From gluons to gravitons via homotopy algebras: Einstein as Yang-Mills Squared

Leron Borsten

Maxwell Institute for Mathematical Sciences, Edinburgh
Heriot-Watt University, Edinburgh
Imperial College London

42th Winter School Geometry And Physics Czech Republic, Srní, 15-22 January 2022

Twin Pillars of XX-century Physics

Quantum (field) theory

- Elementary particles and their fundamental interactions (excluding gravity)

General relativity

- Gravity: planetary orbits, black holes and the evolution of the entire universe itself

The fundamental forces of Nature are ostensibly described by two distinct frameworks

The Standard Model of Particle Physics

- The electroweak and strong forces: Maxwell/Yang-Mills gauge theories

General Relativity

- The Standard Model plays out on fixed stage of spacetime
- Gravity is the stage itself: gravity is geometry

Metric: curvature of spacetime

Classical gravity waves Quantum particles: gravitons

- 2017 Nobel: gravity waves detected LIGO/VIRGO

A Schism in the Fundamental Forces of Nature

- General relativity is naively incompatible with quantum theory

Diverges at two loops [Goroff-Sagnotti '85]

- Black holes challenge the very foundations of quantum theory

Hawking radiation appears to violate unitarity [Hawking '74]

- The problem of quantum gravity - can the forces be reunited?

Gravity and gauge theory

- Gravity as a gauge theory:
- Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
- Holographic principle - AdS/CFT correspondence
['t Hooft '93; Susskind '94; Maldacena '97]

Gravity and gauge theory

- Gravity as a gauge theory:
- Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
- Holographic principle - AdS/CFT correspondence
['t Hooft '93; Susskind '94; Maldacena '97]
- Here, we appeal to a third and (superficially) independent perspective:

$$
\text { Gravity }=\text { Gauge } \times \text { Gauge }
$$

Gravity $=$ Gauge \times Gauge

- Is gravity the double copy of the other fundamental forces of Nature?
- Long history, many guises [Feynman, Papini, Kawai-Lewellen-Tye, Bern, Hodges. ..]

Gravity $=$ Gauge \times Gauge

- Is gravity the double copy of the other fundamental forces of Nature?
- Long history, many guises [Feynman, Papini, Kawai-Lewellen-Tye, Bern, Hodges. ..]
- Renaissance: Colour-Kinematics (CK) duality conjecture and double copy of gauge theory and gravity scattering amplitudes
[Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

Scattering Amplitudes

\rightarrow Physical observables tested at particle accelerators (e.g. Large Hadron
Collider) Non-interacting in/out particles
$\mathcal{A}_{\text {gluons }}^{4}$

Scattering Amplitudes

\rightarrow Physical observables tested at particle accelerators (e.g. Large Hadron
Collider) Non-interacting in/out particles

\rightarrow New insights into the underlying theories themselves

Colour-Kinematics Duality

- Amplitude for gluons to scatter (very) schematically:

Colour numerators $c \sim f_{a b}{ }^{c} f_{c d}{ }^{e} \ldots$ colour/gauge group data of gluons

Colour-Kinematics Duality

- Amplitude for gluons to scatter (very) schematically:

Colour numerators $c \sim f_{a b}{ }^{c} f_{c d}{ }^{e} \ldots$ colour/gauge group data of gluons

Jacobi identity

$$
c_{i}+c_{j}+c_{k}=0 \quad \Rightarrow \quad n_{i}+n_{j}+n_{k}=0
$$

- Proven at tree level (zeroth order in \hbar)
- Conjectured at loop level (but see later!) with highly non-trivial examples

The Double Copy Prescription

- Assuming CK duality is realised, gravity comes for free:

- 'Gluons for (almost) nothing, gravitons for free' JJ Carrasco

Implications and Applications

Computationally powerful: facilitates previously intractable calculations

- Miraculous cancellations: perturbatively finite quantum field theory of gravity?
- Black holes collisions and gravity wave astronomy: pushing the precision frontier

Implications and Applications

Computationally powerful: facilitates previously intractable calculations

- Miraculous cancellations: perturbatively finite quantum field theory of gravity?
- Black holes collisions and gravity wave astronomy: pushing the precision frontier

Conceptually provocative: is gravity really the square of gauge theory?

- Does CK duality and the double copy actually hold?
- What is CK duality?
- Can it be taken beyond amplitudes?

Field Theory Colour-Kinematics Duality and Double Copy

- Introduce field theory realisation of CK duality the double copy [LB-Hughes-Duff-Nagy '14; Anastasiou-LB-Hughes-Duff-Nagy '14, 18'. ..]

Field Theory Colour-Kinematics Duality and Double Copy

- CK duality: can be realised as an infinite dimensional anomalous symmetry of Yang-Mills Batalin-Vilkovisky (BV) action [LB, Branislav Jurčo, Hyungrok Kim, Tommaso Macrelli, Christian Saemann, Martin Wolf (BJKMSW) '21]

Field Theory Colour-Kinematics Duality and Double Copy

- CK duality: can be realised as an infinite dimensional anomalous symmetry of Yang-Mills Batalin-Vilkovisky (BV) action [LB, Branislav Jurčo, Hyungrok Kim, Tommaso Macrelli, Christian Saemann, Martin Wolf (BJKMSW) '21]

$$
S_{\mathrm{BV}}^{\mathrm{YM}}\left[A^{A a}, A^{+}{ }_{A a}\right] \quad \Rightarrow \quad F_{A B}{ }^{C} \quad \leftrightarrow \quad f_{a b}{ }^{c}
$$

- BV-action double copy [BJKMSW '20; '21]

- Double copy origin of symmetries to all orders in perturbation theory:

Field Theory Colour-Kinematics Duality and Double Copy

- The double copy holds to all loops [BJKMSW '20]

Quantum gravity is Yang-Mills theory squared! (Well, perturbatively and coupled to the axion-dilaton)

- Revealed mathematical structure: homotopy algebras [BJKMSW '21]

Homotopy Algebras

- Higher symmetry and gauge theory is everywhere: condensed matter, M-theory. . . (see lectures of Konrad Waldorf)

- Higher symmetry \longrightarrow homotopy algebras: intersection of category theory, topology, geometry and algebra

Homotopy Algebras

- Higher symmetry and gauge theory is everywhere: condensed matter, M-theory. . . (see lectures of Konrad Waldorf)

$A_{\mu}{ }^{a} \longrightarrow \quad A_{\mu}{ }^{a}, A_{\mu \nu}{ }^{\alpha}, A_{\mu \nu \rho}{ }^{i}, \ldots$
Tower of higher gauge fields
- Higher symmetry \longrightarrow homotopy algebras: intersection of category theory, topology, geometry and algebra
- Generalise familiar (matrix, Lie. . .) algebras to include higher products:

$$
[-,-] \quad \longrightarrow \quad[-], \quad[-,-], \quad[-,-,-], \quad[-,-,-,-] \cdots
$$

Jacobi relation
Homotopy Jacobi relations

- Homotopy Lie L_{∞}-algebras: string field theory, quantum field theory, condensed matter/higher Berry connections...

The Homotopy Algebra of Colour-Kinematics Duality

- CK duality: kinematic algebra Hands on quantum field theory
- Q: but what is it?

The Homotopy Algebra of Colour-Kinematics Duality

- CK duality: kinematic algebra Hands on quantum field theory
- A: $B V_{\infty}^{\square}$ homotopy algebra Abstract mathematics [BJKMSW '22 (to appear)]

Gluons, quarks. Scattering amplitudes Symmetries of Nature

- CK duality: a symmetry of Nature as a mug is a donut!

Future Directions

- Computational advantages for applications
- Zoology of CK dual and double copy theories, e.g. Bagger-Lambert-Gustavsson Chern-Simons-matter theories
- Curved backgrounds, e.g. (anti) de Sitter
- 'Closed $=$ Open \times Open' string (field) theory

Order of Events

Lecture 1 Colour-kinematics duality and the double-copy

Lecture 2 Off-shell colour-kinematics and the BRST Lagrangian double copy

Lecture 3 The homotopy algebra of colour-kinematics duality
§1.

Lecture 1: Colour-kinematics duality and the double-copy

- Classical Yang-Mills action

$$
\begin{aligned}
S_{\text {classical }}^{\mathrm{YM}} & =\frac{1}{2 g^{2}} \int \operatorname{tr} F \wedge \star F \\
& =\int \mathrm{d}^{d} x\left\{-\frac{1}{4} F_{a \mu \nu} F^{a \mu \nu}\right\}
\end{aligned}
$$

$$
F:=d A+A \wedge A, \quad F_{\mu \nu}^{a}:=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+f_{b c}{ }^{a} g A_{\mu}^{b} A_{\nu}^{c}, \quad A=g A_{\mu}^{a} d x^{\mu} \otimes t_{a}
$$

- Invariant under gauge transformations

$$
\delta_{\theta} A=\nabla \theta=d \theta+[A, \theta], \quad\left(\nabla_{\mu} \theta\right)^{a}=\partial_{\mu} \theta^{a}+g f_{b c}{ }^{a} A_{\mu}^{b} \theta^{c}
$$

- Expanding:

$$
S_{\text {classical }}^{\mathrm{YM}} \sim \int \mathrm{~d}^{d} x\left\{A(\square-\partial \partial) A+g A A \partial A+g^{2} A A A A\right\}
$$

- Kinematic operator ($\square-\partial \partial$) has kernel

Yang-Mills theory

- Gauge fix using BRST formalism $\theta \rightarrow c, Q^{2}=0$:

$$
Q A=\nabla c, \quad Q c=[c, c], \quad Q \bar{c}=b, \quad Q b=0
$$

with gauge-fixing fermion $\Psi=-\operatorname{tr} \bar{c}\left(\frac{\xi}{2} b-G[A]\right)$:

$$
\begin{aligned}
S_{\mathrm{BRST}}^{\mathrm{YM}} & =S_{\text {classical }}^{\mathrm{YM}}+\int \star Q \psi \\
& =\int \mathrm{d}^{d} x\left\{-\frac{1}{4} F_{a \mu \nu} F^{a \mu \nu}-\bar{c}_{a} \partial^{\mu}\left(\nabla_{\mu} c\right)^{a}+\frac{\xi}{2} b_{a} b^{a}+b_{a} \partial^{\mu} A_{\mu}^{a}\right\}
\end{aligned}
$$

- Physical states in Q-cohomology \longrightarrow asymptotic Hilbert space with unitary S-matrix
- Extended psuedo-Hillbert BRST space

$$
A_{\text {phys }}, \quad A_{\text {forward }}, \quad A_{\text {backward }} \equiv b, \quad c, \quad \bar{c}
$$

Yang-Mills Feynman diagrams

Functionally varying $\left.\frac{\delta^{n} S}{(\delta A)^{n}}\right|_{A=0}$ for n-point Feynman rules (Feynman gauge):

Tree-level 4-point colour-kinematics duality

$$
\mathrm{n}_{s}=4\left[\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}-\left(\varepsilon_{2} \cdot p_{1}\right) \varepsilon_{1}+\frac{1}{2}\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{12}\right] \cdot\left[\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4}-\left(\varepsilon_{4} \cdot p_{3}\right) \varepsilon_{3}+\frac{1}{2}\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{34}\right]
$$

Tree-level 4-point colour-kinematics duality

Tree-level 4-point colour-kinematics duality

- Amplitude now sum over purely trivalent diagrams:

Tree-level 4-point colour-kinematics duality

- Amplitude now sum over purely trivalent diagrams:

- Obvious (by Jacobi): $c_{s}-c_{t}-c_{u}=3 f^{e a[b} f_{e}^{c d]}=0$
- Exercise: show that [Zhu '80]

$$
\tilde{n}_{s}-\tilde{n}_{t}-\tilde{n}_{u}=0
$$

Hint: Recall $p_{i} \cdot \varepsilon_{i}\left(p_{i}, q_{i}\right)=p_{i}^{2}=0$ and there is freedom in the choice of reference vectors q_{i}

- Kinematics appears to be playing by the same rules as the colour!

Amplitudes and cubic diagrams

- Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

$$
A_{Y M}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- c_{i} : colour numerator, built from $f^{a b c}$, read off diagram i
- n_{i} : kinematic numerator, built from p, ε

- d_{i} : propagator, $\prod_{\text {int. lines }} p^{2}$, read off diagram i

Amplitudes and cubic diagrams

- Can write n-point L-loop gluon amplitude in terms of only cubic diagrams:

Amplitudes and cubic diagrams

- Can be realised in the YM Lagrangian through auxiliary fields:

$$
\begin{aligned}
& \quad g^{2}\left[A_{\mu}, A_{\nu}\right]\left[A^{\mu}, A^{\nu}\right] \longrightarrow \frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g \frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\left[A^{\mu}, A^{\nu}\right] \\
& \text { [Bern-Dennen-Huang-Kiermaier '10] } \\
& B \sim \frac{1}{\sqrt{2}} g \partial[A, A]
\end{aligned}
$$

Amplitudes and cubic diagrams

- Feynman diagrams give 'cubic' amplitudes directly:

$$
A_{\mathrm{YM}}^{n, L}=\sum_{\alpha \in \text { Feynman diag }} \int_{L} \frac{c_{\alpha} n_{\alpha}}{S_{\alpha} d_{\alpha}}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- Example: 4-point s-channel diagram

BCJ colour-kinematic duality conjecture

- There is an organisation of the n-point L-loop gluon amplitude:

$$
A_{\mathrm{YM}}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

such that

$$
\begin{array}{ccc}
c_{i}+c_{j}+c_{k}=0 & \Rightarrow & n_{i}+n_{j}+n_{k}=0 \\
c_{i} \longrightarrow-c_{i} & \Rightarrow & n_{i} \longrightarrow-n_{i}
\end{array}
$$

[Bern-Carrasco-Johansson '08]

BCJ colour-kinematic duality conjecture

- There is an organisation of the n-point L-loop gluon amplitude:

[Bern-Carrasco-Johansson '08]
- CK duality established at tree-level
[Stieberger '09, Bjerrum-Bohr-Damgaard-Vanhove '09; Mizera '19; Reiterer '19]
- Significant evidence up to 4 loops in various (super)YM theories [Carrasco-Johansson '11; Bern-Davies-Dennen-Huang-Nohle '13; Bern-Davies-Dennen '14...]
- Quickly becomes difficult to check: remains conjectural at the loop level [Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

5-point example: why life isn't that easy

5-point example: why life isn't that easy

Tree-level statement

- Reformulate tree-level statement:

$$
A_{\mathrm{YM}}^{n, 0}=\mathrm{c}^{T} \mathrm{Dn}, \quad \mathrm{D}_{i j}=\frac{\delta_{i j}}{d_{j}}
$$

$$
i=1,2, \ldots(2 n-5)!!
$$

- Jacobi implies only ($n-2$)! linearly independent, choose c_{m} and corresponding n_{m} :

$$
\mathrm{c}=\mathrm{Jc}_{m}, \quad \mathrm{n}=\mathrm{Jn}_{m}
$$

where J is $(2 n-5)!!\times(n-2)!$

Tree-level statement

- Reformulate tree-level statement:

$$
A_{\mathrm{YM}}^{n, 0}=\mathrm{c}^{\top} \mathrm{Dn}, \quad \mathrm{D}_{i j}=\frac{\delta_{i j}}{d_{j}}
$$

$$
i=1,2, \ldots(2 n-5)!!
$$

- Jacobi implies only ($n-2$)! linearly independent, choose c_{m} and corresponding n_{m} :

$$
\mathrm{c}=\mathrm{Jc}_{m}, \quad \mathrm{n}=\mathrm{Jn}_{m}
$$

where J is $(2 n-5)!!\times(n-2)!$

- Non-trivial condition

$$
A=P n=(P J) n_{m}
$$

where A is the $(n-2)$!-vector of colour-ordered partial amplitudes and P is an $(n-2)!\times(2 n-5)!!$ matrix of signed propagators

- $\operatorname{det}(P J)=0$, but can solve via Gaussian elimination

Going to loops

- Obvious generalisation

- Quickly becomes very difficult since CK duality relations become functional due the graph automorphisms \Rightarrow numerator ansatz:

1. The numerators are polynomials in momenta and polarization vectors
2. Power-counting matches those of Feynman-gauge Feynman rules
3. Diagrams with only trivalent vertices
4. Relabeling maps numerators to numerators
5. Diagram symmetries respected
6. The cuts of ansatz match a spanning set of unitarity cuts for Yang-Mills
7. CK duality manifest in integrand

- 1-6 are are manifested by Feynman diagrams (3 requires aux fields)
- $6 \Leftrightarrow$ unitary theory + ansatz verification
- 1-7 cannot be satisfied at two loops: something has to give [Bern-Davies-Nohle '15]

Gravity

- Einstein-Hilbert action: perturbatively expanded $g=\eta+\kappa h$

$$
\begin{aligned}
S_{\text {classical }}^{\mathrm{EH}} & =\frac{1}{2 \kappa^{2}} \int \star R \\
& \sim \int d^{D} \times\left\{\partial \partial h h+\kappa h \partial \partial h h+\kappa^{2} h h \partial \partial h h+\kappa^{3} h h h \partial \partial h h \cdots\right\}
\end{aligned}
$$

- Invariant under gauge transformations (remnant of diffeo)

$$
\delta_{\theta} h=\left.\frac{1}{\kappa} \mathcal{L}_{\theta}(g)\right|_{\kappa=0}, \quad \delta_{\theta} h_{\mu \nu}=2 \nabla_{(\mu} \theta_{\mu)}=\nabla_{\mu} \theta_{\nu}+\nabla_{\nu} \theta_{\nu}
$$

Gravity

- Einstein-Hilbert action: perturbatively expanded $g=\eta+\kappa h$

$$
\begin{aligned}
S_{\text {classical }}^{\mathrm{EH}} & =\frac{1}{2 \kappa^{2}} \int \star R \\
& \sim \int d^{D} \times\left\{\partial \partial h h+\kappa h \partial \partial h h+\kappa^{2} h h \partial \partial h h+\kappa^{3} h h h \partial \partial h h \cdots\right\}
\end{aligned}
$$

- Invariant under gauge transformations (remnant of diffeo)

$$
\delta_{\theta} h=\left.\frac{1}{\kappa} \mathcal{L}_{\theta}(g)\right|_{\kappa=0}, \quad \delta_{\theta} h_{\mu \nu}=2 \nabla_{(\mu} \theta_{\mu)}=\nabla_{\mu} \theta_{\nu}+\nabla_{\nu} \theta_{\nu}
$$

- Gauge fix using BRST formalism $\theta \rightarrow X$:

$$
Q h=\nabla X, \quad Q X=\mathcal{L}_{X} X, \quad Q \bar{X}=\pi, \quad Q \pi=0
$$

with gauge-fixing fermion $\Psi=-\bar{X} \cdot\left(\frac{\xi}{2} \pi-G[h]\right)$:

$$
S_{\mathrm{BRST}}^{\mathrm{EH}}=S_{\mathrm{classical}}^{\mathrm{EH}}+\int \star Q \psi
$$

Gravity Feynman diagrams

- Recall, gluon three point vertex:

$$
=g f_{a b c}\left[\left(p^{\rho}-q^{\rho}\right) \eta^{\mu \nu}+\left(q^{\mu}-r^{\mu}\right) \eta^{\nu \rho}+\left(r^{\nu}-p^{\nu}\right) \eta^{\rho \mu}\right]
$$

Gravity Feynman diagrams

- Recall, gluon three point vertex:

$$
=g f_{a b c}\left[\left(p^{\rho}-q^{\rho}\right) \eta^{\mu \nu}+\left(q^{\mu}-r^{\mu}\right) \eta^{\nu \rho}+\left(r^{\nu}-p^{\nu}\right) \eta^{\rho \mu}\right]
$$

- Compare graviton three point [De Wit '69; Carrasco '15 (TASI lectures)]:

Gravity Feynman diagrams

- Oh-shell three-point amplitude $(--+)$:

$$
A_{\text {graviton }}^{3,0}=4\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(p \cdot \varepsilon_{2}\right)-\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(q \cdot \varepsilon_{1}\right)\right]^{2}=i 2\left[A_{\text {gluon }}^{3,0}\right]^{2}
$$

Gravity Feynman diagrams

- Oh-shell three-point amplitude $(--+)$:

$$
A_{\text {graviton }}^{3,0}=4\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(p \cdot \varepsilon_{2}\right)-\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(q \cdot \varepsilon_{1}\right)\right]^{2}=i 2\left[A_{\text {gluon }}^{3,0}\right]^{2}
$$

- Vast simplification \longrightarrow hidden structure

$$
\text { Gravity }=\text { Gauge } \times \text { Gauge }
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
A_{\mathrm{YM}}^{n, L}=\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
A_{Y M}^{n, L}=\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- Double-copy:

$$
c_{i} \quad \longrightarrow \quad n_{i}
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
A_{Y M}^{n, L}=\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- Double-copy:

$$
c_{i} \longrightarrow n_{i}
$$

- Gives an amplitude of $\mathcal{N}=0$ supergravity

$$
\begin{gathered}
A_{\mathcal{N}=0}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{n_{i} n_{i}}{S_{i} d_{i}} \\
S_{\mathcal{N}=0}=\frac{1}{2 \kappa^{2}} \int \star R-\frac{1}{d-2} d \varphi \wedge \star d \varphi-\frac{1}{2} \mathrm{e}^{-\frac{4}{d-2} \varphi} d B \wedge \star d B
\end{gathered}
$$

where B is the Kalb-Ramond 2-form [See K. Waldorf lectures], φ is the dilaton [Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

Double copy intuition

- Proof: [Bern-Dennen-Huang-Kiermaier '10]
- Inductive: $A_{\mathcal{N}=0}^{3,0}=2 i\left(A_{\text {gluon }}^{3,0}\right)^{2}$
- Recursion via complex momentum shifts $p \mapsto p+z q$:

$$
A_{\mathcal{N}=0}^{n, 0} \mapsto A_{\mathcal{N}=0}^{n, 0}(z)=\sum_{\alpha} \frac{1}{s_{\alpha}} A_{\mathcal{N}=0}^{\alpha}\left(z_{\alpha}\right) \tilde{A}_{\mathcal{N}=0}^{\alpha}\left(z_{\alpha}\right)
$$

- Loop generalisation: unitary cuts

- Cut-constructible part amplitude correct: higher dimensions to get the rest
- Unitarity of Yang-Mills integrand essential for this argument (point 7)

Generalisations

Inputs: Matter-coupled (super) Yang-Mills, $D=3$ Chern-Simons-Matter, QCD, Higgsed theories, Z-theory, (DF) ${ }^{2}$ theories ...

Outputs: ϕ^{3} theory, Maxwell/scalar/Yang-Mills supergravity, gauged supergravity (Minkowski vacua), non-linear sigma model, pure gravity, Born-Infeld, conformal gravity, strings ...
[Hodges '11; Cachazo, He, Yuan '13 '14, Dolan, Goddard '13; Naculich '14 '15, Cachazo, He, Yuan '13 '14; Chiodaroli et al '14 '15; Johansson, Ochirov '15 '16; Chiodaroli, Günaydin, Johansson, Roiban '17; Carrasco, Mafra, Schlotterer '16; Johansson, Nohle '17; Azevedo, Chiodaroli, Johansson, Schlotterer '18...]

Examples: Magic square of $D=3$ supergravities

$$
\mathcal{N}_{L}+\mathcal{N}_{R} \text { sugra }(+ \text { matter })=\left(\mathcal{N}_{L} \text { super } \mathrm{YM}\right) \times\left(\mathcal{N}_{R} \text { super } \mathrm{YM}\right)
$$

- Find $D=3$ supergravities with global symmetries given by Freudenthal-Rosenfeld-Tits magic square:

$\mathbb{A}_{L / R}\left(\mathcal{N}_{L / R}\right)$	$\mathbb{R}(1)$	$\mathbb{C}(2)$	$\mathbb{H}(4)$	$\mathbb{O}(8)$
$\mathbb{R}(1)$	$\mathfrak{s l}(2, \mathbb{R})$	$\mathfrak{s u}(2,1)$	$\mathfrak{s p}(4,2)$	$\mathfrak{f}_{4(-20)}$
$\mathbb{C}(2)$	$\mathfrak{s u}(2,1)$	$\mathfrak{s u}(2,1) \times \mathfrak{s u}(2,1)$	$\mathfrak{s u}(4,2)$	$\mathfrak{e}_{6(-14)}$
$\mathbb{H}(3)$	$\mathfrak{s p}(4,2)$	$\mathfrak{s u}(4,2)$	$\mathfrak{s o}(8,4)$	$\mathfrak{e}_{7(-5)}$
$\mathbb{O}(8)$	$\mathfrak{f}_{4(-20)}$	$\mathfrak{e}_{6(-14)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(8)}$

[LB, Duff, Hughes, Nagy '13]

Examples: Magic square of $D=3$ supergravities

$$
\mathcal{N}_{L}+\mathcal{N}_{R} \text { sugra }(+ \text { matter })=\left(\mathcal{N}_{L} \text { super } \mathrm{YM}\right) \times\left(\mathcal{N}_{R} \text { super } \mathrm{YM}\right)
$$

- Find $D=3$ supergravities with global symmetries given by Freudenthal-Rosenfeld-Tits magic square:

$\mathbb{A}_{L / R}\left(\mathcal{N}_{L / R}\right)$	$\mathbb{R}(1)$	$\mathbb{C}(2)$	$\mathbb{H}(4)$	$\mathbb{O}(8)$
$\mathbb{R}(1)$	$\mathfrak{s l}(2, \mathbb{R})$	$\mathfrak{s u}(2,1)$	$\mathfrak{s p}(4,2)$	$\mathfrak{f}_{4(-20)}$
$\mathbb{C}(2)$	$\mathfrak{s u}(2,1)$	$\mathfrak{s u}(2,1) \times \mathfrak{s u}(2,1)$	$\mathfrak{s u}(4,2)$	$\mathfrak{e}_{6}(-14)$
$\mathbb{H}(3)$	$\mathfrak{s p}(4,2)$	$\mathfrak{s u}(4,2)$	$\mathfrak{s o}(8,4)$	$\mathfrak{e}_{7(-5)}$
$\mathbb{O}(8)$	$\mathfrak{f}_{4(-20)}$	$\mathfrak{e}_{6(-14)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{c}_{8(8)}$

[LB, Duff, Hughes, Nagy '13]

- $D=3 \mathcal{N}$-extended super YM over the division algebras $\mathcal{N}=\operatorname{dim} \mathbb{A}$

$$
\mathfrak{s u g r a}\left(\mathbb{A}_{L}, \mathbb{A}_{R}\right)=\mathfrak{t r i}\left(\mathbb{A}_{L}\right) \oplus \mathfrak{t r i}\left(\mathbb{A}_{R}\right)+3 \mathbb{A}_{L} \otimes \mathbb{A}_{R}
$$

- Generalises to all $3 \leq D \leq 10$: square $\left(\mathbb{A}_{L}, \mathbb{A}_{R}\right) \rightarrow \operatorname{pyramid}\left(\mathbb{A}_{D}, \mathbb{A}_{L}, \mathbb{A}_{R}\right)$ [Anastasiou-LB-Hughes-Nagy '15]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11;
Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]
- $D=4, \mathcal{N}=5$ supergravity finite to 4 loops, contrary to expectations:
\square
"Enhanced" cancellations
[Bern-Davies-Dennen '14]
- Such cancellations not seen for $\mathcal{N}=8$ at 5 loops: implications unclear

Implications and applications

- Classical (non)perturbative solutions and gravity wave astronomy [Monteiro-O' Connell-White '14; Cardoso-Nagy-Nampuri '16; Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16; Berman-Chacón-Luna-White '18; Kosower-Maybee-O' Connell '18; Bern-Cheung-Roiban-Shen-Solon-Zeng '19; Bern-Luna-Roiban-Shen-Zeng '20; Chacón-Nagy-White '21...]
- Geometric/world-sheet picture: ambitwistor string theories theories and scattering equations, e.g. non-trivial gluon and spacetime backgrounds [Cachazo-He-Yuan '13 '14; Mason-Skinner '13; Adamo-Casali-Skinner '13; Adamo-Casali-Mason-Nekovar '17 '18; Geyer-Monteiro '18; Geyer-Mason '19; Geyer-Monteiro-Stark-Muchão '21...]
- Surprising applications: gauge structure of the conjectured $(4,0)$ phase of M-theory and twin non-Lagrangian S-folds theories [LB '18; LB-Duff-Marrani '19]
§2.

Lecture 2: Off-shell field theory colour-kinematics and double copy

Gravity $=$ Gauge \times Gauge

Longstanding open questions

- Does CK duality (in some appropriate sense) hold to all orders?
- Does the double copy hold: is Einstein really the square of Yang-Mills?
- Is this restricted to the S-matrix or more general?

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms for unitarity
- Generalised unitarity proof of double copy doesn't straightforwardly apply

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms for unitarity
- Generalised unitarity proof of double copy doesn't straightforwardly apply
- Double copy of BV action is manifestly valid \rightarrow double copy to all loops

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms for unitarity
- Generalised unitarity proof of double copy doesn't straightforwardly apply
- Double copy of BV action is manifestly valid \rightarrow double copy to all loops
- Perturbative quantum Einstein-Hilbert gravity coupled to a Kalb-Ramond 2-form and dilaton is the square Yang-Mills theory [BJKMSW '20, '21]

Colour-kinematics duality and double copy: recap
Two key ideas:

- Realising CK duality and the double copy at the level of field theory:

Colour-kinematics duality and double copy: recap
Two key ideas:

- Realising CK duality and the double copy at the level of field theory:

1. CK duality manifesting actions and kinematic algebras [Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13; Cheung-Shen '16; Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16] [Monteiro-O'Connell '11, '13; Bjerrum-Bohr-Damgaard-Monteiro-O' Connell '12; Fu-Krasnov '16; Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21; Cheung-Mangan '21; Ben-Shahar-Johansson '21; Brandhuber-Chen-Johansson-Travaglini-Wen '21...]
2. Field theory product of BRST gauge theories and Lagrangian double-copy [Bern-Dennen-Huang-Kiermaier '10; Anastasiou-LB-Duff-Hughes-Nagy '14; LB '17; Anastasiou-LB-Duff-Nagy-Zoccali '18; LB-Jubb-Makwana-Nagy '20; LB-Nagy '20; BJKMSW '20, '21]

- Today: the YM BV action admits a natural form of anomalous CK duality that immediately implies the double copy to all orders

Lighting overview

Step 1. Cubic tree-level off-shell CK duality manifesting Yang-Mills BRST-action:

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

Step 2. BRST-action double-copy:

$$
S_{\mathrm{DC}}=\int C_{i j} C_{\tilde{\imath} \tilde{\jmath}} A^{i \tilde{\imath}} \square A^{i \tilde{\jmath}}+F_{i j k} F_{\tilde{\imath} \tilde{\jmath} \tilde{k}} A^{i \tilde{\imath}} A^{j \tilde{\jmath}} A^{k \tilde{k}}
$$

Step 3. Double-copy BRST operator:

$$
\left(Q_{\mathrm{YM}}, \tilde{Q}_{\mathrm{YM}}\right) \longrightarrow Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries }
$$

Step 4. Assuming tree-level physical CK duality, perturbative quantum equivalence:

$$
Q_{\mathrm{DC}}^{2}=Q_{\mathrm{DC}} S_{\mathrm{DC}}=0 \Rightarrow S_{\mathrm{DC}} \cong S_{\mathrm{BRST}}^{\mathcal{N}=0}
$$

Corollary: Loop amplitude (integrands) computed from Feynman diagrams of $S_{\text {BRST-CK }}^{\text {YM }}$ manifest CK duality, up to counterterms needed for unitarity, and double-copy correctly to give amplitudes of $\mathcal{N}=0$ supegravity

Step 1: Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality

- There is a YM action such that the Feynman diagrams yield amplitudes manifesting CK duality for tree-level amplitudes:

$$
S_{\text {on-shell }}^{\mathrm{YM}} \mathrm{CK}=\sum_{n=2}^{\infty} \int \mathcal{L}_{\mathrm{YM}}^{(n)} \sim A \square A+\partial A A A+\frac{\square}{\square} A A A A+\frac{\partial^{3}}{\square^{2}} A A A A A+\cdots
$$

Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality

- This can be "strictified" to have only cubic interactions through infinite tower of auxiliaries [BJKMSW '21]

$$
\begin{aligned}
S_{\text {on-shell CK }}^{\mathrm{YM}}=\operatorname{tr} \int & d^{D} \times \frac{1}{2} A_{\mu} \square A^{\mu}+\frac{1}{2} g \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right] \\
& \frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g\left(\partial_{\mu} A_{\nu}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\right)\left[A^{\mu}, A^{\nu}\right] \\
& +\frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g\left(\partial_{\mu} A_{\nu}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\right)\left[A^{\mu}, A^{\nu}\right] \\
& +C^{\mu \nu} \square \bar{C}_{\mu \nu}+C^{\mu \nu \kappa} \square \bar{C}_{\mu \nu \kappa}+C^{\mu \nu \kappa \lambda} \square \bar{C}_{\mu \nu \kappa \lambda}+ \\
& +g C^{\mu \nu}\left[A_{\mu}, A_{\nu}\right]+g \partial_{\mu} C^{\mu \nu \kappa}\left[A_{\nu}, A_{\kappa}\right]-\frac{g}{2} \partial_{\mu} C^{\mu \nu \kappa \lambda}\left[\partial_{[\nu} A_{\kappa]}, A_{\lambda}\right] \\
& +g \bar{C}^{\mu \nu}\left(\frac{1}{2}\left[\partial^{\kappa} \bar{C}_{\kappa \lambda \mu}, \partial^{\lambda} A_{\nu}\right]+\left[\partial^{\kappa} \bar{C}_{\kappa \lambda \nu \mu}, A^{\lambda}\right]\right)+\cdots
\end{aligned}
$$

[Bern-Dennen-Huang-Kiermaier '10]

- Purely cubic Feynman diagrams \longrightarrow

$$
A_{n}^{\text {tree }}=\sum_{i} \frac{c_{i} n_{i}}{d_{i}} \quad \text { s.t. } \quad c_{i}+c_{j}+c_{k}=0 \Rightarrow n_{i}+n_{j}+n_{k}=0
$$

Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality

- Does not imply loop-level CK duality, e.g. unphysical off-shell modes propagate in the loops
- To lift to loop-level we should include off-shell unphysical/ghost modes in the external states so that we can glue trees into loops:

Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality

- Does not imply loop-level CK duality, e.g. unphysical off-shell modes propagate in the loops
- To lift to loop-level we should include off-shell unphysical/ghost modes in the external states so that we can glue trees into loops:

1. Longitudinal gluons - gauge choice
2. Ghosts - BRST Ward identities
3. Off-shell - nonlocal field redefinitions (invisible on-shell)

- 3. \Rightarrow induces Jacobian counterterms that cancel spurious modes
[BJKMSW '21]

Colour-Kinematic Duality Redux

Tree-level CK duality for longitudinal gluons

- Relax transversality $p_{n} \cdot \varepsilon_{n} \neq 0 \Rightarrow$ tree CK duality fails
- By analogy can compensate with new non-zero vertices [BJKMSW '20]:
- Add them to the action without changing the physics [BJKMSW '20]

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- Using Lagrangian perspective, all CK failures can simultaneously be compensated by terms of the form
$(\partial \cdot A) Y[A]$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- Using Lagrangian perspective, all CK failures can simultaneously be compensated by terms of the form

$$
(\partial \cdot A) Y[A]
$$

- Can add through the gauge-fixing functional

Gauge-fixing func. $G[A]: \quad \partial \cdot A \mapsto G^{\prime}[A]=\partial \cdot A-2 \xi Y$
Nakanishi-Lautrup $b: \quad b \quad \mapsto \quad b^{\prime} \quad=\quad b+Y$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- Using Lagrangian perspective, all CK failures can simultaneously be compensated by terms of the form

$$
(\partial \cdot A) Y[A]
$$

- Can add through the gauge-fixing functional

Gauge-fixing func. $G[A]: \quad \partial \cdot A \mapsto G^{\prime}[A]=\partial \cdot A-2 \xi Y$
Nakanishi-Lautrup b: b $\quad \rightarrow \quad b^{\prime} \quad=b+Y$

- Longitudinal CK duality \Leftrightarrow gauge choice [BJKMSW '20, '21]

Colour-Kinematic Duality Redux

Tree-level CK duality for ghosts

- Use on-mass-shell BRST Ward identities

$$
Q_{\mathrm{YM}}^{\operatorname{lin}} A_{\mathrm{phys}}=0, \quad Q_{\mathrm{YM}}^{\operatorname{lin}} A_{\mathrm{f}}=c, \quad Q_{\mathrm{YM}}^{\operatorname{lin}} b=\bar{c}
$$

- Analogous to global SUSY Ward identities

$$
0=\langle 0|\left[Q_{\mathrm{YM}}^{\operatorname{lin}}, O_{1} \cdots O_{n}\right]|0\rangle
$$

- Transfers CK duality onto ghosts through

$$
\mathcal{L}_{\text {ghost }}^{\mathrm{YM}}=\bar{c} Q_{\mathrm{YM}}\left(\partial^{\mu} A_{\mu}-2 \xi Y\right)
$$

Colour-Kinematic Duality Redux

On-shell tree-level CK manifesting BRST action

- Introduce new auxiliary gluons and ghosts [BJKMSW '20, '21]:

$$
\begin{aligned}
\mathcal{L}_{\text {BRST CK-dual }}^{\mathrm{YM}}= & \frac{1}{2} A_{a \mu} \square A^{\mu a}-\bar{c}_{a} \square c^{a}+\frac{1}{2} b_{a} \square b^{a}+\xi b_{a} \sqrt{\square} \partial_{\mu} A^{\mu a} \\
& -K_{1 a}^{\mu} \square \bar{K}_{\mu}^{1 a}-K_{2 a}^{\mu} \square \bar{K}_{\mu}^{2 a}-g f_{a b c} \bar{c}^{\mu} \partial^{\mu}\left(A_{\mu}^{b} c^{c}\right) \\
& -\frac{1}{2} B_{a}^{\mu \nu \kappa} \square B_{\mu \nu \kappa}^{a}+g f_{a b c}\left(\partial_{\mu} A_{\nu}^{a}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}^{a}\right) A^{\mu b} A^{\nu c} \\
& -g f_{a b c}\left\{K_{1}^{a \mu}\left(\partial^{\nu} A_{\mu}^{b}\right) A_{\nu}^{c}+\left[\left(\partial^{\kappa} A_{\kappa}^{a}\right) A^{b \mu}+\bar{c}^{a} \partial^{\mu} c^{b}\right] \bar{K}_{\mu}^{1 c}\right\} \\
& +g f_{a b c}\left\{K_{2}^{a \mu}\left[\left(\partial^{\nu} \partial_{\mu} c^{b}\right) A_{\nu}^{c}+\left(\partial^{\nu} A_{\mu}^{b}\right) \partial_{\nu} c^{c}\right]+\bar{c}^{a} A^{b \mu} \bar{K}_{\mu}^{2 c}\right\}+\cdots
\end{aligned}
$$

- Cubic Feynman diagrams yield CK dual tree amplitudes for physical gluons and unphysical longitudinal modes and ghosts (on-shell)

Colour-Kinematic Duality Redux

Lifting to off-shell CK duality

- Relaxing on-shell to off-shell momenta CK duality violated by terms

$$
p_{i}^{2} F_{i}
$$

for each external momentum p_{i} (unphysical gluons and ghosts)

- Can compensate with terms $\propto F \square \Phi$ with non-local field redefinition

$$
\Phi \mapsto \Phi+F, \quad \Phi \square \Phi \mapsto \Phi \square \Phi+F \square \Phi+\cdots
$$

so that off-shell tree-level BRST CK duality is manifest \rightarrow loop CK duality [BJKMSW '21]

Colour-Kinematic Duality Redux

Lifting to off-shell CK duality

- Relaxing on-shell to off-shell momenta CK duality violated by terms

$$
p_{i}^{2} F_{i}
$$

for each external momentum p_{i} (unphysical gluons and ghosts)

- Can compensate with terms $\propto F \square \Phi$ with non-local field redefinition

$$
\Phi \mapsto \Phi+F, \quad \Phi \square \Phi \mapsto \Phi \square \Phi+F \square \Phi+\cdots
$$

so that off-shell tree-level BRST CK duality is manifest \rightarrow loop CK duality [BJKMSW '21]

- Price to pay: Jacobian determinants \rightarrow counterterms ensuring unitarity
- In this sense, this manifest loop CK duality is anomalous on the physical Hilbert space (but is exact on the complete pre-Hilbert space)

Colour-Kinematic Duality Redux

Perfect off-shell 'BRST-Lagrangian CK duality'

- BV YM action with manifest off-shell CK duality

$$
S_{B V C K-d u a l}^{Y M}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}+A_{i a}^{+}\left(Q^{i}{ }_{j} A^{j a}+Q_{j k}^{j} f_{b c}^{a} A^{j b} A^{k c}\right)
$$

- Rendered cubic with infinite tower of aux. fields

$$
A^{i a}=(A_{\mu}{ }^{a}, b^{a}, \bar{c}^{a}, c^{a}, \underbrace{G_{\mu \nu}{ }^{a}, \bar{K}_{\mu}{ }^{a}, \ldots}_{\text {auxiliaries }})
$$

- $c_{a b}, f^{a b c}$ gauge group Killing form and structure constants
- $C_{i j}, F^{i j k}$ are differential operators that satisfy the same identities as $c_{a b}, f^{a b c}$ as operator equations

$$
\begin{array}{llll}
c_{a b}=c_{(a b)} & f_{a b c}=f_{[a b c]} & c_{a(b} f_{c) d}^{a}=0 & f_{[a b|d|} f_{c] e}^{d}=0 \\
c_{i j}=c_{(i j)} & F_{i j k}=F_{[j k]} & c_{i(j} F_{k) \mid}^{i}=0 & F_{[i j| |} F_{\mid k] m}^{\prime}=0
\end{array}
$$

Colour-Kinematic Duality Redux

Some comments

- Action has manifest CK duality
- The $F_{i j k}$ are the structure constants of a kinematic Lie algebra mirroring the usual colour structure constants $f_{a b c}$. Cf. [Monteiro-O' Connell '11, '13;
Bjerrum-Bohr-Damgaard-Monteiro-O' Connell '12; Fu-Krasnov '16;
Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
- Corollary: loop amplitude integrands are CK dual automatically
- Anomalous, in a controlled manner, due to Jacobian counterterms that ensure (generalised) unitarity

Colour-Kinematic Duality Redux

Some comments

- Action has manifest CK duality
- The $F_{i j k}$ are the structure constants of a kinematic Lie algebra mirroring the usual colour structure constants $f_{a b c}$. Cf. [Monteiro-O' Connell '11, '13;
Bjerrum-Bohr-Damgaard-Monteiro-O' Connell '12; Fu-Krasnov '16;
Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
- Corollary: loop amplitude integrands are CK dual automatically
- Anomalous, in a controlled manner, due to Jacobian counterterms that ensure (generalised) unitarity
- Shift in point of view:
- A consistent field theory formulation of CK duality
- Anomaly: generalised unitarity proof of loop double copy doesn't go through, at least not straightforwardly
- Departure from standard articulation of loop integrand CK duality: all desiderata except generalised unitarity
- Latter replaced with off-shell CK duality of BV action (without Jacobian counterterms): alternative proof of double copy
§2.

BV Lagrangian Syngamy

BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories

Factorisation

$$
c_{a b} C_{i j} \Phi^{a i} \square \Phi^{a j}+f_{a b c} F_{i j k} \Phi^{a i} \Phi^{b j} \phi^{c k}
$$

$c_{I J} \phi^{I} \square \phi^{J}+f_{I J K} \phi^{I} \phi^{J} \phi^{K}$
$\tilde{c}_{\tilde{I} \tilde{J}} \tilde{\phi}^{\tilde{I}} \square \tilde{\phi}^{\tilde{J}}+\tilde{f}_{\tilde{I} \tilde{K}} \tilde{\phi}^{\tilde{I}} \tilde{\phi}^{\tilde{J}} \tilde{\phi} \tilde{K}$

Daughter theories

$$
C_{i j} \tilde{\tilde{c}}_{\tilde{\imath} \tilde{\jmath}} \Phi^{i \tilde{\imath}} \square \Phi^{j \tilde{\jmath}}+F_{i j k} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \Phi^{i \tilde{\imath}} \Phi^{j \tilde{\jmath}} \Phi^{k \tilde{k}}
$$

$$
\tilde{c}_{\tilde{a} \tilde{b}} C_{i j} \Phi^{\tilde{a} i} \square \Phi^{\tilde{a} j}+\tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} F_{i j k} \Phi^{\tilde{a} i} \Phi^{\tilde{b} j} \Phi^{\tilde{c} k}
$$

$$
c_{a b} \tilde{C}_{i j} \Phi^{a \tilde{\imath}} \square \Phi^{a \tilde{\jmath}}+f_{a b c} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \Phi^{a \tilde{\imath}} \Phi^{b \tilde{\jmath}} \Phi^{c \tilde{k}}
$$

$$
\tilde{c}_{\tilde{a} \tilde{b}} \tilde{C}_{\tilde{\imath} \tilde{\jmath}} \Phi^{\tilde{a} \tilde{\imath}} \square \tilde{\phi}^{\tilde{a} \tilde{\jmath}}+\tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \tilde{\phi}^{\tilde{a} \tilde{\imath} \tilde{\Phi} \tilde{b} \tilde{b} \tilde{\phi} \tilde{c} \tilde{k}}
$$

$$
c_{a b} \tilde{c}_{\tilde{a} \tilde{b}} \Phi^{a a ̃} \square \Phi^{a \tilde{b}}+f_{a b c} \tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \Phi^{a \tilde{a}} \Phi^{b \tilde{b}^{c}} \Phi^{c \tilde{c}}
$$

BV Lagrangian Syngamy

Yang-Mills squared
$-S_{\text {BRST-CK }}^{\mathrm{YM}} \otimes \tilde{S}_{\text {BRST-CK }}^{\mathrm{YM}} \rightarrow \mathcal{N}=0$ supergravity

$$
\begin{array}{ll}
A^{i a}=\left(A_{\mu}{ }^{a}, \text { ghosts, auxiliaries }\right) & S_{\mathrm{CK}}^{Y M}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} \\
A^{i \tilde{z}}=\left(h_{\mu \nu}, B_{\mu \nu}, \varphi, \text { ghosts, auxiliaries }\right) & S_{\mathrm{DC}}^{\mathcal{N}=0}=\int C_{i j} C_{i \tilde{j}} A^{i \tilde{Z}} \square A^{i \tilde{j}}+F_{i j k} F_{\tilde{i} \tilde{k}} A^{i \tilde{z}} A^{i \tilde{j}} A^{k \tilde{k}}
\end{array}
$$

- $G \times \tilde{G}$ bi-adjoint scalar theory,

$$
S_{D C}^{b i-a d j}=c_{a b} \tilde{c}_{\tilde{a} \tilde{b}} \Phi^{a \tilde{a}} \square \phi^{a \tilde{b}}+f_{a b c} \tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \phi^{a \tilde{a}} \phi^{b \tilde{b}} \Phi^{c \tilde{c}}
$$

- Cf. scattering equation formalism [Hodges '11; Cachazo-He-Yuan '13 '14]

BV Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}}=0$ is equivalent to $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence of $S_{\mathrm{DC}}^{\mathcal{N}=0}$ (requires on-shell tree-level CK duality)

$$
\begin{array}{rllc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} k} A^{i \tilde{\tau}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points

BV Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{D C}^{\mathcal{N}=0}$ is equivalent to $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence of $S_{\mathrm{DC}}^{\mathcal{N}=0}$ (requires on-shell tree-level CK duality)

$$
\begin{array}{cccc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} k} A^{i \tilde{\tau}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: how do we we know that there exists some BRST Q such that:

$$
Q S_{\mathrm{DC}}=0, \quad Q^{2}=0
$$

BV Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to $S_{\mathrm{BRS}}^{\mathcal{N}=0}$?
- Semi-classical equivalence of $S_{\mathrm{DC}}^{\mathcal{N}=0}$ (requires on-shell tree-level CK duality)

$$
\begin{array}{cccc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{\jmath} \hat{k}} A^{i \tilde{}} A^{j \tilde{\jmath}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{d}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: how do we we know that there exists some BRST Q such that:

$$
Q S_{\mathrm{DC}}=0, \quad Q^{2}=0
$$

Answer: double-copy operator $Q_{\text {DC }}$ (requires off-shell BRST CK duality)

BV Lagrangian Syngamy

Double copy of BRST charge

- Double copy of BV action implies double copy BRST operator Q_{DC}

$$
\begin{aligned}
& S_{B V}^{Y M} \text { CK-dual }=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}+A_{i a}^{+}\left(Q^{i}{ }_{j} A^{j a}+Q_{j k}^{j} f_{b c}^{a} A^{j b} A^{k c}\right) \\
& Q A^{i a}=Q^{i}{ }_{j} A^{j a}+Q^{i}{ }_{j k} f^{a}{ }_{b c} A^{j b} A^{k c} \quad \tilde{Q} \tilde{A}^{\tilde{a}}=Q^{\tilde{i}}{ }_{j} \tilde{A}^{\tilde{b} \tilde{j}}+\tilde{f}^{\tilde{a}}{ }_{b \tilde{c}} \tilde{Q}^{\tilde{i}}{ }_{j \tilde{k}} \tilde{A}^{\tilde{b} \tilde{j}} \tilde{A}^{\tilde{\tilde{k}}} \\
& \underbrace{\underbrace{Q^{i} A^{j \tilde{z}}+Q^{i}{ }_{j k} F^{\tilde{j}}{ }_{j \tilde{k}} j^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{L}}+\underbrace{Q^{i}{ }_{j} A^{i \tilde{j}}+F^{i}{ }_{j k} Q^{i}{ }_{j \tilde{k}} A^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{R}}}_{Q_{D C}}
\end{aligned}
$$

- Yang-Mills gauge \Rightarrow diffeomorphisms and 2-form gauge symmetries:

$$
Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries }
$$

Cf. [Anastasiou-LB-Duff-Hughes-Nagy '14]

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence
- Einstein is the square of Yang-Mills (at least perturbatively)

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence
- Einstein is the square of Yang-Mills (at least perturbatively)
- Double copy of symmetries generalises, e.g.

$$
\text { global susy } \times \text { gauge } \rightarrow \text { local susy }
$$

- Straightforward supersymmetric completion
§4.

Generalisations

Generalisations

The double copy to all orders

- Given CK duality of the tree-level physical S-matrix we can run our argument:
- Non-linear sigma model [Chen-Du '13] \rightarrow special Galileon
- Fundamental couplings [Johansson-Ochirov '14] \rightarrow plethora of supergravity theories
- Bagger-Lambert-Gustavsson [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow D=3$ maximal supergravity

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)
- CK dual BRST-Lagrangian then follows with (essentially) no new ideas

Super Yang-Mills and Supergravity

BRST-Lagrangian double copy

- $(\text { Type I super Yang-Mills })^{2}=$ Type IIA/B supergravity

$$
\begin{aligned}
& A^{i a}=\left(A_{\mu}{ }^{2}, \psi_{\alpha}{ }^{2}, \text { ghosts, aux }\right) \\
& A^{i \tilde{\jmath}}=\left(h_{\mu \nu}, B_{\mu \nu}, \phi, \Psi_{\alpha \nu}, \Psi_{\mu \beta}, F_{\alpha \beta}, \text { ghosts, aux }\right)
\end{aligned}
$$

- Local NS-R sector susy follows from super Yang-Mills factors

$$
\mathcal{Q}_{\alpha} A_{\mu}{ }^{a}=\delta^{a}{ }_{b} \gamma_{\mu \alpha}{ }^{\beta} \psi_{\beta}{ }^{b}+\cdots \quad \longrightarrow \quad \mathcal{Q}_{\alpha} h_{\mu \nu}=\gamma_{(\mu \alpha}{ }^{\beta} \Psi_{\beta \nu)}+\cdots
$$

- Super $\eta, \bar{\eta}$ and Nielsen-Kallosh χ ghosts

$$
\bar{c} \otimes \psi \sim \bar{\eta}, \quad c \otimes \psi \sim \eta, \quad b \otimes \psi \sim \chi
$$

- Similar for R-NS sector

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{array}{ll}
\text { IIA: } & \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
\text { IIB: } & 16 \otimes 16=10 \oplus 120 \oplus 126
\end{array}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{aligned}
& \text { IIA: } \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
& \text { IIB: } 16 \otimes 16=10 \oplus 120 \oplus 126
\end{aligned}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths
- Type IIA/B action can be written in terms of field strengths, e.g.

$$
F_{2} \wedge \star F_{2}+\tilde{F}_{4} \wedge \star F_{4}+B_{2} \wedge \tilde{F}_{4} \wedge \tilde{F}_{4}+B_{2} \wedge B_{2} \wedge F_{2} \wedge \tilde{F}_{4}-\frac{1}{3} B_{2} \wedge B_{2} \wedge B_{2} \wedge F_{2} \wedge F_{2}
$$

Super Yang-Mills and Supergravity

Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\begin{aligned}
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}} & =\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha} \alpha^{\prime} \not \partial_{\beta}^{\beta^{\prime}} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \\
& \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots
\end{aligned}
$$

Super Yang-Mills and Supergravity

Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\begin{aligned}
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}} & =\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha}{ }^{\alpha^{\prime}} \not \partial_{\beta}^{\beta^{\prime}} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \\
& \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots
\end{aligned}
$$

- Sen's mechanism [Sen '15] generalized to arbitrary (as opposed to self-dual) field strengths [BJKMSW '21]
- Sen's mechanism was motivated by IIB string field theory, where the R-R sector is naturally given in terms of bispinors - natural double copy shadow
$\S 5$.

Homotopy CK Duality and Double Copy

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras, first arose in string field theory:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

[Zwiebach '93; Hinich-Schechtman '93]

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras, first arose in string field theory:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

[Zwiebach '93; Hinich-Schechtman '93]

- Associative algebras $\rightarrow A_{\infty}$-algebras [Stasheff '63]
- Commutative algebras $\rightarrow C_{\infty}$-algebras [Kadeishvili '88]

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

- Chevalley-Eilenberg formulation of L_{∞}-algebra \mathfrak{L} with basis t_{a} :

$$
\begin{gathered}
\operatorname{CE}(\mathfrak{L})=\bar{T}\left(\mathfrak{L}[1]^{*}\right) \\
Q t^{a}=-\sum_{n} \frac{1}{n!} \mu_{n}{ }^{a}{ }_{a_{1} \cdots a_{n}} t^{a_{1}} \cdots t^{a_{n}}, \quad Q^{2}=0 \Leftrightarrow \text { homotopy Jacobi }
\end{gathered}
$$

- Any BV field theory with operator Q_{BV} corresponds to an L_{∞}-algebra in the CE picture, see e.g. [Jurco-Raspollini-Saemann-Wolf '18]

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& & & \xrightarrow{\text { Id }} & \bar{C} & & \\
& & \bar{c}^{+} & \xrightarrow{- \text { Id }} & b^{+} & &
\end{array}
$$

- Homotopy Maurer-Cartan theory \longrightarrow field strengths + gauge trans.
- Cartan-Killing form $\langle-,-\rangle_{\mathfrak{g}} \rightarrow$ cyclic structure $\langle-,-\rangle_{\mathrm{YM}}$ on $\mathfrak{L}^{\mathrm{YM}}$
- BV action $\sim \sum \frac{1}{(i+1)!}\left\langle a, \mu_{i}(a, \ldots, a)\right\rangle$

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& b & \xrightarrow{\text { ld }} & \bar{c} & & \\
& \bar{c}^{+} & \xrightarrow{\text {-ld }} & b^{+} & &
\end{array}
$$

- Homotopy Maurer-Cartan theory \longrightarrow field strengths + gauge trans.
- Cartan-Killing form $\langle-,-\rangle_{\mathfrak{g}} \rightarrow$ cyclic structure $\langle-,-\rangle_{\mathrm{YM}}$ on $\mathfrak{L}^{\mathrm{YM}}$
- BV action $\sim \sum \frac{1}{(i+1)!}\left\langle a, \mu_{i}(a, \ldots, a)\right\rangle$
- L_{∞} quasi-isomorphisms \longrightarrow physical equivalence (field redefinitions etc)
- Strictification: $\mu_{i}=0, i>2 \rightarrow$ cubic theory
- Minimal model: $\mu_{1}=0 \rightarrow$ tree scattering amplitudes

Cf. [Jurčo-Raspollini-Saemann-Wolf '18; Jurčo-Macrelli-Saemann-Wolf '19]

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

- colour: gauge group Lie algebra

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

- colour: gauge group Lie algebra
- Kinematics: graded vector space of Poincaré representations of fields

$$
\begin{array}{ccccccc}
\mathbb{R}[-1] & \oplus & \left(\mathbb{R}^{d} \oplus \mathbb{R}\right) & \oplus & \mathbb{R}[1] & \oplus & \text { Auxiliaries } \\
c & & \left(A_{\mu}, b\right) & \bar{c} & & B_{\mu \nu \rho} \cdots
\end{array}
$$

- scalar: A_{∞}-algebra of a scalar field theory

$$
\langle-,-\rangle_{\mathrm{YM}}=\langle-,-\rangle_{\text {colour }}\langle-,-\rangle_{\mathfrak{E i n e m a t i c s}}\langle-,-\rangle_{\mathfrak{s c a l a r}}
$$

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra!
- Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV complex for Yang-Mills (think order formulation with A, F^{+}) satisfying

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

- h exists and is a second-order derivation up to homotopy \Rightarrow
- $B V_{\infty}^{\square}$-algebra on Zeitlin-Costello BV complex
- On-shell tree-level CK duality for physical gluons

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra!
- Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV complex for Yang-Mills (think order formulation with A, F^{+}) satisfying

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

- h exists and is a second-order derivation up to homotopy \Rightarrow
- $B V_{\infty}^{\square}$-algebra on Zeitlin-Costello BV complex
- On-shell tree-level CK duality for physical gluons
- Very special: only $D=4$, no loop desiderata (ghosts, gauge-fixing)
- A little mysterious: $B V_{\infty}^{\square}$-algebra generalise famous $B V_{\infty}$-algebras (homotopy $B V$-algebras [Galvez-Carrillo-Tonks-Vallette '09]), where e.g.

$$
\Delta^{2} \square=\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \Delta \square)-\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \mathrm{id} \otimes \square)
$$

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=
$$

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged
- Introduce symmetric monoidal category of Hodge complexes (modules over twisted Hopf algebras with central element \square)

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

Coassociativity \Rightarrow the seven-term identity

- In this category, both d and h are a part of the ambient structure

Homotopy algebra of CK duality

The homotopy algebra of CK duality

- Homotopy algebra: $B V_{\infty / H d g}^{\square}$-algebra
- Corresponds to integrating out auxiliary fields
- Homotopy relations of $B V_{\infty / H d g-a l g e b r a ~}^{\square}$ kinematic Jacobi relations

Homotopy algebra of CK duality

The homotopy algebra of CK duality

- Homotopy algebra: $B V_{\infty / H d g}^{\square}$-algebra
- Corresponds to integrating out auxiliary fields
- Homotopy relations of $B V_{\infty / H d g-a l g e b r a ~}^{\square}$ kinematic Jacobi relations
- Computational efficiency:
- Purely tree-level calculations
- One identity at any order (the rest follow axiomatically)

$$
\begin{aligned}
& \sum_{p+q=n+2} n \text {-point tree with two internal (} p \text {-ary and } q \text {-ary) vertices } \\
&=n \text {-point tree with one internal (} n \text {-ary) vertex }
\end{aligned}
$$

- But, work with Feynman diagrams - marry with on-shell methods?

Future work

- AdS background [Zhou '21; Diwakar-Herderschee-Roiban-Teng '21 ...] \rightarrow Hopf algebra of universal enveloping algebra of AdS isometries
- Bagger-Lambert-Gustavsson CK duality [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow m$-ary $B V^{\square}$ operads
- Matter coupling [Johansson-Ochirov '14] \rightarrow many-sorted $B V^{\square}$ operads
- String theory (modular envelope over) $B V_{\infty}^{L_{0}}$

$$
\{d, h\}=\square \quad \longrightarrow \quad\left\{Q, b_{0}\right\}=L_{0}
$$

Cf. $B V_{\infty}$ structure on TVOA [Galvez-Carrillo-Tonks-Vallette '09] lifting the $B V$-algebra structure on the BRST (co)homology [Lian-Zuckerman '93]

- Counterterms?

Thanks for listening

