S
YM

classical ⇠
Z

dd
x

n
A(⇤� @@)A+ gAA@A+ g

2
AAAA

o

I Kinematic operator (⇤� @@) has kernel

µ
Connection onprime Gbundle
See K Waldorf
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Yang–Mills theory

I Gauge fix using BRST formalism ✓ ! c,Q2 = 0:

QA = rc, Qc = [c, c], Qc̄ = b, Qb = 0

with gauge-fixing fermion  = �trc̄( ⇠
2
b � G [A]):

S
YM

BRST = S
YM

classical +

Z
?Q 

=

Z
dd

x

n
� 1

4
Faµ⌫F

aµ⌫�c̄a@
µ(rµc)

a + ⇠
2
bab

a + ba@
µ
A

a
µ

o

I Physical states in Q-cohomology �! asymptotic Hilbert space with
unitary S-matrix

I Extended psuedo-Hillbert BRST space

Aphys, Aforward, Abackward ⌘ b, c, c̄



Yang–Mills Feynman diagrams

Functionally varying �nS
(�A)n |A=0 for n-point Feynman rules (Feynman gauge):

= � i⌘µ⌫�ab

p2

= gfabc [(p
⇢ � q

⇢)⌘µ⌫ + (qµ � r
µ)⌘⌫⇢ + (r⌫ � p

⌫)⌘⇢µ]

= �ig
2
⇥
f
abx

fx
cd⌘µ⌫⇢� + f

adx
fx

bc⌘µ�⌫⇢ + f
acx

fx
db⌘µ⇢⌫�

⇤

= i�ab

p2

= �gf
abc

p
µ

P
a arrunrunnab

a

arrumb
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Tree-level 4-point colour–kinematics duality

= �ig2 f
abe

fe
cdns

s
=: �ig2 csns

s

= �ig2 f
aed

fe
bcnt

t
=: �ig2 ctnt

t

= �ig2 f
aec

fe
dbnu

u
=: �ig2 cunu

u

= �ig2

⇣
csn(4)

s � ctn(4)
t � cun(4)

u

⌘

ns = 4
⇥
("1·p2)"2�("2·p1)"1+ 1

2
("1·"2)p12

⇤
·
⇥
("3·p4)"4�("4·p3)"3+ 1

2
("3·"4)p34

⇤
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Tree-level 4-point colour–kinematics duality

1
s
cssn(4)

s � 1
t
cttn(4)

t � 1
u

cuun(4)
u

cs(ns + sn(4)
s )

s

ct(nt � tn(4)
t )

t

cu(nu � un(4)
u )

u
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Tree-level 4-point colour–kinematics duality

I Amplitude now sum over purely trivalent diagrams:

A4 / cs ñs

s
+

ct ñt

t
+

cu ñu

u

I Obvious (by Jacobi): cs � ct � cu = 3f ea[bfe cd ] = 0

I Exercise: show that [Zhu ’80]

ñs � ñt � ñu = 0

Hint: Recall pi · "i (pi , qi ) = p
2

i = 0 and there is freedom in the choice of
reference vectors qi

I Kinematics appears to be playing by the same rules as the colour!

Thurrunnott hhw mhymwww
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Amplitudes and cubic diagrams

I Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

A
n,L
YM

=
X

i2cubic diag

Z

L

cini

Sidi

I ci : colour numerator, built from f
abc , read off diagram i

I ni : kinematic numerator, built from p, "

I di : propagator,
Q

int. lines
p

2, read off diagram i
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Amplitudes and cubic diagrams

I Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

A
n,L
YM

=
X

i2cubic diag

Z

L

cini

Sidi
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Amplitudes and cubic diagrams

I Can be realised in the YM Lagrangian through auxiliary fields:

g
2[Aµ,A⌫ ][A

µ,A⌫ ] 1

2
B

µ⌫ ⇤Bµ⌫ � g
1p
2
@

Bµ⌫ [A
µ,A⌫ ]

[Bern-Dennen-Huang-Kiermaier ’10] B ftp.gaLA.AT
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Amplitudes and cubic diagrams

I Feynman diagrams give ‘cubic’ amplitudes directly:

A
n,L
YM

=
X

↵2Feynman diag

Z

L

c↵n↵

S↵d↵
=

X

i2cubic diag

Z

L

cini

Sidi

I Example: 4-point s-channel diagram
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BCJ colour-kinematic duality conjecture

I There is an organisation of the n-point L-loop gluon amplitude:

A
n,L
YM

=
X

i2cubic diag

Z

L

cini

Sidi

such that
ci + cj + ck = 0 ) ni + nj + nk = 0

ci �! �ci ) ni �! �ni

[Bern-Carrasco-Johansson ’08]

I CK duality established at tree-level
[Stieberger ’09, Bjerrum-Bohr–Damgaard–Vanhove ’09; Mizera ’19; Reiterer ’19]

I Significant evidence up to 4 loops in various (super)YM theories
[Carrasco–Johansson ’11; Bern–Davies–Dennen–Huang–Nohle ’13;
Bern-Davies-Dennen ’14. . . ]

I Quickly becomes difficult to check: remains conjectural at the loop level
[Bern–Carrasco–Chen–Edison–Johansson–Parra-Martinez–Roiban–Zeng ’18]
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5-point example: why life isn’t that easy

JEE
I Im Not
of Ecp s't p o e p



5-point example: why life isn’t that easy

Em him
mhmwowwww.mrnnmnmmhhhmnwmi murmur

he Y

or
g

uhi



Tree-level statement

I Reformulate tree-level statement:

A
n,0
YM

= cTDn, Dij =
�ij
dj

,

i = 1, 2, . . . (2n � 5)!!

I Jacobi implies only (n � 2)! linearly independent, choose cm and
corresponding nm:

c = Jcm, n = Jnm

where J is (2n � 5)!!⇥ (n � 2)!

I Non-trivial condition
A = Pn = (PJ)nm

where A is the (n � 2)!-vector of colour-ordered partial amplitudes and P
is an (n � 2)!⇥ (2n � 5)!! matrix of signed propagators

I det(PJ) = 0, but can solve via Gaussian elimination
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amplitudes BCI relations



Going to loops

I Obvious generalisation

I Quickly becomes very difficult since CK duality relations become
functional due the graph automorphisms ) numerator ansatz:

1. The numerators are polynomials in momenta and polarization vectors
2. Power-counting matches those of Feynman-gauge Feynman rules
3. Diagrams with only trivalent vertices
4. Relabeling maps numerators to numerators
5. Diagram symmetries respected
6. The cuts of ansatz match a spanning set of unitarity cuts for Yang–Mills
7. CK duality manifest in integrand

I 1-6 are are manifested by Feynman diagrams (3 requires aux fields)

I 6 , unitary theory + ansatz verification

I 1-7 cannot be satisfied at two loops: something has to give
[Bern-Davies-Nohle ‘15]
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Gravity

I Einstein–Hilbert action: perturbatively expanded g = ⌘ + h

S
EH

classical =
1

22

Z
?R

⇠
Z

d
D
x
�
@@hh + h@@hh + 2

hh@@hh + 3
hhh@@hh · · ·

 

I Invariant under gauge transformations (remnant of diffeo)

�✓h =
1

L✓(g)|=0, �✓hµ⌫ = 2r(µ✓µ) = rµ✓⌫ +r⌫✓⌫

I Gauge fix using BRST formalism ✓ ! X :

Qh = rX , QX = LXX , QX̄ = ⇡, Q⇡ = 0

with gauge-fixing fermion  = �X̄ · ( ⇠
2
⇡ � G [h]):

S
EH

BRST = S
EH

classical +

Z
?Q 

µ
All order interactions

X



Gravity

I Einstein–Hilbert action: perturbatively expanded g = ⌘ + h

S
EH

classical =
1

22

Z
?R

⇠
Z

d
D
x
�
@@hh + h@@hh + 2

hh@@hh + 3
hhh@@hh · · ·

 

I Invariant under gauge transformations (remnant of diffeo)

�✓h =
1

L✓(g)|=0, �✓hµ⌫ = 2r(µ✓µ) = rµ✓⌫ +r⌫✓⌫

I Gauge fix using BRST formalism ✓ ! X :

Qh = rX , QX = LXX , QX̄ = ⇡, Q⇡ = 0

with gauge-fixing fermion  = �X̄ · ( ⇠
2
⇡ � G [h]):

S
EH

BRST = S
EH

classical +

Z
?Q 



Gravity Feynman diagrams

I Recall, gluon three point vertex:

= gfabc [(p
⇢ � q

⇢)⌘µ⌫ + (qµ � r
µ)⌘⌫⇢ + (r⌫ � p

⌫)⌘⇢µ]

I Compare graviton three point [De Wit ’69; Carrasco ’15 (TASI lectures)]:
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Gravity Feynman diagrams

I Oh-shell three-point amplitude (��+):

A
3,0
graviton

= 4[("1 · "3)(p · "2)� ("2 · "3)(q · "1)]2= i2[A3,0
gluon

]2

I Vast simplification �! hidden structure

Gravity = Gauge ⇥ Gauge
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BCJ double-copy prescription

I Given CK dual amplitude of pure Yang-Mills

A
n,L
YM

=

Z

L

X

i2cubic diag

cini

Sidi

I Double-copy:
ci �! ni

I Gives an amplitude of N = 0 supergravity

A
n,L
N=0

=
X

i2cubic diag

Z

L

nini

Sidi

SN=0 = 1

22

Z
?R � 1

d�2
d' ^ ?d'� 1

2
e�

4
d�2'

dB ^ ?dB

where B is the Kalb-Ramond 2-form [See K. Waldorf lectures], ' is the
dilaton [Bern-Carrasco-Johansson ’08, ’10; Bern-Dennen-Huang-Kiermaier ’10]
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Double copy intuition

I Proof: [Bern-Dennen-Huang-Kiermaier ’10]
I Inductive: A

3,0
N=0

= 2i(A3,0
gluon

)2

I Recursion via complex momentum shifts p 7! p + zq:

A
n,0
N=0

7! A
n,0
N=0

(z) =
X

↵

1
s↵

A
↵
N=0(z↵)A

↵
N=0(z↵)

I Loop generalisation: unitary cuts

I Cut-constructible part amplitude correct: higher dimensions to get the rest
I Unitarity of Yang–Mills integrand essential for this argument (point 7)

I i I it



Generalisations

X

i2cubic diag

nini

di
�!

X

i2cubic diag

ni ñi

di

Inputs: Matter-coupled (super) Yang-Mills, D = 3 Chern-Simons-Matter, QCD,
Higgsed theories, Z-theory, (DF )2 theories . . .

Outputs: �3 theory, Maxwell/scalar/Yang-Mills supergravity, gauged supergravity
(Minkowski vacua), non-linear sigma model, pure gravity, Born-Infeld,
conformal gravity, strings . . .
[Hodges ’11; Cachazo, He, Yuan ’13 ’14, Dolan, Goddard ’13; Naculich ’14 ’15,
Cachazo, He, Yuan ’13 ’14; Chiodaroli et al ’14 ’15; Johansson, Ochirov ’15 ’16;
Chiodaroli, Günaydin, Johansson, Roiban ’17; Carrasco, Mafra, Schlotterer ’16;
Johansson, Nohle ’17; Azevedo, Chiodaroli, Johansson, Schlotterer ’18. . . ]

Distinct theories
CCKdual



Examples: Magic square of D = 3 supergravities

NL +NR sugra (+ matter) = (NL super YM)⇥ (NR super YM)

I Find D = 3 supergravities with global symmetries given by
Freudenthal-Rosenfeld-Tits magic square:

AL/R(NL/R) R(1) C(2) H(4) O(8)

R(1) sl(2,R) su(2, 1) sp(4, 2) f4(�20)

C(2) su(2, 1) su(2, 1)⇥ su(2, 1) su(4, 2) e6(�14)

H(3) sp(4, 2) su(4, 2) so(8, 4) e7(�5)

O(8) f4(�20) e6(�14) e7(�5) e8(8)

[LB, Duff, Hughes, Nagy ’13]

I D = 3 N -extended super YM over the division algebras N = dimA

sugra(AL,AR) = tri(AL)� tri(AR) + 3AL ⌦AR

I Generalises to all 3  D  10: square (AL,AR) ! pyramid (AD ,AL,AR)
[Anastasiou-LB-Hughes-Nagy ’15]
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Implications and applications

I Conceptually compelling and computationally powerful: N = 8
supergravity four-point to 5 loops! (finite)
[Bern–Carrasco–Chen–Edison–Johansson–Parra-Martinez–Roiban–Zeng ’18]

I Can be explained by supersymmetry and E7(7) U-duality [Bjornsson–Green
’10, Bossard–Howe–Stelle ’11; Elvang–Freedman–Kiermaier ’11;
Bossard–Howe–Stelle–Vanhove ’11]

I At 7 loops any would-be cancellations are “not consequences of
supersymmetry in any conventional sense” [Bjornsson–Green ’10]

I D = 4,N = 5 supergravity finite to 4 loops, contrary to expectations:

“Enhanced” cancellations
[Bern-Davies-Dennen ’14]

I Such cancellations not seen for N = 8 at 5 loops: implications unclear



Implications and applications

I Conceptually compelling and computationally powerful: N = 8
supergravity four-point to 5 loops! (finite)
[Bern–Carrasco–Chen–Edison–Johansson–Parra-Martinez–Roiban–Zeng ’18]

I Can be explained by supersymmetry and E7(7) U-duality [Bjornsson–Green
’10, Bossard–Howe–Stelle ’11; Elvang–Freedman–Kiermaier ’11;
Bossard–Howe–Stelle–Vanhove ’11]

I At 7 loops any would-be cancellations are “not consequences of
supersymmetry in any conventional sense” [Bjornsson–Green ’10]

I D = 4,N = 5 supergravity finite to 4 loops, contrary to expectations:

“Enhanced” cancellations
[Bern-Davies-Dennen ’14]

I Such cancellations not seen for N = 8 at 5 loops: implications unclear



Implications and applications

I Conceptually compelling and computationally powerful: N = 8
supergravity four-point to 5 loops! (finite)
[Bern–Carrasco–Chen–Edison–Johansson–Parra-Martinez–Roiban–Zeng ’18]

I Can be explained by supersymmetry and E7(7) U-duality [Bjornsson–Green
’10, Bossard–Howe–Stelle ’11; Elvang–Freedman–Kiermaier ’11;
Bossard–Howe–Stelle–Vanhove ’11]

I At 7 loops any would-be cancellations are “not consequences of
supersymmetry in any conventional sense” [Bjornsson–Green ’10]

I D = 4,N = 5 supergravity finite to 4 loops, contrary to expectations:

“Enhanced” cancellations
[Bern-Davies-Dennen ’14]

I Such cancellations not seen for N = 8 at 5 loops: implications unclear



Implications and applications

I Classical (non)perturbative solutions and gravity wave astronomy
[Monteiro–O’Connell–White ’14; Cardoso–Nagy–Nampuri ’16;
Luna–Monteiro–Nicholson–Ochirov–O’Connell–Westerberg–White ’16;
Berman–Chacón–Luna–White ’18; Kosower–Maybee–O’Connell ’18;
Bern–Cheung–Roiban–Shen–Solon–Zeng ’19; Bern–Luna–Roiban–Shen–Zeng
’20; Chacón-Nagy-White ’21. . . ]

I Geometric/world-sheet picture: ambitwistor string theories theories and
scattering equations, e.g. non-trivial gluon and spacetime backgrounds
[Cachazo–He–Yuan ’13 ’14; Mason–Skinner ’13; Adamo–Casali–Skinner ’13;
Adamo–Casali–Mason–Nekovar ’17 ’18; Geyer–Monteiro ’18; Geyer–Mason ’19;
Geyer-Monteiro-Stark–Muchão ’21. . . ]

I Surprising applications: gauge structure of the conjectured (4, 0) phase of
M-theory and twin non-Lagrangian S-folds theories [LB ’18;
LB-Duff-Marrani ’19]



§2.

Lecture 2: Off-shell field theory colour–kinematics and double copy



Gravity = Gauge ⇥ Gauge

Longstanding open questions

I Does CK duality (in some appropriate sense) hold to all orders?

I Does the double copy hold: is Einstein really the square of Yang–Mills?

I Is this restricted to the S-matrix or more general?



Gravity = Gauge ⇥ Gauge

Off-shell field theory approach

I CK duality is property of the Yang–Mills Batalin–Vilkovisky (BV) action,
up to Jacobian counter terms [BJKMSW ’21]

S
YM

BRST-CK =

Z
CijcabA

ia⇤A
ja + Fijk fabcA

ia
A

jb
A

kc

I Natural, but non-standard notion of CK duality:

I Infinite dimensional symmetry of the BV action

I Loop amplitude integrands CK dual automatically

I Anomalous - broken by Jacobian counterterms for unitarity

I Generalised unitarity proof of double copy doesn’t straightforwardly apply

I Double copy of BV action is manifestly valid ! double copy to all loops

I Perturbative quantum Einstein–Hilbert gravity coupled to a Kalb–Ramond
2-form and dilaton is the square Yang–Mills theory [BJKMSW ’20, ’21]
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Colour–kinematics duality and double copy: recap

Two key ideas:
I Realising CK duality and the double copy at the level of field theory:

1. CK duality manifesting actions and kinematic algebras
[Bern–Dennen–Huang–Kiermaier ’10; Tolotti–Weinzierl ’13; Cheung–Shen
’16; Luna–Monteiro–Nicholson–Ochirov–O’Connell–Westerberg–White ’16]
[Monteiro–O’Connell ’11, ’13;
Bjerrum–Bohr–Damgaard–Monteiro–O’Connell ’12; Fu–Krasnov ’16;
Chen–Johansson–Teng–Wang 19; Campiglia-Nagy ’21; Cheung-Mangan ’21;
Ben-Shahar-Johansson ’21; Brandhuber-Chen-Johansson-Travaglini-Wen
’21. . . ]

2. Field theory product of BRST gauge theories and Lagrangian double-copy
[Bern–Dennen–Huang–Kiermaier ’10; Anastasiou–LB-Duff–Hughes–Nagy
’14; LB ’17; Anastasiou–LB–Duff-Nagy–Zoccali ’18;
LB–Jubb–Makwana–Nagy ’20; LB-Nagy ’20; BJKMSW ‘20, ’21]

I Today: the YM BV action admits a natural form of anomalous CK duality
that immediately implies the double copy to all orders
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Lighting overview

Step 1. Cubic tree-level off-shell CK duality manifesting Yang-Mills BRST-action:

S
YM

BRST-CK =

Z
CijcabA

ia⇤A
ja + Fijk fabcA

ia
A

jb
A

kc

Step 2. BRST-action double-copy:

SDC =

Z
CijCı̃|̃A

i ı̃⇤A
j |̃ + FijkFı̃|̃k̃A

i ı̃
A

j |̃
A

kk̃

Step 3. Double-copy BRST operator:

(QYM, Q̃YM) �! QDC = Qdiffeo + Q2-form + trivial symmetries

Step 4. Assuming tree-level physical CK duality, perturbative quantum equivalence:

QDC

2 = QDCSDC = 0 ) SDC
⇠= S

N=0

BRST

Corollary: Loop amplitude (integrands) computed from Feynman diagrams of
S

YM

BRST-CK manifest CK duality, up to counterterms needed for unitarity,
and double-copy correctly to give amplitudes of N = 0 supegravity



Step 1: Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality
I There is a YM action such that the Feynman diagrams yield amplitudes

manifesting CK duality for tree-level amplitudes:

S
YM

on-shell CK =
1X

n=2

Z
L(n)

YM
⇠ A⇤A+ @AAA+

⇤
⇤AAAA+

@3

⇤2
AAAAA+ · · ·

[Bern–Dennen–Huang–Kiermaier 1004.0693; Tolotti–Weinzierl 1306.2975]



Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality
I This can be “strictified” to have only cubic interactions through infinite

tower of auxiliaries [BJKMSW ’21]

S
YM

on-shell CK = tr
Z

d
D
x

1

2
Aµ ⇤A

µ + 1

2
g@µA⌫ [A

µ,A⌫ ]

1

2
B

µ⌫ ⇤Bµ⌫ � g(@µA⌫ + 1p
2
@

Bµ⌫)[A
µ,A⌫ ]

+ 1

2
B

µ⌫ ⇤Bµ⌫ � g(@µA⌫ + 1p
2
@

Bµ⌫)[A
µ,A⌫ ]

+ C
µ⌫ ⇤ C̄µ⌫ + C

µ⌫ ⇤ C̄µ⌫ + C
µ⌫� ⇤ C̄µ⌫� +

+ gC
µ⌫ [Aµ,A⌫ ] + g@µC

µ⌫[A⌫ ,A]� g
2
@µC

µ⌫�[@[⌫A],A�]

+ gC̄
µ⌫� 1

2
[@

C̄�µ, @
�
A⌫ ] + [@

C̄�⌫µ,A
�]
�
+ · · ·

[Bern–Dennen–Huang–Kiermaier ’10]

I Purely cubic Feynman diagrams �!

A
tree

n =
X

i

cini

di
s.t. ci + cj + ck = 0 ) ni + nj + nk = 0



Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality
I Does not imply loop-level CK duality, e.g. unphysical off-shell modes

propagate in the loops

I To lift to loop-level we should include off-shell unphysical/ghost modes in
the external states so that we can glue trees into loops:

1. Longitudinal gluons - gauge choice

2. Ghosts - BRST Ward identities

3. Off-shell - nonlocal field redefinitions (invisible on-shell)

I 3. ) induces Jacobian counterterms that cancel spurious modes
[BJKMSW ’21]
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Colour-Kinematic Duality Redux

Tree-level CK duality for longitudinal gluons
I Relax transversality pn · "n 6= 0 ) tree CK duality fails

I By analogy can compensate with new non-zero vertices [BJKMSW ’20]:

I Add them to the action without changing the physics [BJKMSW ’20]



Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts
I Using Lagrangian perspective, all CK failures can simultaneously be

compensated by terms of the form

(@ · A)Y [A]

I Can add through the gauge-fixing functional

Gauge-fixing func. G [A]: @ · A 7! G
0[A] = @ · A� 2⇠Y

Nakanishi-Lautrup b: b 7! b
0 = b + Y

I Longitudinal CK duality , gauge choice [BJKMSW ’20, ’21]
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Colour-Kinematic Duality Redux

Tree-level CK duality for ghosts
I Use on-mass-shell BRST Ward identities

Q
lin

YMAphys = 0, Q
lin

YMAf = c, Q
lin

YMb = c̄

I Analogous to global SUSY Ward identities

0 = h0|[Q lin

YM,O1 · · ·On]|0i

I Transfers CK duality onto ghosts through

LYM

ghost = c̄QYM(@µ
Aµ � 2⇠Y )



Colour-Kinematic Duality Redux

On-shell tree-level CK manifesting BRST action
I Introduce new auxiliary gluons and ghosts [BJKMSW ’20, ’21]:

LYM

BRST CK-dual = 1

2
Aaµ⇤A

µa � c̄a⇤c
a + 1

2
ba⇤b

a + ⇠ ba
p
⇤ @µAµa

� K
µ
1a⇤K̄

1a
µ � K

µ
2a⇤K̄

2a
µ � gfabc c̄

a@µ(Ab
µc

c)

� 1

2
B

µ⌫
a ⇤B

a
µ⌫ + gfabc

⇣
@µA

a
⌫ + 1p

2
@

B
a
µ⌫

⌘
A

µb
A

⌫c

� gfabc

n
K

aµ
1

(@⌫
A

b
µ)A

c
⌫ + [(@

A
a
)A

bµ + c̄
a@µ

c
b]K̄ 1c

µ

o

+ gfabc

n
K

aµ
2

h
(@⌫@µc

b)Ac
⌫ + (@⌫

A
b
µ)@⌫c

c
i
+ c̄

a
A

bµ
K̄

2c
µ

o
+ · · ·

I Cubic Feynman diagrams yield CK dual tree amplitudes for physical gluons
and unphysical longitudinal modes and ghosts (on-shell)



Colour-Kinematic Duality Redux

Lifting to off-shell CK duality
I Relaxing on-shell to off-shell momenta CK duality violated by terms

p
2

i Fi

for each external momentum pi (unphysical gluons and ghosts)

I Can compensate with terms / F⇤� with non-local field redefinition

� 7! �+ F , �⇤� 7! �⇤�+ F⇤�+ · · ·

so that off-shell tree-level BRST CK duality is manifest ! loop CK duality
[BJKMSW ’21]

I Price to pay: Jacobian determinants ! counterterms ensuring unitarity

I In this sense, this manifest loop CK duality is anomalous on the physical
Hilbert space (but is exact on the complete pre-Hilbert space)
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Colour-Kinematic Duality Redux

Perfect off-shell ‘BRST-Lagrangian CK duality’
I BV YM action with manifest off-shell CK duality

S
YM

BV CK-dual =

Z
CijcabA

ia⇤A
ja+Fijk fabcA

ia
A

jb
A

kc+A
+
ia

⇣
Q

i
jA

ja + Q
i
jk f

a
bcA

jb
A

kc
⌘

I Rendered cubic with infinite tower of aux. fields

A
ia = (Aµ

a, ba, c̄a, ca,Gµ⌫⇢
a, K̄µ

a, . . .| {z }
auxiliaries

)

I cab, f
abc gauge group Killing form and structure constants

I Cij ,F
ijk are differential operators that satisfy the same identities as

cab, f
abc as operator equations

cab = c(ab) fabc = f[abc] ca(bf
a
c)d = 0 f[ab|d f

d
c]e = 0

Cij = C(ij) Fijk = F[ijk] Ci(jF
i
k)l = 0 F[ij|lF

l
|k]m = 0



Colour-Kinematic Duality Redux

Some comments
I Action has manifest CK duality

I The Fijk are the structure constants of a kinematic Lie algebra mirroring
the usual colour structure constants fabc . Cf. [Monteiro–O’Connell ’11, ’13;
Bjerrum–Bohr–Damgaard–Monteiro–O’Connell ’12; Fu–Krasnov ’16;
Chen–Johansson–Teng–Wang 19; Campiglia-Nagy ’21. . . ]

I Corollary: loop amplitude integrands are CK dual automatically

I Anomalous, in a controlled manner, due to Jacobian counterterms that
ensure (generalised) unitarity

I Shift in point of view:

I A consistent field theory formulation of CK duality

I Anomaly: generalised unitarity proof of loop double copy doesn’t go
through, at least not straightforwardly

I Departure from standard articulation of loop integrand CK duality: all
desiderata except generalised unitarity

I Latter replaced with off-shell CK duality of BV action (without Jacobian
counterterms): alternative proof of double copy
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§2.

BV Lagrangian Syngamy



BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories Factorisation Daughter theories

Cij C̃ı̃|̃�
i ı̃⇤�j |̃ + Fijk F̃ı̃|̃k̃

�i ı̃�j |̃�kk̃

cabCij�
ai⇤�aj + fabc Fijk�

ai�bj�ck

c̃
ãb̃

Cij�
ãi⇤�ãj + f̃

ãb̃c̃
Fijk�

ãi�b̃j�c̃k

cIJ�
I ⇤�J + fIJK�I�J�K

c̃
Ĩ J̃

�̃Ĩ ⇤ �̃J̃ + f̃
Ĩ J̃K̃

�̃Ĩ �̃J̃ �̃K̃

cab C̃ij�
aı̃⇤�a|̃ + fabc F̃ı̃|̃k̃

�aı̃�b|̃�ck̃

c̃
ãb̃

C̃ı̃|̃�
ãı̃⇤�̃ã|̃ + f̃

ãb̃c̃
F̃
ı̃|̃k̃

�̃ãı̃�̃b̃|̃�̃c̃ k̃

cab c̃ãb̃
�aã⇤�ab̃ + fabc f̃ãb̃c̃

�aã�bb̃�cc̃



BV Lagrangian Syngamy

Yang–Mills squared
I S

YM

BRST-CK ⌦ S̃
YM

BRST-CK ! N = 0 supergravity

Aia = (Aµ
a, ghosts, auxiliaries) SYM

CK
=

R
Cij cabAia⇤Aja + Fijk fabcAiaAjbAkc

Ai ı̃ = (hµ⌫ ,Bµ⌫ ,', ghosts, auxiliaries) SN=0

DC
=

R
CijCı̃|̃Ai ı̃⇤Aj |̃ + FijkFı̃|̃k̃A

i ı̃Aj |̃Akk̃

I G ⇥ G̃ bi-adjoint scalar theory,

S
bi-adj

DC
= cab c̃ãb̃�

aã⇤�ab̃ + fabc f̃ãb̃c̃�
aã�bb̃�cc̃

I Cf. scattering equation formalism [Hodges ’11; Cachazo–He–Yuan ’13 ’14]



BV Lagrangian Syngamy

BRST-Lagrangian CK duality ) consistent syngamy
I No mention of CK duality - overly general?

I How do we know S
N=0

DC is equivalent to S
N=0

BRST?

I Semi-classical equivalence of SN=0

DC (requires on-shell tree-level CK duality)

Fijk fabcA
ia
A

jb
A

kc ! FijkFı̃|̃k̃A
i ı̃
A

j |̃
A

kk̃

P nc
d !

P nñ
d

I ) physical (h,B,') tree-level amplitudes of N = 0 supergravity

I Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points

I Quantum consistency: how do we we know that there exists some BRST
Q such that:

QSDC = 0, Q
2 = 0

Answer: double-copy operator QDC (requires off-shell BRST CK duality)
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BV Lagrangian Syngamy

Double copy of BRST charge
I Double copy of BV action implies double copy BRST operator QDC

S
YM

BV CK-dual =

Z
CijcabA

ia⇤A
ja+Fijk fabcA

ia
A

jb
A

kc+A
+
ia

⇣
Q

i
jA

ja + Q
i
jk f

a
bcA

jb
A

kc
⌘

QA
ia = Q

i
jA

ja + Q
i
jk f

a
bcA

jb
A

kc
Q̃Ã

ãi = Q
ı̃
|̃Ã

b̃|̃ + f̃
ã
b̃c̃Q̃

ı̃
|̃k̃ Ã

b̃|̃
Ã

c̃ k̃

Q
i
jA

j ı̃ + Q
i
jkF

ı̃
|̃k̃A

j |̃
A

kk̃

| {z }
QL

+Q
ı̃
|̃A

i |̃ + F
i
jkQ

ı̃
|̃k̃A

j |̃
A

kk̃

| {z }
QR| {z }

QDC

I Yang-Mills gauge ) diffeomorphisms and 2-form gauge symmetries:

QDC = Qdiffeo + Q2-form + trivial symmetries

Cf. [Anastasiou-LB-Duff-Hughes-Nagy ’14]



BV Lagrangian Syngamy

All order double copy
I Since F

ijk satisfy the same identities as f
abc

QDCSDC = 0, Q
2

DC = 0

I Semi-classical equivalence + QDC ) quantum equivalence

I Einstein is the square of Yang–Mills (at least perturbatively)

I Double copy of symmetries generalises, e.g.

global susy ⇥ gauge ! local susy

I Straightforward supersymmetric completion



BV Lagrangian Syngamy

All order double copy
I Since F

ijk satisfy the same identities as f
abc

QDCSDC = 0, Q
2

DC = 0

I Semi-classical equivalence + QDC ) quantum equivalence

I Einstein is the square of Yang–Mills (at least perturbatively)

I Double copy of symmetries generalises, e.g.

global susy ⇥ gauge ! local susy

I Straightforward supersymmetric completion



BV Lagrangian Syngamy

All order double copy
I Since F

ijk satisfy the same identities as f
abc

QDCSDC = 0, Q
2

DC = 0

I Semi-classical equivalence + QDC ) quantum equivalence

I Einstein is the square of Yang–Mills (at least perturbatively)

I Double copy of symmetries generalises, e.g.

global susy ⇥ gauge ! local susy

I Straightforward supersymmetric completion



§4.

Generalisations



Generalisations

The double copy to all orders
I Given CK duality of the tree-level physical S-matrix we can run our

argument:

I Non-linear sigma model [Chen-Du ‘13] ! special Galileon

I Fundamental couplings [Johansson-Ochirov ‘14] ! plethora of supergravity
theories

I Bagger–Lambert–Gustavsson [Bargheer-He-McLoughlin ’12;
Huang-Johansson ’12]! D = 3 maximal supergravity



Super Yang–Mills and Supergravity

BRST-Lagrangian CK duality for super Yang–Mills
I Irreducible super Yang–Mills multiplets are CK duality respecting

Cf. [Bjerrum-Bohr–Damgaard–Vanhove ‘09]

I Susy Ward identities: CK gluons + susy ) CK gluini
(Caveat: higher order operators can spoil this argument, since there are
superamplitudes with vanishing all-gluon component)

I CK dual BRST-Lagrangian then follows with (essentially) no new ideas
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Super Yang–Mills and Supergravity

BRST-Lagrangian double copy
I (Type I super Yang–Mills)2 = Type IIA/B supergravity

A
ia = (Aµ

a, ↵
a, ghosts, aux)

A
i |̃ = (hµ⌫ ,Bµ⌫ ,�, ↵⌫ , µ� ,F↵� , ghosts, aux)

I Local NS-R sector susy follows from super Yang–Mills factors

Q↵Aµ
a = �ab�µ↵

� �
b + · · · �! Q↵hµ⌫ = �(µ↵

� �⌫) + · · ·

I Super ⌘, ⌘̄ and Nielsen–Kallosh � ghosts

c̄ ⌦  ⇠ ⌘̄ , c ⌦  ⇠ ⌘ , b ⌦  ⇠ �

I Similar for R–NS sector



Super Yang–Mills and Supergravity

Ramond–Ramond sector
I Double copy  ↵ ⌦  � gives field strengths F↵� , not potentials:

I Representation theory

IIA: 16 ⌦ 16 = 1 � 45 � 210
IIB: 16 ⌦ 16 = 10 � 120 � 126

I The BRST transformation of the gluino has no linear contribution,
QBRST = [c, ], so  ⌦  cannot transform as a potential

I R-R background fields couple to worldsheet through field strengths

I Type IIA/B action can be written in terms of field strengths, e.g.

F2^?F2+F̃4^?F4+B2^F̃4^F̃4+B2^B2^F2^F̃4� 1

3
B2^B2^B2^F2^F2
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Super Yang–Mills and Supergravity

Sen’s mechanism from double copy Ramond–Ramond sector
I Double copy R–R field strengths are elementary fields that correctly

reproduce scattering amplitudes through their Feynman diagrams

LDC

R–R = F
↵� ⇤�1 /@↵

↵0
/@�

�0
F↵0�0 + · · ·

! � 1

2

�
F ^ ?F � dF ^ ?⇤�1dF

�
+ · · ·

! � 1

2
F ^ ?F � ⇠B ^ dF � 1

2
B ^ ?⇤B + · · ·

! � 1

2
F ^ ?F � ⇠B ^ dF + 1

2
dB ^ ?dB + · · ·

I Sen’s mechanism [Sen ‘15] generalized to arbitrary (as opposed to
self-dual) field strengths [BJKMSW ‘21]

I Sen’s mechanism was motivated by IIB string field theory, where the R–R
sector is naturally given in terms of bispinors - natural double copy shadow
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§5.

Homotopy CK Duality and Double Copy



Homotopy Algebras and BV Lagrangian Field Theories

I Homotopy algebras: generalise familiar (matrix, Lie. . . ) algebras to
include “higher products” satisfying “higher relations” up to homotopies

I Lie algebras ! L1-algebras, first arose in string field theory:

Vector space Graded vector space

g = V0 L =
L

n Vn

Bracket Higher brackets

µ2 = [�,�] µ1 = [�], µ2 = [�,�], µ3 = [�,�,�], . . .
Relations Relations

Antisymmetry + Jacobi Antisymmetry + homotopyJacobi

[Zwiebach ’93; Hinich–Schechtman ’93]

I Associative algebras ! A1-algebras [Stasheff ’63]

I Commutative algebras ! C1-algebras [Kadeishvili ’88]



Homotopy Algebras and BV Lagrangian Field Theories

I Homotopy algebras: generalise familiar (matrix, Lie. . . ) algebras to
include “higher products” satisfying “higher relations” up to homotopies

I Lie algebras ! L1-algebras, first arose in string field theory:

Vector space Graded vector space

g = V0 L =
L

n Vn

Bracket Higher brackets

µ2 = [�,�] µ1 = [�], µ2 = [�,�], µ3 = [�,�,�], . . .
Relations Relations

Antisymmetry + Jacobi Antisymmetry + homotopyJacobi

[Zwiebach ’93; Hinich–Schechtman ’93]

I Associative algebras ! A1-algebras [Stasheff ’63]

I Commutative algebras ! C1-algebras [Kadeishvili ’88]



Homotopy Algebras and BV Lagrangian Field Theories

I Homotopy algebras: generalise familiar (matrix, Lie. . . ) algebras to
include “higher products” satisfying “higher relations” up to homotopies

I Lie algebras ! L1-algebras, first arose in string field theory:

Vector space Graded vector space

g = V0 L =
L

n Vn

Bracket Higher brackets

µ2 = [�,�] µ1 = [�], µ2 = [�,�], µ3 = [�,�,�], . . .
Relations Relations

Antisymmetry + Jacobi Antisymmetry + homotopyJacobi

[Zwiebach ’93; Hinich–Schechtman ’93]

I Associative algebras ! A1-algebras [Stasheff ’63]

I Commutative algebras ! C1-algebras [Kadeishvili ’88]



Homotopy Algebras and BV Lagrangian Field Theories

I Chevalley–Eilenberg formulation of Lie algebra g with basis ta:

CE(g) = T̄ (g[1]⇤) :=
1M

p=1

Symp (g[1]⇤)

Qt
a = � 1

2
f
a
bct

b
t
c , Q

2 = 0 , Jacobi

I Chevalley–Eilenberg formulation of L1-algebra L with basis ta:

CE(L) = T̄ (L[1]⇤)

Qt
a = �

X

n

1

n!µn
a
a1···an t

a1 · · · tan , Q
2 = 0 , homotopy Jacobi

I Any BV field theory with operator QBV corresponds to an L1-algebra in
the CE picture, see e.g. [Jurco-Raspollini-Saemann-Wolf ’18]
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Homotopy Algebras and BV Lagrangian Field Theories

I Yang-Mills theory LYM

LYM

0 � LYM

1 � LYM

2 � LYM

3

c
d�! A

d†d�! A
+ d†�! c

+

b
Id�! c̄

c̄
+ �Id�! b

+

I Homotopy Maurer-Cartan theory �! field strengths + gauge trans.

I Cartan-Killing form h�,�ig ! cyclic structure h�,�iYM on LYM

I BV action ⇠
P

1

(i+1)! ha, µi (a, . . . , a)i

I L1 quasi-isomorphisms �! physical equivalence (field redefinitions etc)

I Strictification: µi = 0, i > 2 ! cubic theory

I Minimal model: µ1 = 0 ! tree scattering amplitudes
Cf. [Jurčo-Raspollini-Saemann-Wolf ‘18; Jurčo-Macrelli-Saemann-Wolf ‘19]
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Colour-Kinematic-Scalar Factorisation of Yang-Mills

I LYM factorises into colour⌦ kinematics⌦⌧ scalar

LYM = colour| {z }
L1

⌦ kinematics⌦⌧ scalar| {z }
A1| {z }

C1| {z }
L1

[BLKMSW ’21]

I colour: gauge group Lie algebra

I kinematics: graded vector space of Poincaré representations of fields

R[�1] �
�
Rd �R

�
� R[1] � Auxiliaries

c (Aµ, b) c̄ Bµ⌫⇢ · · ·

I scalar: A1-algebra of a scalar field theory

h�,�iYM = h�,�icolourh�,�ikinematicsh�,�iscalar
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Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

I Proof of on-shell tree-level CK duality for physical gluons via BV
⇤
1-algebra!

I Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV
complex for Yang–Mills (think order formulation with A,F+) satisfying

h
2 = 0, dh + hd = ⇤ (plus some other conditions)

I h exists and is a second-order derivation up to homotopy )
I BV⇤

1-algebra on Zeitlin-Costello BV complex

I On-shell tree-level CK duality for physical gluons

I Very special: only D = 4, no loop desiderata (ghosts, gauge-fixing)

I A little mysterious: BV
⇤
1-algebra generalise famous BV1-algebras

(homotopy BV -algebras [Galvez-Carrillo–Tonks–Vallette ‘09]), where e.g.

�2⇤ = (id+ �(123) + �2

(123))(id⌦�⇤)� (id+ �(123) + �2

(123))(id⌦ id⌦⇤)
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Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW ’to appear 21]

I BRST-Lagrangian CK duality , BV
⇤-algebra, cf. [Getzler ‘93]

LYM = g⌦ kinematics⌦⌧ scalar| {z }
Kin ⌘ BV⇤-algebra

I BV⇤-algebra comes with two products � ·� and [�,�] and three unary
operators

d2 = h2 = 0, dh + hd = ⇤

I The homotopy BV⇤-algebra depends on the ambient category

I In the usual category of chain complexes d is privileged

I Introduce symmetric monoidal category of Hodge complexes (modules over
twisted Hopf algebras with central element ⇤)

d2 = h2 = 0, dh + hd = ⇤
Coassociativity ) the seven-term identity

I In this category, both d and h are a part of the ambient structure
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Homotopy algebra of CK duality

The homotopy algebra of CK duality
I Homotopy algebra: BV

⇤
1/Hdg

-algebra

I Corresponds to integrating out auxiliary fields

I Homotopy relations of BV⇤
1/Hdg

-algebra $ kinematic Jacobi relations

I Computational efficiency:

I Purely tree-level calculations

I One identity at any order (the rest follow axiomatically)
X

p+q=n+2

n-point tree with two internal (p-ary and q-ary) vertices

= n-point tree with one internal (n-ary) vertex

I But, work with Feynman diagrams - marry with on-shell methods?
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Future work

I AdS background [Zhou ‘21; Diwakar-Herderschee-Roiban-Teng ‘21 . . . ] !
Hopf algebra of universal enveloping algebra of AdS isometries

I Bagger-Lambert-Gustavsson CK duality [Bargheer-He-McLoughlin ’12;
Huang-Johansson ’12] ! m-ary BV

⇤ operads

I Matter coupling [Johansson-Ochirov ’14] ! many-sorted BV
⇤ operads

I String theory (modular envelope over) BV
L0
1

{d , h} = ⇤ �! {Q, b0} = L0

Cf. BV1 structure on TVOA [Galvez-Carrillo–Tonks–Vallette ‘09] lifting the
BV -algebra structure on the BRST (co)homology [Lian-Zuckerman ‘93]

I Counterterms?

Thanks for listening


