Going to loops

- Obvious generalisation

- Quickly becomes very difficult since CK duality relations become functional due the graph automorphisms \Rightarrow numerator ansatz:

1. The numerators are polynomials in momenta and polarization vectors
2. Power-counting matches those of Feynman-gauge Feynman rules
3. Diagrams with only trivalent vertices
4. Relabeling maps numerators to numerators
5. Diagram symmetries respected
6. The cuts of ansatz match a spanning set of unitarity cuts for Yang-Mills
7. CK duality manifest in integrand

- 1-6 are are manifested by Feynman diagrams (3 requires aux fields)
- $6 \Leftrightarrow$ unitary theory + ansatz verification
- 1-7 cannot be satisfied at two loops: something has to give [Bern-Davies-Nohle '15]

Recap: Scattering amplitudes

- Vary BRST-action $\int \mathrm{d}^{d} x\left\{-\frac{1}{4} F_{a \mu \nu} F^{a \mu \nu}-\frac{1}{2}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2}-\bar{c}_{a} \partial^{\mu}\left(\nabla_{\mu} c\right)^{a}\right\}$

$$
\begin{aligned}
& =-\frac{i \eta_{\mu \nu} \delta^{a b}}{\rho^{2}} \\
& =g f_{a b c}\left[\left(p^{\rho}-q^{\rho}\right) \eta^{\mu \nu}+\left(q^{\mu}-r^{\mu}\right) \eta^{\nu \rho}+\left(r^{\nu}-p^{\nu}\right) \eta^{\rho \mu}\right] \\
& =-i g^{2}\left[f^{a b x} f_{x}^{c d} \eta^{\mu \nu \rho \sigma}+f^{a d x} f_{x}^{b c} \eta^{\mu \sigma \nu \rho}+f^{a c x} f_{x}^{d b} \eta^{\mu \rho \nu \sigma}\right] \\
& =\frac{i \delta^{a b}}{p^{2}} \\
& =-g f^{a b c} p^{\mu}
\end{aligned}
$$

- Construct (unnrenomalised) n-point, L-loop amplitude with physical external states $\varepsilon_{i}, p_{i} \cdot \varepsilon_{i}=0, p_{i}^{2}=0, i=1,2, \ldots n$

$$
A_{\mathrm{YM}}^{n, L}=
$$

Recap: Bern-Carrasco-Johansson CK duality

- There is an organisation of the n-point L-loop gluon amplitude:

$$
A_{Y M}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

such that

$$
\begin{array}{ccc}
c_{i}+c_{j}+c_{k}=0 & \Rightarrow & n_{i}+n_{j}+n_{k}=0 \\
c_{i} \longrightarrow-c_{i} & \Rightarrow & n_{i} \longrightarrow-n_{i}
\end{array}
$$

[Bern-Carrasco-Johansson '08]

- Fails at two loops if one insists that n_{i} have all the properties expected from the Feynman diagram calculation

Recap: Bern-Carrasco-Johansson CK duality

- There is an organisation of the n-point L-loop gluon amplitude:

$$
A_{Y M}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

such that

$$
\begin{array}{ccc}
c_{i}+c_{j}+c_{k}=0 & \Rightarrow & n_{i}+n_{j}+n_{k}=0 \\
c_{i} \longrightarrow-c_{i} & \Rightarrow & n_{i} \longrightarrow-n_{i}
\end{array}
$$

[Bern-Carrasco-Johansson '08]

- Fails at two loops if one insists that n_{i} have all the properties expected from the Feynman diagram calculation
- What does this have to do with gravity?

Gravity

- Einstein-Hilbert action: perturbatively expanded $g=\eta+\kappa h$

$$
\begin{aligned}
S_{\text {classical }}^{\mathrm{EH}} & =\frac{1}{2 \kappa^{2}} \int \star R \\
& \sim \int d^{D} \times\left\{\partial \partial h h+\kappa h \partial \partial h h+\kappa^{2} h h \partial \partial h h+\kappa^{3} h h h \partial \partial h h \cdots\right\}
\end{aligned}
$$

- Invariant under gauge transformations (expanding $\delta_{\theta} g=\mathcal{L}_{\theta}(g)$)

$$
\delta_{\theta} h=\left.\frac{1}{\kappa} \mathcal{L}_{\theta}(g)\right|_{\kappa=0}, \quad \delta_{\theta} h_{\mu \nu}=2 \partial_{(\mu} \theta_{\mu)}=\partial_{\mu} \theta_{\nu}+\partial_{\nu} \theta_{\nu}
$$

Gravity

- Einstein-Hilbert action: perturbatively expanded $g=\eta+\kappa h$

$$
\begin{aligned}
S_{\text {classical }}^{\mathrm{EH}} & =\frac{1}{2 \kappa^{2}} \int \star R \\
& \sim \int d^{D} \times\left\{\partial \partial h h+\kappa h \partial \partial h h+\kappa^{2} h h \partial \partial h h+\kappa^{3} h h h \partial \partial h h \cdots\right\} \\
X & \text { All order interactions }
\end{aligned}
$$

- Invariant under gauge transformations (expanding $\delta_{\theta} g=\mathcal{L}_{\theta}(g)$)

$$
\delta_{\theta} h=\left.\frac{1}{\kappa} \mathcal{L}_{\theta}(g)\right|_{\kappa=0}, \quad \delta_{\theta} h_{\mu \nu}=2 \partial_{(\mu} \theta_{\mu)}=\partial_{\mu} \theta_{\nu}+\partial_{\nu} \theta_{\nu}
$$

- Gauge fix using BRST formalism $\theta \rightarrow X, Q^{2}=0$:

$$
Q g=\mathcal{L}_{X}(g), \quad Q X=\mathcal{L}_{X} X, \quad Q \bar{X}=\pi, \quad Q \pi=0
$$

with gauge-fixing fermion $\Psi=-\bar{X} \cdot\left(\frac{\xi}{2} \pi-G[h]\right)$:

$$
S_{\mathrm{BRST}}^{\mathrm{EH}}=S_{\mathrm{classical}}^{\mathrm{EH}}+\int \star Q \psi
$$

Gravity Feynman diagrams

- Recall, gluon three point vertex:

$$
=g f_{a b c}\left[\left(p^{\rho}-q^{\rho}\right) \eta^{\mu \nu}+\left(q^{\mu}-r^{\mu}\right) \eta^{\nu \rho}+\left(r^{\nu}-p^{\nu}\right) \eta^{\rho \mu}\right]
$$

Gravity Feynman diagrams

- Recall, gluon three point vertex:

$$
=g f_{a b c}\left[\left(p^{\rho}-q^{\rho}\right) \eta^{\mu \nu}+\left(q^{\mu}-r^{\mu}\right) \eta^{\nu \rho}+\left(r^{\nu}-p^{\nu}\right) \eta^{\rho \mu}\right]
$$

- Compare graviton three point [De Wit '69; Carrasco '15 (TASI lectures)]:

Gravity Feynman diagrams

- Oh-shell three-point amplitude $(--+)$:

$$
A_{\text {graviton }}^{3,0}=4\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(p \cdot \varepsilon_{2}\right)-\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(q \cdot \varepsilon_{1}\right)\right]^{2}=i 2\left[A_{\text {gluon }}^{3,0}\right]^{2}
$$

Gravity Feynman diagrams

- Oh-shell three-point amplitude $(--+)$:

$$
A_{\text {graviton }}^{3,0}=4\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(p \cdot \varepsilon_{2}\right)-\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(q \cdot \varepsilon_{1}\right)\right]^{2}=i 2\left[A_{\text {gluon }}^{3,0}\right]^{2}
$$

- Vast simplification \longrightarrow hidden structure

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
A_{\mathrm{YM}}^{n, L}=\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
A_{Y M}^{n, L}=\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- Double-copy:

$$
c_{i} \quad \longrightarrow \quad n_{i}
$$

BCJ double-copy prescription

- Given CK dual amplitude of pure Yang-Mills

$$
A_{Y M}^{n, L}=\int_{L} \sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{S_{i} d_{i}}
$$

- Double-copy:

$$
c_{i} \longrightarrow n_{i}
$$

- Gives an amplitude of $\mathcal{N}=0$ supergravity

$$
\begin{gathered}
A_{\mathcal{N}=0}^{n, L}=\sum_{i \in \text { cubic diag }} \int_{L} \frac{n_{i} n_{i}}{S_{i} d_{i}} \\
S_{\mathcal{N}=0}=\frac{1}{2 \kappa^{2}} \int \star R-\frac{1}{d-2} d \varphi \wedge \star d \varphi-\frac{1}{2} \mathrm{e}^{-\frac{4}{d-2} \varphi} d B \wedge \star d B
\end{gathered}
$$

where B is the Kalb-Ramond 2-form [See K. Waldorf lectures], φ is the dilaton [Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

Double copy intuition

- Proof: [Bern-Dennen-Huang-Kiermaier '10]
- Inductive: $A_{\mathcal{N}=0}^{3,0}=2 i\left(A_{\text {gluon }}^{3,0}\right)^{2}$
- Recursion via complex momentum shifts $p \mapsto p+z q$:

$$
A_{\mathcal{N}=0}^{n, 0} \mapsto A_{\mathcal{N}=0}^{n, 0}(z)=\sum_{\alpha} \frac{1}{s_{\alpha}} A_{\mathcal{N}=0}^{\alpha}\left(z_{\alpha}\right) A_{\mathcal{N}=0}^{\alpha}\left(z_{\alpha}\right)
$$

- Loop generalisation: unitary cuts

- Cut-constructible part amplitude correct: higher dimensions to get the rest
- Unitarity of Yang-Mills integrand essential for this argument (point 7)

Generalisations

- First expand the domain of CK duality, e.g. minimally coupled fermions

$$
S^{\text {Dirac }}=\int \star \operatorname{tr} \bar{\psi} \not D \psi
$$

Generalisations

- First expand the domain of CK duality, e.g. minimally coupled fermions

$$
S^{\text {Dirac }}=\int \star \operatorname{tr} \bar{\psi} \not D \psi
$$

- CK duality \Rightarrow supersymmetry [Chiodaroli-Jin-Roiban '13]

$$
\frac{i}{2}\left(\frac{\left(\bar{u}_{1} \gamma_{\mu} v_{2}\right)\left(\bar{u}_{3} \gamma^{\mu} v_{4}\right) c_{s}}{s}+\frac{\left(\bar{u}_{2} \gamma_{\mu} v_{3}\right)\left(\bar{u}_{1} \gamma^{\mu} v_{4}\right) c_{s}}{t}+\frac{\left(\bar{u}_{3} \gamma_{\mu} v_{1}\right)\left(\bar{u}_{2} \gamma^{\mu} v_{4}\right) c_{s}}{u}\right)
$$

- CK duality requires:

$$
\left(\bar{u}_{1} \gamma_{\mu} v_{2}\right)\left(\bar{u}_{3} \gamma^{\mu} v_{4}\right)+\left(\bar{u}_{2} \gamma_{\mu} v_{3}\right)\left(\bar{u}_{1} \gamma^{\mu} v_{4}\right)+\left(\bar{u}_{3} \gamma_{\mu} v_{1}\right)\left(\bar{u}_{2} \gamma^{\mu} v_{4}\right)=0
$$

- Fierz identity: $\mathcal{N}=1$ super Yang-Mills in $D=3,4,6,10$
- Compactify, Higgs, orbifold, and quarks. . .

Generalisations

Inputs: Matter-coupled (super) Yang-Mills, $D=3$ Chern-Simons-Matter, QCD, Higgsed theories, Z-theory, $(D F)^{2}$ theories ...

Outputs: ϕ^{3} theory, Maxwell/scalar/Yang-Mills supergravity, gauged supergravity (Minkowski vacua), non-linear sigma model, pure gravity, Born-Infeld, conformal gravity, strings ...
[Hodges '11; Cachazo, He, Yuan '13 '14, Dolan, Goddard '13; Naculich '14 '15, Cachazo, He, Yuan '13 '14; Chiodaroli et al '14 '15; Johansson, Ochirov '15 '16; Chiodaroli, Günaydin, Johansson, Roiban '17; Carrasco, Mafra, Schlotterer '16; Johansson, Nohle '17; Azevedo, Chiodaroli, Johansson, Schlotterer '18. ..]

Examples: Magic square of $D=3$ supergravities

$$
\mathcal{N}_{L}+\mathcal{N}_{R} \text { sugra }(+ \text { matter })=\left(\mathcal{N}_{L} \text { super } \mathrm{YM}\right) \times\left(\mathcal{N}_{R} \text { super } \mathrm{YM}\right)
$$

- Find $D=3$ supergravities with global symmetries given by Freudenthal-Rosenfeld-Tits magic square:

$\mathbb{A}_{L / R}\left(\mathcal{N}_{L / R}\right)$	$\mathbb{R}(1)$	$\mathbb{C}(2)$	$\mathbb{H}(4)$	$\mathbb{O}(8)$
$\mathbb{R}(1)$	$\mathfrak{s l}(2, \mathbb{R})$	$\mathfrak{s u}(2,1)$	$\mathfrak{s p}(4,2)$	$\mathfrak{f}_{4(-20)}$
$\mathbb{C}(2)$	$\mathfrak{s u}(2,1)$	$\mathfrak{s u}(2,1) \times \mathfrak{s u}(2,1)$	$\mathfrak{s u}(4,2)$	$\mathfrak{e}_{6(-14)}$
$\mathbb{H}(3)$	$\mathfrak{s p}(4,2)$	$\mathfrak{s u}(4,2)$	$\mathfrak{s o}(8,4)$	$\mathfrak{e}_{7(-5)}$
$\mathbb{O}(8)$	$\mathfrak{f}_{4(-20)}$	$\mathfrak{e}_{6(-14)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(8)}$

[LB-Duff-Hughes-Nagy '13]

Examples: Magic square of $D=3$ supergravities

$$
\mathcal{N}_{L}+\mathcal{N}_{R} \text { sugra }(+ \text { matter })=\left(\mathcal{N}_{L} \text { super } \mathrm{YM}\right) \times\left(\mathcal{N}_{R} \text { super } \mathrm{YM}\right)
$$

- Find $D=3$ supergravities with global symmetries given by Freudenthal-Rosenfeld-Tits magic square:

$\mathbb{A}_{L / R}\left(\mathcal{N}_{L / R}\right)$	$\mathbb{R}(1)$	$\mathbb{C}(2)$	$\mathbb{H}(4)$	$\mathbb{O}(8)$
$\mathbb{R}(1)$	$\mathfrak{s l}(2, \mathbb{R})$	$\mathfrak{s u}(2,1)$	$\mathfrak{s p}(4,2)$	$\mathfrak{f}_{4(-20)}$
$\mathbb{C}(2)$	$\mathfrak{s u}(2,1)$	$\mathfrak{s u}(2,1) \times \mathfrak{s u}(2,1)$	$\mathfrak{s u}(4,2)$	$\mathfrak{e}_{6(-14)}$
$\mathbb{H}(3)$	$\mathfrak{s p}(4,2)$	$\mathfrak{s u}(4,2)$	$\mathfrak{s o}(8,4)$	$\mathfrak{e}_{7(-5)}$
$\mathbb{O}(8)$	$\mathfrak{f}_{4(-20)}$	$\mathfrak{e}_{6(-14)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(8)}$

[LB-Duff-Hughes-Nagy '13]

- $D=3 \mathcal{N}$-extended super YM over the division algebras $\mathcal{N}=\operatorname{dim} \mathbb{A}$

$$
\mathfrak{s u g r a}\left(\mathbb{A}_{L}, \mathbb{A}_{R}\right)=\mathfrak{t r i}\left(\mathbb{A}_{L}\right) \oplus \mathfrak{t r i}\left(\mathbb{A}_{R}\right)+3 \mathbb{A}_{L} \otimes \mathbb{A}_{R}
$$

- Generalises to all $3 \leq D \leq 10$: square $\left(\mathbb{A}_{L}, \mathbb{A}_{R}\right) \rightarrow \operatorname{pyramid}\left(\mathbb{A}_{D}, \mathbb{A}_{L}, \mathbb{A}_{R}\right)$ [Anastasiou-LB-Hughes-Nagy '15]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]

Implications and applications

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11;
Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]
- $D=4, \mathcal{N}=5$ supergravity finite to 4 loops, contrary to expectations:
\square
"Enhanced" cancellations
[Bern-Davies-Dennen '14]
- Such cancellations not seen for $\mathcal{N}=8$ at 5 loops: implications unclear

Implications and applications

- Classical (non)perturbative solutions and gravity wave astronomy [Monteiro-O' Connell-White '14; Cardoso-Nagy-Nampuri '16;
Luna-Monteiro-Nicholson-Ochirov-O' Connell-Westerberg-White '16; Berman-Chacón-Luna-White '18; Kosower-Maybee-O' Connell '18; Bern-Cheung-Roiban-Shen-Solon-Zeng '19; Bern-Luna-Roiban-Shen-Zeng '20; Chacón-Nagy-White '21...]
- Geometric/world-sheet picture: ambitwistor string theories theories and scattering equations, e.g. non-trivial gluon and spacetime backgrounds [Cachazo-He-Yuan '13 '14; Mason-Skinner '13; Adamo-Casali-Skinner '13; Adamo-Casali-Mason-Nekovar '17 '18; Geyer-Monteiro '18; Geyer-Mason '19; Geyer-Monteiro-Stark-Muchão '21. . .]
- Surprising applications: gauge structure of the conjectured $(4,0)$ phase of M-theory and twin non-Lagrangian S-folds theories [LB '18; LB-Duff-Marrani '19]
§2.

Lecture 2: Off-shell field theory colour-kinematics and double copy

Gravity $=$ Gauge \times Gauge

Longstanding open questions

- Does CK duality (in some appropriate sense) hold to all orders?
- Does the double copy hold: is Einstein really the square of Yang-Mills?
- Is this restricted to the S-matrix or more general?

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int c_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int c_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard, notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms for unitarity
- Generalised unitarity proof of double copy doesn't straightforwardly apply

Gravity $=$ Gauge \times Gauge

Off-shell field theory approach

- CK duality is property of the Yang-Mills Batalin-Vilkovisky (BV) action, up to Jacobian counter terms [BJKMSW '21]

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Natural, but non-standard, notion of CK duality:
- Infinite dimensional symmetry of the BV action
- Loop amplitude integrands CK dual automatically
- Anomalous - broken by Jacobian counterterms for unitarity
- Generalised unitarity proof of double copy doesn't straightforwardly apply
- Double copy of BV action is manifestly valid \rightarrow double copy to all loops
- Perturbative quantum Einstein-Hilbert gravity coupled to a Kalb-Ramond 2-form and dilaton is the square Yang-Mills theory [BJKMSW '20, '21]

Colour-kinematics duality and double copy: recap
Two key ideas:

- Realising CK duality and the double copy at the level of field theory:

Colour-kinematics duality and double copy: recap
Two key ideas:

- Realising CK duality and the double copy at the level of field theory:

1. CK duality manifesting actions and kinematic algebras [Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13; Cheung-Shen '16; Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16] [Monteiro-O'Connell '11, '13; Bjerrum-Bohr-Damgaard-Monteiro-O' Connell '12; Fu-Krasnov '16; Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21; Cheung-Mangan '21; Ben-Shahar-Johansson '21; Brandhuber-Chen-Johansson-Travaglini-Wen '21...]
2. Field theory product of gauge theories and Lagrangian double-copy
[Bern-Dennen-Huang-Kiermaier '10; Anastasiou-LB-Duff-Hughes-Nagy
'14; LB '17; Anastasiou-LB-Duff-Nagy-Zoccali '18;
LB-Jubb-Makwana-Nagy '20; LB-Nagy '20; BJKMSW '20, '21]

- The Chern-Simons BRST-action is automatically off-shell CK dual [Johansson, Ben-Shahar '21]

Lighting overview

Step 1. Cubic tree-level off-shell CK duality manifesting Yang-Mills BRST-action:

$$
S_{\mathrm{BRST}-\mathrm{CK}}^{\mathrm{YM}}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

Step 2. BRST-action double-copy:

$$
S_{\mathrm{DC}}=\int C_{i j} C_{\tilde{\imath} \tilde{\jmath}} A^{i \tilde{z}} \square A^{j \tilde{\jmath}}+F_{i j k} F_{\tilde{i} \tilde{\jmath} \tilde{k}} A^{i \tilde{\imath}} A^{j \tilde{\jmath}} A^{k \tilde{k}}
$$

Step 3. Double-copy BRST operator:

$$
\left(Q_{\mathrm{YM}}, \tilde{Q}_{\mathrm{YM}}\right) \longrightarrow Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries }
$$

Step 4. Assuming tree-level physical CK duality, perturbative quantum equivalence:

$$
Q_{\mathrm{DC}}^{2}=Q_{\mathrm{DC}} S_{\mathrm{DC}}=0 \Rightarrow S_{\mathrm{DC}} \cong S_{\mathrm{BRST}}^{\mathcal{N}=0}
$$

Corollary: Loop amplitude (integrands) computed from Feynman diagrams manifest CK duality, up to counterterms needed for unitarity, and double-copy correctly to give amplitudes of $\mathcal{N}=0$ supegravity

Step 1: Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality

- At tree-level CK duality

$$
A_{\mathrm{YM}}^{n, 0}=\sum_{i \in \text { cubic diag }} \frac{c_{i} n_{i}}{d_{i}} \quad \longrightarrow \quad A_{\mathrm{YM}}^{n, 0}=\sum_{i \in \mathrm{cubic} \text { diag }} \frac{c_{i} n_{i}^{\mathrm{BCJ}}}{d_{i}}
$$

Step 1: Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality

- At tree-level CK duality

$$
A_{\mathrm{YM}}^{n, 0}=\sum_{i \in \mathrm{cubic} \text { diag }} \frac{c_{i} n_{i}}{d_{i}} \quad \longrightarrow \quad A_{\mathrm{YM}}^{n, 0}=\sum_{i \in \mathrm{cubic} \text { diag }} \frac{c_{i} n_{i}^{\mathrm{BCJ}}}{d_{i}}
$$

- For $\delta n_{i}:=n_{i}-n_{i}^{\mathrm{BCJ}}$ we have a vanishing 'amplitude'

$$
\delta A^{n, 0}=\sum_{i \in \text { cubic diag }} \frac{c_{i} \delta n_{i}}{d_{i}}=0
$$

- Can be generated by adding zero vertex to action

Step 1: Colour-Kinematic Duality Redux
Manifest physical tree-level CK duality

- There is a YM action such that the Feynman diagrams yield amplitudes manifesting CK duality for tree-level amplitudes:

$$
S_{\mathrm{on} \text {-shell }}^{\mathrm{YM}} \mathrm{ck}=\sum_{n=2}^{\infty} \int \mathcal{L}_{\mathrm{YM}}^{(n)} \sim A \square A+\partial A A A+\frac{\square}{\square} A A A A+\underbrace{\frac{\partial^{3}}{\square^{2}} A A A A A}_{=0}+\cdots
$$

 +12 diagrams

$$
c_{5} \frac{\partial^{3} A^{5}}{D^{2}}
$$

 by Jacobi

Colour-Kinematic Duality Redux

Manifest physical tree-level CK duality

- This can be "strictified" to have only cubic interactions through infinite tower of auxiliaries [BJKMSW '21]

$$
\begin{aligned}
S_{\text {on-shell CK }}^{\text {MM }}=\operatorname{tr} \int & d^{D} \times \frac{1}{2} A_{\mu} \square A^{\mu}+\frac{1}{2} g \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right] \\
& \frac{1}{2} B^{\mu \nu \kappa} \square B_{\mu \nu \kappa}-g\left(\partial_{\mu} A_{\nu}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}\right)\left[A^{\mu}, A^{\nu}\right] \\
& +C^{\mu \nu} \square \bar{C}_{\mu \nu}+C^{\mu \nu \kappa} \square \bar{C}_{\mu \nu \kappa}+C^{\mu \nu \kappa \lambda} \square \bar{C}_{\mu \nu \kappa \lambda}+ \\
& +g C^{\mu \nu}\left[A_{\mu}, A_{\nu}\right]+g \partial_{\mu} C^{\mu \nu \kappa}\left[A_{\nu}, A_{\kappa}\right]-\frac{g}{2} \partial_{\mu} C^{\mu \nu \kappa \lambda}\left[\partial_{[\nu} A_{\kappa]}, A_{\lambda}\right] \\
& +g \bar{C}^{\mu \nu}\left(\frac{1}{2}\left[\partial^{\kappa} \bar{C}_{\kappa \lambda \mu}, \partial^{\lambda} A_{\nu}\right]+\left[\partial^{\kappa} \bar{C}_{\kappa \lambda \nu \mu}, A^{\lambda}\right]\right)+\cdots
\end{aligned}
$$

[Bern-Dennen-Huang-Kiermaier '10]
5-point aux. fields

- Purely cubic Feynman diagrams \longrightarrow

$$
A_{\mathrm{YM}}^{n, 0}=\sum_{i} \frac{c_{i} n_{i}}{d_{i}} \quad \text { s.t. } \quad c_{i}+c_{j}+c_{k}=0 \Rightarrow n_{i}+n_{j}+n_{k}=0
$$

Colour-Kinematic Duality Redux

Generalise to off-shell BRST CK duality

- Does not imply off-shell or loop-level CK duality, e.g. unphysical off-shell modes propagate in the loops

- To lift to loop-level we should include off-shell unphysical/ghost modes in the external states so that we can glue trees into loops [BJKMSW '20]

Colour-Kinematic Duality Redux

Tree-level CK duality for longitudinal gluons

- Relax transversality $p_{i} \cdot \varepsilon_{i} \neq 0$ for external states \Rightarrow CK duality fails

$$
A_{\mathrm{YM}}^{n, 0} \quad \rightarrow \quad \hat{A}_{\mathrm{YM}}^{n, 0}
$$

- By analogy can compensate with new vertices [BJKMSW '20]:

- Non-zero non-zero: they $\hat{A}_{Y M}^{n, 0} \rightarrow \hat{A}_{Y M}^{\prime n, 0}\left(A_{Y M}^{n, 0}\right.$ invariant $)$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- New vertices are necessarily of the form

$$
(\partial \cdot A) Y[A]
$$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- New vertices are necessarily of the form

$$
(\partial \cdot A) Y[A]
$$

- Can add through the gauge-fixing fermion $\psi^{\prime}=\Psi-2 \xi \bar{C} Y$

Gauge-fixing $G[A]: \quad \partial \cdot A \quad \mapsto \quad G^{\prime}[A]=\partial \cdot A-2 \xi Y$
Nakanishi-Lautrup b: b $\quad \rightarrow \quad b^{\prime} \quad=\quad b+Y$
BRST action $S_{\mathrm{BRST}}^{\mathrm{YM}} \quad S_{\mathrm{BRST}}^{\mathrm{YM}} \mapsto S_{\mathrm{BRST}}^{\prime \mathrm{YM}}=S_{\mathrm{BRST}}^{\mathrm{YM}}+\int(\partial \cdot A) Y+\cdots$

Colour-Kinematic Duality Redux

Tree-level onn-shell CK duality for longitudinal gluons and ghosts

- New vertices are necessarily of the form

$$
(\partial \cdot A) Y[A]
$$

- Can add through the gauge-fixing fermion $\psi^{\prime}=\Psi-2 \xi \bar{C} Y$

Gauge-fixing $G[A]: \quad \partial \cdot A \quad \mapsto \quad G^{\prime}[A]=\partial \cdot A-2 \xi Y$
Nakanishi-Lautrup b: b $\quad \mapsto \quad b^{\prime} \quad=\quad b+Y$
BRST action $S_{\mathrm{BRST}}^{\mathrm{YM}} \quad S_{\mathrm{BRST}}^{\mathrm{YM}} \mapsto S_{\mathrm{BRST}}^{\prime \mathrm{YM}}=S_{\mathrm{BRST}}^{\mathrm{YM}}+\int(\partial \cdot A) Y+\cdots$

- Longitudinal CK duality \Leftrightarrow gauge choice [BJKMSW '20, '21]

Colour-Kinematic Duality Redux

Tree-level CK duality for ghosts

- Use on-mass-shell BRST Ward identities

$$
\begin{aligned}
Q^{\text {lin }} A_{\text {phys }} & =0, \quad Q^{\operatorname{lin}} A_{\mathrm{f}}=c, \quad Q^{\operatorname{lin}} b=\bar{c} \\
0 & =\langle 0|\left[Q^{\text {lin }}, O_{1} \cdots O_{n}\right]|0\rangle
\end{aligned}
$$

- Transfers CK duality onto ghosts through

$$
S_{\text {ghost }}^{\mathrm{YM}}=\int \star \operatorname{tr} \bar{c} Q\left(\partial^{\mu} A_{\mu}-2 \xi Y\right)
$$

Colour-Kinematic Duality Redux

On-shell tree-level CK manifesting BRST action

- Introduce new auxiliary gluons and ghosts [BJKMSW '20, '21]:

$$
\begin{aligned}
\mathcal{L}_{\text {BRST CK-dual }}^{\text {KM }}= & \frac{1}{2} A_{a \mu} \square A^{\mu a}-\bar{c}_{a} \square c^{a}+\frac{1}{2} b_{a} \square b^{a}+\xi b_{a} \sqrt{\square} \partial_{\mu} A^{\mu a} \\
& -K_{1 a}^{\mu} \square \bar{K}_{\mu}^{1 a}-K_{2 a}^{\mu} \square \bar{K}_{\mu}^{2 a}-g f_{a b c} \bar{c}^{a} \partial^{\mu}\left(A_{\mu}^{b} c^{c}\right) \\
& -\frac{1}{2} B_{a}^{\mu \nu \kappa} \square B_{\mu \nu \kappa}^{a}+g f_{a b c}\left(\partial_{\mu} A_{\nu}^{a}+\frac{1}{\sqrt{2}} \partial^{\kappa} B_{\kappa \mu \nu}^{a}\right) A^{\mu b} A^{\nu c} \\
\text { aug. aux. fields } & -g f_{a b c}\left\{K_{1}^{a \mu}\left(\partial^{\nu} A_{\mu}^{b}\right) A_{\nu}^{c}+\left[\left(\partial^{\kappa} A_{\kappa}^{a}\right) A^{b \mu}+\bar{c}^{a} \partial^{\mu} c^{b}\right] \bar{K}_{\mu}^{1 c}\right\} \\
& +g f_{a b c}\left\{K_{2}^{a \mu}\left[\left(\partial^{\nu} \partial_{\mu} c^{b}\right) A_{\nu}^{c}+\left(\partial^{\nu} A_{\mu}^{b}\right) \partial_{\nu} c^{c}\right]+\bar{c}^{a} A^{b \mu} \bar{K}_{\mu}^{2 c}\right\}+\cdots \\
& \\
& \text { ghost aux. fields }
\end{aligned}
$$

- Cubic Feynman diagrams yield CK dual tree amplitudes for physical gluons and unphysical longitudinal modes and ghosts (on-shell)

Colour-Kinematic Duality Redux

Lifting to off-shell CK duality

- Relaxing on-shell to off-shell momenta $p_{i}^{2} \neq 0$ CK duality violated by terms

$$
p_{i}^{2} F_{i}
$$

for each external momentum p_{i} (including unphysical gluons and ghosts)

- Compensate with terms $F \square \Phi$ introduced via non-local field redefinition:

$$
\Phi \mapsto \Phi+F, \quad \Phi \square \Phi \mapsto \Phi \square \Phi+F \square \Phi+\cdots
$$

- Off-shell tree-level BRST CK duality is manifest \rightarrow loop CK duality [BJKMSW '21]

Colour-Kinematic Duality Redux

Price to pay

- Jacobian determinants \rightarrow counterterms ensuring unitarity

$$
\operatorname{det}\left(\mathbb{1}+g \frac{\delta f(\phi)}{\delta \phi}\right)=\int \mathcal{D} \bar{c} \mathcal{D} c \mathrm{e}^{\frac{i}{\hbar} \int \hbar\left(\bar{c}_{c} c^{\prime}+g \bar{c}_{l} \frac{\delta \sigma^{\prime}}{\delta \phi} c^{\prime}\right)}
$$

where $\phi \mapsto \phi+g f(\phi)$

- No reason to think such terms will preserve CK duality!

Colour-Kinematic Duality Redux

Price to pay

- Jacobian determinants \rightarrow counterterms ensuring unitarity

$$
\operatorname{det}\left(\mathbb{1}+g \frac{\delta f(\phi)}{\delta \phi}\right)=\int \mathcal{D} \bar{c} \mathcal{D} c \mathrm{e}^{\frac{1}{\hbar} \int \hbar\left(\bar{c}\left(\bar{c} c^{\prime}+g \bar{c} \bar{\tau} \frac{\delta \delta^{\prime}}{\delta \phi^{\prime}} c^{\prime}\right)\right.}
$$

where $\phi \mapsto \phi+g f(\phi)$

- No reason to think such terms will preserve CK duality!
- In this sense, this manifest loop CK duality is anomalous on the physical Hilbert space (but is exact on the complete pre-Hilbert space)
- Recall, two two-loop CK duality (w/ conditions 1-7) is impossible
- We understand this impossibility as an anomaly of the CK duality of the BRST-action

Colour-Kinematic Duality Redux

Perfect off-shell 'BRST-Lagrangian CK duality'

- YM BRST-action with manifest off-shell CK duality

$$
S_{\mathrm{BV}}^{\mathrm{YM}} \mathrm{CK}_{\text {-dual }}=\int C_{i j} C_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Rendered cubic with infinite tower of aux. fields

$$
A^{i a}=(A_{\mu}{ }^{a}, b^{a}, \bar{c}^{a}, c^{a}, \underbrace{B_{\mu \nu}{ }^{a}, \bar{K}_{\mu}{ }^{a}, \ldots}_{\text {auxiliaries }})
$$

- $c_{a b}, f^{a b c}$ gauge group Killing form and structure constants
- $C_{i j}, F^{i j k}$ are differential operators that satisfy the same identities as $c_{a b}, f^{a b c}$ as operator equations

$$
\begin{array}{lllr}
c_{a b}=c_{(a b)} & f_{a b c}=f_{[a b c]} & c_{a\left(b \left(b f_{c) d}^{a}=0\right.\right.} & f_{[a b \mid d} f_{c] e}^{d}=0 \\
c_{i j}=c_{(j)} & F_{i j k}=F_{[j k]} & c_{i(j} F_{k) \mid}^{i}=0 & F_{[j j \mid I} F_{\mid k] m}^{\prime}=0
\end{array}
$$

Colour-Kinematic Duality Redux

Some comments

- Action has manifest CK duality
- The $F_{i j k}$ are the structure constants of a kinematic Lie algebra mirroring the usual colour structure constants $f_{a b c}$. Cf. [Monteiro-O' Connell '11, '13;
Bjerrum-Bohr-Damgaard-Monteiro-O' Connell '12; Fu-Krasnov '16;
Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
- Corollary: loop amplitude integrands are CK dual automatically
- Anomalous, in a controlled manner, due to Jacobian counterterms that ensure (generalised) unitarity

Colour-Kinematic Duality Redux

Some comments

- Action has manifest CK duality
- The $F_{i j k}$ are the structure constants of a kinematic Lie algebra mirroring the usual colour structure constants $f_{a b c}$. Cf. [Monteiro-O' Connell '11, '13;
Bjerrum-Bohr-Damgaard-Monteiro-O' Connell '12; Fu-Krasnov '16;
Chen-Johansson-Teng-Wang 19; Campiglia-Nagy '21...]
- Corollary: loop amplitude integrands are CK dual automatically
- Anomalous, in a controlled manner, due to Jacobian counterterms that ensure (generalised) unitarity
- Shift in point of view:
- A consistent field theory formulation of CK duality
- Anomaly: generalised unitarity proof of loop double copy doesn't go through, at least not straightforwardly
- Departure from standard articulation of loop integrand CK duality: all desiderata except generalised unitarity
- Latter replaced with off-shell CK duality of BV action (without Jacobian counterterms): alternative proof of double copy

BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories

$$
\begin{aligned}
& c_{I J} \phi^{\prime} \square \phi^{J}+f_{I J K} \phi^{\prime} \phi^{J} \phi^{K} \\
& \tilde{c}_{\tilde{I} J} \tilde{\phi}^{I} \square \tilde{\phi}^{\tilde{J}}+\tilde{f}_{\tilde{I} \tilde{\mathcal{K}}} \tilde{\phi}^{\tilde{\prime}} \tilde{\phi}^{\tilde{j}} \tilde{\phi} \tilde{K}
\end{aligned}
$$

BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories

Factorisation

${ }^{C_{I J}} \phi^{\prime} \square \phi^{J}+f_{I J K} \phi^{\prime} \phi^{J}{ }_{\phi} K$
$\tilde{c}_{\tilde{I} \tilde{J}} \tilde{\phi}^{\tilde{I}} \square \tilde{\phi}^{\tilde{J}}+\tilde{f}_{\tilde{I} \tilde{J} \tilde{K}} \tilde{\phi}^{\tilde{I}} \tilde{\phi}^{\tilde{J}} \tilde{\phi}^{\tilde{K}}$

$$
\tilde{c}_{\tilde{a} \tilde{b}} \tilde{C}_{\tilde{\imath} \tilde{\jmath}} \Phi^{\tilde{a} \tilde{\imath}} \square \tilde{\phi}^{\tilde{a} \tilde{\jmath}}+\tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \tilde{\phi}^{\tilde{a} \tilde{\imath} \tilde{\Phi} \tilde{b} \tilde{\jmath} \tilde{\phi} \tilde{c} \tilde{k}}
$$

BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories
Parent theories

Factorisation

BV Lagrangian Syngamy
Syngamatic reproduction of factorable theories copy

BV Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories

Factorisation

$$
C_{i j} \tilde{C}_{\tilde{\imath} \tilde{\jmath}} \Phi^{i \tilde{\imath}} \square \Phi^{j \tilde{\jmath}}+F_{i j k} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \Phi^{i \tilde{\imath}} \Phi^{j \tilde{\jmath}} \Phi^{k \tilde{k}}
$$

Key examples

Yang-Mills squared

- Pair kinematics: $S_{\text {BRST-CK }}^{Y M} \otimes \tilde{S}_{\text {BRST-CK }}^{Y M} \rightarrow S_{\text {DC }}^{\mathcal{N}=0}(\mathcal{N}=0$ supergravity $)$

$$
\begin{array}{ll}
A^{i a}=\left(A_{\mu}{ }^{a}, \text { ghosts, auxiliaries }\right) & S_{\mathrm{CK}}^{\mathrm{Y}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} F_{a b c} A^{i a} A^{j b} A^{k c} \\
A^{i \tilde{z}}=\left(h_{\mu \nu}, B_{\mu \nu}, \varphi, \text { ghosts, auxiliaries }\right) & S_{\mathrm{DC}}^{\mathcal{N}=0}=\int C_{i j} C_{i \tilde{j}} A^{i \tilde{z}} \square A^{i \tilde{j}}+F_{i j k} F_{i \tilde{i j}} A^{i \tilde{z}} A^{i \tilde{j}} A^{k \tilde{k}}
\end{array}
$$

Key examples

Yang-Mills squared

- Pair kinematics: $S_{\text {BRST-CK }}^{Y M} \otimes \tilde{S}_{\text {BRST-CK }}^{Y M} \rightarrow S_{\text {DC }}^{\mathcal{N}=0}(\mathcal{N}=0$ supergravity $)$

$G \times \tilde{G}$ bi-adjoint scalar theory
- Pair colours: $S_{\text {BRST-CK }}^{Y M} \otimes \tilde{S}_{\text {BRST-CK }}^{Y M} \rightarrow S_{\text {DC }}^{\text {bi-adj }}$

$$
S_{D C}^{b i-a d j}=c_{a b} \tilde{c}_{\tilde{a} \tilde{b}} \Phi^{a \tilde{a}} \square \phi^{a \tilde{b}}+f_{a b c} \tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \Phi^{a \tilde{a}} \phi^{b \tilde{b}} \phi^{c \tilde{c}}
$$

- Cf. scattering equation formalism [Hodges '11; Cachazo-He-Yuan '13 '14]

BRST double copy fields and action

- Factor BRST complex (field space) into colour and kinematics:

$$
\mathfrak{g} \otimes \mathfrak{V} \otimes \mathfrak{S} \longrightarrow \mathfrak{V} \otimes \mathfrak{V} \otimes \mathfrak{S}
$$

fields				antifields		
factorisation	role	$L_{\infty} \mathrm{deg}$	dim	factorisation	L_{∞} deg	dim
$\lambda=[\mathrm{g}, \mathrm{g}] \mathrm{s}_{\times} \frac{1}{2} \lambda(x)$	ghost for ghost	-1	$\frac{d}{2}-3$	$\lambda^{+}=[\mathrm{a}, \mathrm{a}] \mathbf{s}_{x}^{+} \frac{1}{2} \lambda^{+}(x)$	4	$\frac{d}{2}+3$
$\Lambda=\left[\mathrm{g}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x} \Lambda_{\mu}(x)$	ghost	0	$\frac{d}{2}-2$	$\Lambda^{+}=\left[\mathrm{a}, \mathrm{v}^{\mu}\right] \mathbf{s}_{x}^{+} \Lambda_{\mu}^{+}$	3	$\frac{d}{2}+2$
$\gamma=[\mathrm{g}, \mathrm{n}] \mathrm{s}_{x} \gamma(x)$	NL field of Λ_{μ}	0	$\frac{d}{2}-2$	$\gamma^{+}=[\mathrm{a}, \mathrm{n}] \mathrm{s}_{x}^{+} \gamma^{+}(x)$	3	$\frac{d}{2}+2$
$B=\left[\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right] \mathrm{s}_{x} \frac{1}{2} B_{\mu \nu}(x)$	physical field	1	$\frac{d}{2}-1$	$B^{+}=\left[\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right] \mathrm{s}_{x}^{+} \frac{1}{2} B_{\mu \nu}^{+}(x)$	2	$\frac{d}{2}+1$
$\alpha=\left[\mathrm{n}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x} \alpha_{\mu}(x)$	NL field	1	$\frac{d}{2}-1$	$\alpha^{+}=\left[\mathrm{n}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x}^{+} \alpha_{\mu}^{+}(x)$	2	$\frac{d}{2}+1$
$\varepsilon=[\mathrm{g}, \mathrm{a}] \mathrm{s}_{x} \varepsilon(x)$	anti-ghost of Λ_{μ}	1	$\frac{\text { d }}{2}-1$	$\varepsilon^{+}=[\mathrm{g}, \mathrm{a}] \mathrm{s}_{x}^{+} \varepsilon^{+}(x)$	2	$\frac{d}{2}+1$
$\bar{\Lambda}=\left[\mathrm{a}, \mathrm{v}^{\mu}\right] \mathbf{s}_{x} \bar{\Lambda}_{\mu}(x)$	anti-ghost	2	- $\frac{d}{2}$	$\bar{\Lambda}^{+}=\left[\mathrm{g}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x}^{+} \bar{\Lambda}_{\mu}^{+}(x)$	1	- ${ }^{2}$
$\bar{\gamma}=[\mathrm{a}, \mathrm{n}] \mathbf{s}_{x} \bar{\gamma}(x)$	NL field of $\bar{\Lambda}_{\mu}$	2	$\frac{d}{2}$	$\bar{\gamma}^{+}=[\mathrm{g}, \mathrm{n}] \mathrm{s}_{x}^{+} \bar{\gamma}^{+}(x)$	1	$\frac{d}{2}$
$\bar{\lambda}=[\mathrm{a}, \mathrm{a}] \mathrm{s}_{x} \frac{1}{2} \bar{\lambda}(x)$	anti-ghost of $\bar{\Lambda}_{\mu}$	3	$\frac{d}{2}+1$	$\bar{\lambda}^{+}=[\mathrm{g}, \mathrm{g}] \mathrm{s}_{x}^{+} \frac{1}{2} \bar{\lambda}^{+}(x)$	0	$\frac{d}{2}-1$
$X=\left(\mathrm{g}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x} X_{\mu}(x)$	ghost	0	$\frac{d}{2}-2$	$X^{+}=\left(\mathrm{a}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x}^{+} X_{\mu}^{+}(x)$	3	$\frac{d}{2}+2$
$\beta=(\mathrm{g}, \mathrm{n}) \mathrm{s}_{x} \beta(x)$	NL field of X_{μ}	0	$\frac{d}{2}-2$	$\beta^{+}=(\mathrm{a}, \mathrm{n}) \mathrm{s}_{x}^{+} \beta^{+}(x)$	3	$\frac{d}{2}+2$
$h=\left(\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right) \mathrm{s}_{\times} \frac{1}{2} h_{\mu \nu}(x)$	physical field	1	$\frac{d}{2}-1$	$h^{+}=\left(\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right) \mathrm{s}_{x}^{+} \frac{1}{2} h_{\mu \nu}^{+}(x)$	2	$\frac{d}{2}+1$
$\varpi=\left(\mathrm{n}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x} \varpi_{\mu}(x)$	NL field	1	$\frac{d}{2}-1$	$\varpi^{+}=\left(\mathrm{n}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x}^{+} \varpi_{\mu}^{+}(x)$	2	$\frac{d}{2}+1$
$\pi=(\mathrm{n}, \mathrm{n}) \mathrm{s}_{x} \frac{1}{2} \pi(x)$	NL field of ϖ_{μ}	1	$\frac{d}{2}-1$	$\pi^{+}=(\mathrm{n}, \mathrm{n}) \mathrm{s}_{x}^{+} \frac{1}{2} \pi^{+}(x)$	2	$\frac{d}{2}+1$
$\delta=(\mathrm{g}, \mathrm{a}) \mathrm{s}_{x} \delta(x)$	anti-ghost of X_{μ}	1	$\frac{d}{2}-1$	$\delta^{+}=(\mathrm{g}, \mathrm{a}) \mathrm{s}_{x}^{+} \delta^{+}(x)$	2	$\frac{d}{2}+1$
$\bar{X}=\left(\mathrm{a}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x} \bar{X}_{\mu}(x)$	anti-ghost	2	2	$\bar{X}^{+}=\left(\mathrm{g}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x}^{+} \bar{X}_{\mu}(x)$	1	${ }^{2} \frac{d}{2}$
$\bar{\beta}=(\mathrm{a}, \mathrm{n}) \mathrm{s}_{x} \bar{\beta}(x)$	NL field of \bar{X}_{μ}	2	$\frac{d}{2}$	$\bar{\beta}^{+}=(\mathrm{g}, \mathrm{n}) \mathrm{s}_{x}^{+} \bar{\beta}^{+}(x)$	1	$\frac{d}{2}$

BRST Double-Copy: Fields and Action

- Double copy BRST-action uniquely determined:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{DC}}=\frac{1}{2} h_{\mu \nu} \square h^{\mu \nu}+\frac{1}{2} \varpi_{\mu} \square \varpi^{\mu}+\xi^{2}\left(\partial^{\mu} \varpi_{\mu}\right)^{2}+\frac{1}{2} \pi \square \pi \\
& -2 \xi \varpi^{\nu} \square^{\frac{1}{2}} \partial^{\mu} h_{\mu \nu}-2 \xi \pi \square^{\frac{1}{2}} \partial_{\mu} \varpi^{\mu}+2 \xi^{2} \pi \partial_{\mu} \partial_{\nu} h^{\mu \nu} \\
& -2 \bar{X}_{\mu} \square X^{\mu}-\delta \square \delta-2 \bar{\beta} \square \beta \\
& \int+\frac{1}{2} B_{\mu \nu} \square B^{\mu \nu}-2 \bar{\Lambda}_{\mu} \square \Lambda^{\mu}+\alpha_{\mu} \square \alpha^{\mu}+\xi^{2}\left(\partial^{\mu} \alpha_{\mu}\right)^{2}+\varepsilon \square \varepsilon-\bar{\lambda} \square \lambda-2 \bar{\gamma} \square \gamma \\
& \mathrm{KR} \quad\left\{-2 \xi \alpha^{\nu} \square^{\frac{1}{2}} \partial^{\mu} B_{\mu \nu}-2 \xi \gamma \square^{\frac{1}{2}} \partial_{\mu} \bar{\Lambda}^{\mu}+2 \xi \bar{\gamma} \square^{\frac{1}{2}} \partial_{\mu} \Lambda^{\mu}\right. \\
& \text { 2-form }\left(-2 \xi \beta \square^{\frac{1}{2}} \partial_{\mu} \bar{X}^{\mu}+2 \xi \bar{\beta} \square^{\frac{1}{2}} \partial_{\mu} X^{\mu}+\cdots\right.
\end{aligned}
$$

- Canonical field redefinition to Fierz-Pauli + Kalb-Ramond + dilaton action

$$
Q B=d \Lambda, \quad Q \Lambda=d \lambda, \quad Q \lambda=0
$$

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence (requires off-shell BRST CK duality)

$$
\begin{array}{rlcc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow F_{i j k} F_{\tilde{i} \tilde{\jmath}} A^{i \tilde{z}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence (requires off-shell BRST CK duality)

$$
\begin{array}{rllc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} k} A^{i \tilde{\tau}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: is there some Q such that

$$
Q S_{\mathrm{DC}}^{\mathcal{N}=0}=0, \quad Q^{2}=0
$$

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence (requires off-shell BRST CK duality)

$$
\begin{array}{cccc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} \hat{k}} A^{i \tilde{\imath}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: is there some Q such that

$$
Q S_{\mathrm{DC}}^{\mathcal{N}=0}=0, \quad Q^{2}=0
$$

Answer: double-copy operator $Q_{\text {DC }}$ (requires off-shell BRST CK duality)

BRST Lagrangian Syngamy

Double copy of BRST charge

- Double copy of BRST-action implies double copy BRST operator Q_{DC}

$$
\begin{gathered}
Q A^{i a}=Q^{i}{ }_{j} A^{j a}+Q^{i}{ }_{j k} f^{a}{ }_{b c} A^{j b} A^{k c} \tilde{Q} \tilde{A}^{\tilde{a i}}=Q^{\tilde{i}}{ }_{j} \tilde{A}^{\tilde{b} \tilde{j}}+\tilde{f}^{\tilde{a}}{ }_{b \tilde{c}} \tilde{Q}^{\tilde{\tau}}{ }_{j \tilde{k}} \tilde{A}^{\tilde{\sigma} \tilde{j}} \tilde{A}^{\tilde{c} \tilde{k}} \\
Q_{D C}=\underbrace{Q^{i}{ }_{j} A^{j \tilde{}}+Q^{i}{ }_{j k} F^{\tilde{i}}{ }_{j \tilde{k}} A^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{L}}+\underbrace{Q^{\tilde{i}}{ }_{j} A^{i \tilde{j}}+F^{i}{ }_{j k} Q^{\tilde{j}}{ }_{j \tilde{k}} A^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{R}}
\end{gathered}
$$

- Yang-Mills gauge \Rightarrow diffeomorphisms and 2-form gauge symmetries:

$$
\begin{aligned}
& Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries } \\
& Q_{2 \text {-form }} B=\Lambda, \quad Q_{2 \text {-form }} \Lambda=\lambda \quad Q_{2 \text {-form }} \lambda=0
\end{aligned}
$$

Cf. [Anastasiou-LB-Duff-Hughes-Nagy '14]

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$ and $Q S_{\mathrm{BRST}}^{\mathrm{YM}}=0, Q^{2}=0$ can only rely on generic properties of $f^{a b c}$:

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$ and $Q S_{\mathrm{BRST}}^{\mathrm{YM}}=0, Q^{2}=0$ can only rely on generic properties of $f^{a b c}$:

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence

BV Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$ and $Q S_{\mathrm{BRST}}^{\mathrm{YM}}=0, Q^{2}=0$ can only rely on generic properties of $f^{a b c}$:

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence
- Double copy of symmetries generalises, e.g.

$$
\text { global susy } \times \text { gauge } \rightarrow \quad \text { local susy }
$$

- Straightforward supersymmetric completion

Generalisations

The double copy to all orders

- Given CK duality of the tree-level physical S-matrix we can run our argument:
- Non-linear sigma model [Chen-Du '13] \rightarrow special Galileon
- Orbifolding, fundamental couplings. . . [Johansson-Ochirov '14] \rightarrow plethora of supergravity theories
- Bagger-Lambert-Gustavsson [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow D=3$ maximal supergravity

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)
- CK dual BRST-Lagrangian then follows with (essentially) no new ideas

$$
A^{\prime a}=\left(A^{i a}, \Psi^{x a}\right)=\left(A_{\mu}{ }^{a}, \psi_{\alpha}^{a}, \text { ghosts, aux }\right)
$$

- Off-shell CK duality implies supersymmetry directly (exercise!)

$$
\begin{gathered}
S_{\mathrm{BRST}}^{\mathrm{SYM}}=\int C_{I J} C_{a b} A^{l a} \square A^{J a}+F_{I J K} f_{a b c} A^{l a} A^{J b} A^{K c} \\
\delta_{\epsilon} A^{i a}=F_{x y}^{i} \Psi^{\times a} \epsilon^{y}, \quad \delta_{\epsilon} \Psi^{\times a}=F_{j y}^{\times} A^{j a} \epsilon^{y}
\end{gathered}
$$

Super Yang-Mills and Supergravity

BRST-Lagrangian double copy

- $(\text { Type I super Yang-Mills })^{2}=$ Type IIA/B supergravity

$$
\begin{aligned}
& A^{I^{a}}=\left(A_{\mu}{ }^{a}, \psi_{\alpha}{ }^{a}, \text { ghosts, aux }\right) \quad \text { R-R field strengths } \\
& A^{J J}=(h_{\mu \nu}, B_{\mu \nu}, \phi, \underbrace{\Psi_{\alpha \nu}, \Psi_{\mu \beta},}_{\text {gravilini }}, F_{\alpha \beta}, \text { ghosts, aux })
\end{aligned}
$$

- Local NS-R sector susy follows from super Yang-Mills factors

$$
\mathcal{Q}_{\alpha} A_{\mu}{ }^{a}=\delta^{a}{ }_{b} \gamma_{\mu \alpha}{ }^{\beta} \psi_{\beta}{ }^{b}+\cdots \quad \longrightarrow \quad \mathcal{Q}_{\alpha} h_{\mu \nu}=\gamma_{(\mu \alpha}{ }^{\beta} \psi_{\beta \nu)}+\cdots
$$

- Super $\eta, \bar{\eta}$ and Nielsen-Kallosh χ ghosts

$$
\bar{c} \otimes \psi \sim \bar{\eta}, \quad c \otimes \psi \sim \eta, \quad b \otimes \psi \sim \chi
$$

- Similar for R-NS sector

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{array}{ll}
\text { IIA: } & \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
\text { IIB: } & 16 \otimes 16=10 \oplus 120 \oplus 126
\end{array}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{aligned}
& \text { IIA: } \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
& \text { IIB: } 16 \otimes 16=10 \oplus 120 \oplus 126
\end{aligned}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths
- Type IIA/B action can be written in terms of field strengths, e.g.

$$
F_{2} \wedge \star F_{2}+\tilde{F}_{4} \wedge \star F_{4}+B_{2} \wedge \tilde{F}_{4} \wedge \tilde{F}_{4}+B_{2} \wedge B_{2} \wedge F_{2} \wedge \tilde{F}_{4}-\frac{1}{3} B_{2} \wedge B_{2} \wedge B_{2} \wedge F_{2} \wedge F_{2}
$$

Super Yang-Mills and Supergravity

Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\begin{gathered}
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}}=\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha} \alpha^{\prime} \partial_{\beta} \beta^{\prime} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \\
\left.F_{\alpha \beta} \sim \sum_{p^{\circ} 0}^{d} \frac{1}{p!}\left(\gamma^{\mu_{1} \ldots \mu_{\mathrm{c}}} c\right) F_{\mu_{1} \ldots \mu_{p}}\right\} \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots
\end{gathered}
$$

$$
\text { Aux. (D-p-1)-form } B\} \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots
$$

Undo Feynman gauge $\} \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots$

Super Yang-Mills and Supergravity

Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\begin{aligned}
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}} & =\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha} \alpha^{\prime} \not \partial_{\beta}^{\beta^{\prime}} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \\
& \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots
\end{aligned}
$$

- Sen's mechanism [Sen '15] generalized to arbitrary (as opposed to self-dual) field strengths [BJKMSW '21]
- Sen's mechanism was motivated by IIB string field theory, where the R-R sector is naturally given in terms of bispinors - natural double copy shadow

Lecture 3: Homotopy CK Duality and Double Copy

BV formalism

- In the case of open symmetries, BRST complex only up to e.o.m.

$$
\left.Q_{\mathrm{BRST}}^{2} \Phi\right|_{\Phi_{0}}=0
$$

- \Rightarrow extend the putative BRST complex

$$
\mathfrak{F}_{\mathrm{BV}}=T^{*}[1] \mathfrak{F}_{\mathrm{BRST}}
$$

- Fields Φ^{A} local coordinates on $\mathfrak{F}_{\text {BRST }}$, antifields Φ_{A}^{+}are fibre coordinates
- Using canonical symplectic structure on $\mathfrak{F}_{\text {BV }}$ we extend $Q_{\text {BRST }}$ and $S_{\text {BRST }}$ to Q_{BV} and S_{BV}, requiring

$$
\begin{gathered}
\left.Q_{\mathrm{BV}}\right|_{\mathfrak{F}_{\mathrm{BRST}}}=Q_{\mathrm{BRST}}, \quad Q_{\mathrm{BV}}=\left\{S_{\mathrm{BV}},-\right\} \\
Q_{\mathrm{BV}} S_{\mathrm{BV}}=\left\{S_{\mathrm{BV}}, S_{\mathrm{BV}}\right\}=0
\end{gathered}
$$

BV formalism: gauge-fixing and quantization

- Before quantization: imposing gauge-fixing in the BV formalism
- Gauge-fixing S_{BV} means evaluating it on an appropriate Lagrangian submanifold of $\mathfrak{F}_{\mathrm{BV}}$
- We eliminate the antifields by introducing a gauge-fixing fermion Ψ :

$$
\Phi_{A}^{+}=\frac{\delta}{\delta \Phi^{A}} \Psi
$$

- Gauge-independence of the expectation values for observables: BV quantum master equation

$$
\left\{S_{\mathrm{BV}}^{\hbar}, S_{\mathrm{BV}}^{\hbar}\right\}-2 i \hbar \Delta_{\mathrm{BV}} S_{\mathrm{BV}}^{\hbar}=0
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras, first arose in string field theory:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

[Zwiebach '93; Hinich-Schechtman '93]

Homotopy Algebras and BV Lagrangian Field Theories

- Homotopy algebras: generalise familiar (matrix, Lie...) algebras to include "higher products" satisfying "higher relations" up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras, first arose in string field theory:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

[Zwiebach '93; Hinich-Schechtman '93]

- Associative algebras $\rightarrow A_{\infty}$-algebras [Stasheff '63]
- Commutative algebras $\rightarrow C_{\infty}$-algebras [Kadeishvili '88]

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

- Chevalley-Eilenberg formulation of L_{∞}-algebra \mathfrak{L} with basis t_{a} :

$$
\begin{gathered}
\operatorname{CE}(\mathfrak{L})=\bar{T}\left(\mathfrak{L}[1]^{*}\right) \\
Q t^{a}=-\sum_{n} \frac{1}{n!} \mu_{n}{ }^{a}{ }_{a_{1} \cdots a_{n}} t^{a_{1}} \cdots t^{a_{n}}, \quad Q^{2}=0 \Leftrightarrow \text { homotopy Jacobi }
\end{gathered}
$$

- Any BV field theory with operator Q_{BV} corresponds to an L_{∞}-algebra in the CE picture, see e.g. [Jurco-Raspollini-Saemann-Wolf '18]

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& & & \xrightarrow{\text { Id }} & \bar{C} & & \\
& & \bar{c}^{+} & \xrightarrow{- \text { Id }} & b^{+} & &
\end{array}
$$

- Homotopy Maurer-Cartan theory \longrightarrow field strengths + gauge trans.
- Cartan-Killing form $\langle-,-\rangle_{\mathfrak{g}} \rightarrow$ cyclic structure $\langle-,-\rangle_{\mathrm{YM}}$ on $\mathfrak{L}^{\mathrm{YM}}$
- BV action $\sim \sum \frac{1}{(i+1)!}\left\langle a, \mu_{i}(a, \ldots, a)\right\rangle$

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& b & \xrightarrow{\text { ld }} & \bar{c} & & \\
& \bar{c}^{+} & \xrightarrow{\text {-ld }} & b^{+} & &
\end{array}
$$

- Homotopy Maurer-Cartan theory \longrightarrow field strengths + gauge trans.
- Cartan-Killing form $\langle-,-\rangle_{\mathfrak{g}} \rightarrow$ cyclic structure $\langle-,-\rangle_{\mathrm{YM}}$ on $\mathfrak{L}^{\mathrm{YM}}$
- BV action $\sim \sum \frac{1}{(i+1)!}\left\langle a, \mu_{i}(a, \ldots, a)\right\rangle$
- L_{∞} quasi-isomorphisms \longrightarrow physical equivalence (field redefinitions etc)
- Strictification: $\mu_{i}=0, i>2 \rightarrow$ cubic theory
- Minimal model: $\mu_{1}=0 \rightarrow$ tree scattering amplitudes

Cf. [Jurčo-Raspollini-Saemann-Wolf '18; Jurčo-Macrelli-Saemann-Wolf '19]

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

- colour: gauge group Lie algebra

Colour-Kinematic-Scalar Factorisation of Yang-Mills

$-\mathfrak{L}^{\mathrm{YM}}$ factorises into $\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

[BLKMSW '21]

- colour: gauge group Lie algebra
- Kinematics: graded vector space of Poincaré representations of fields

$$
\begin{array}{ccccccc}
\mathbb{R}[-1] & \oplus & \left(\mathbb{R}^{d} \oplus \mathbb{R}\right) & \oplus & \mathbb{R}[1] & \oplus & \text { Auxiliaries } \\
c & & \left(A_{\mu}, b\right) & \bar{c} & & B_{\mu \nu \rho} \cdots
\end{array}
$$

- scalar: A_{∞}-algebra of a scalar field theory

$$
\langle-,-\rangle_{\mathrm{YM}}=\langle-,-\rangle_{\text {colour }}\langle-,-\rangle_{\mathfrak{E i n e m a t i c s}}\langle-,-\rangle_{\mathfrak{s c a l a r}}
$$

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra!
- Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV complex for Yang-Mills (think order formulation with A, F^{+}) satisfying

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

- h exists and is a second-order derivation up to homotopy \Rightarrow
- $B V_{\infty}^{\square}$-algebra on Zeitlin-Costello BV complex
- On-shell tree-level CK duality for physical gluons

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra!
- Relies on the existence of a degree -1 unary map h on Zeitlin-Costello BV complex for Yang-Mills (think order formulation with A, F^{+}) satisfying

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

- h exists and is a second-order derivation up to homotopy \Rightarrow
- $B V_{\infty}^{\square}$-algebra on Zeitlin-Costello BV complex
- On-shell tree-level CK duality for physical gluons
- Very special: only $D=4$, no loop desiderata (ghosts, gauge-fixing)
- A little mysterious: $B V_{\infty}^{\square}$-algebra generalise famous $B V_{\infty}$-algebras (homotopy $B V$-algebras [Galvez-Carrillo-Tonks-Vallette '09]), where e.g.

$$
\Delta^{2} \square=\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \Delta \square)-\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \mathrm{id} \otimes \square)
$$

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged

Homotopy algebra of CK duality

The homotopy algebra of CK duality [BJKMSW 'to appear 21]

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra, cf. [Getzler '93]

$$
\mathfrak{L}^{\mathrm{YM}}=\mathfrak{g} \otimes \underbrace{\mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}}_{\mathfrak{K i n} \equiv B V \square \text {-algebra }}
$$

- $B V^{\square}$-algebra comes with two products $-\cdot-$ and $[-,-]$ and three unary operators

$$
d^{2}=h^{2}=0, \quad d h+h d=
$$

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged
- Introduce symmetric monoidal category of Hodge complexes (modules over twisted Hopf algebras with central element \square)

$$
d^{2}=h^{2}=0, \quad d h+h d=\square
$$

Coassociativity \Rightarrow the seven-term identity

- In this category, both d and h are a part of the ambient structure

Homotopy algebra of CK duality

The homotopy algebra of CK duality

- Homotopy algebra: $B V_{\infty / H d g}^{\square}$-algebra
- Corresponds to integrating out auxiliary fields
- Homotopy relations of $B V_{\infty / H d g-a l g e b r a ~}^{\square}$ kinematic Jacobi relations

Homotopy algebra of CK duality

The homotopy algebra of CK duality

- Homotopy algebra: $B V_{\infty / H d g}^{\square}$-algebra
- Corresponds to integrating out auxiliary fields
- Homotopy relations of $B V_{\infty / H d g-a l g e b r a ~}^{\square}$ kinematic Jacobi relations
- Computational efficiency:
- Purely tree-level calculations
- One identity at any order (the rest follow axiomatically)

$$
\begin{aligned}
& \sum_{p+q=n+2} n \text {-point tree with two internal (} p \text {-ary and } q \text {-ary) vertices } \\
&=n \text {-point tree with one internal (} n \text {-ary) vertex }
\end{aligned}
$$

- But, work with Feynman diagrams - marry with on-shell methods?

Future work

- AdS background [Zhou '21; Diwakar-Herderschee-Roiban-Teng '21 ...] \rightarrow Hopf algebra of universal enveloping algebra of AdS isometries
- Bagger-Lambert-Gustavsson CK duality [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow m$-ary $B V^{\square}$ operads
- Matter coupling [Johansson-Ochirov '14] \rightarrow many-sorted $B V^{\square}$ operads
- String theory (modular envelope over) $B V_{\infty}^{L_{0}}$

$$
\{d, h\}=\square \quad \longrightarrow \quad\left\{Q, b_{0}\right\}=L_{0}
$$

Cf. $B V_{\infty}$ structure on TVOA [Galvez-Carrillo-Tonks-Vallette '09] lifting the $B V$-algebra structure on the BRST (co)homology [Lian-Zuckerman '93]

- Counterterms?

Thanks for listening

