Colour-Kinematic Duality Redux

Perfect off-shell 'BRST-Lagrangian CK duality'

- YM BRST-action with manifest off-shell CK duality

$$
S_{\text {BRST CK-dual }}^{\text {YM }}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c}
$$

- Rendered cubic with infinite tower of aux. fields

$$
A^{i a}=(A_{\mu}{ }^{a}, b^{a}, \bar{c}^{a}, c^{a}, \underbrace{B_{\mu \nu}{ }^{a}, \bar{K}_{\mu}{ }^{a}, \ldots}_{\text {auxiliaries }})
$$

- $c_{a b}, f^{a b c}$ gauge group Killing form and structure constants
- $C_{i j}, F^{i j k}$ are differential operators that satisfy the same identities as $c_{a b}, f^{a b c}$ as operator equations

$$
\begin{array}{lllr}
c_{a b}=c_{(a b)} & f_{a b c}=f_{[a b c]} & c_{a(b} f_{c) d}^{a}=0 & f_{[a b \mid d} f_{c] e}^{d}=0 \\
C_{i j}=C_{(i j)} & F_{i j k}=F_{[j k]} & C_{i(j} F_{k)!}^{i}=0 & F_{[i j \mid} F_{\mid k] m}^{\prime}=0
\end{array}
$$

BRST Lagrangian Syngamy

Syngamatic reproduction of factorable theories

$$
\begin{aligned}
& c_{I J} \phi^{\prime} \square \phi^{J}+f_{I J K} \phi^{\prime} \phi^{J} \phi^{K} \\
& \tilde{c}_{\tilde{I} J} \tilde{\phi}^{I} \square \tilde{\phi}^{\tilde{J}}+\tilde{f}_{\tilde{I} \tilde{K}} \tilde{\phi}^{\tilde{\prime}} \tilde{\phi}^{\tilde{j}} \tilde{\phi} \tilde{K}
\end{aligned}
$$

BRST Lagrangian Syngamy

Syngamatic reproduction of factorable theories

$c_{I J} \phi^{I} \square \phi^{J}+f_{I J K} \phi^{I} \phi^{J} \phi^{K}$

$$
\tilde{c}_{\tilde{a} \tilde{b}} \tilde{C}_{\tilde{\imath} \tilde{\jmath}} \Phi^{\tilde{a} \tilde{\imath}} \square \tilde{\phi}^{\tilde{a} \tilde{\jmath}}+\tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \tilde{\phi}^{\tilde{a} \tilde{\imath}} \tilde{\phi}^{\tilde{b}} \tilde{\phi} \tilde{\phi} \tilde{c} \tilde{k}
$$

BRST Lagrangian Syngamy

Syngamatic reproduction of factorable theories

BRST Lagrangian Syngamy

Syngamatic reproduction of factorable theories

BRST Lagrangian Syngamy

Syngamatic reproduction of factorable theories

Parent theories

Factorisation

Daughter theories

$$
C_{i j} \tilde{c}_{\tilde{\imath} \tilde{\jmath}} \Phi^{i \tilde{\imath}} \square \Phi^{j \tilde{\jmath}}+F_{i j k} \tilde{F}_{\tilde{\imath} \tilde{\jmath} \tilde{k}} \Phi^{i \tilde{\imath}} \Phi^{j \tilde{\jmath}} \Phi^{k \tilde{k}}
$$

$$
c_{a b} \tilde{c}_{\tilde{a} \tilde{b}} \Phi^{a a ̃} \square \Phi^{a \tilde{b}}+f_{a b c} \tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \Phi^{a \tilde{a}} \Phi^{b \tilde{b}^{c}} \Phi^{c \tilde{c}}
$$

Key examples

Yang-Mills squared

- Pair kinematics: $S_{\text {BRST-CK }}^{Y M} \otimes \tilde{S}_{\text {BRST-CK }}^{Y M} \rightarrow S_{\text {DC }}^{\mathcal{N}=0}(\mathcal{N}=0$ supergravity $)$

$$
\begin{array}{ll}
A^{i a}=\left(A_{\mu}{ }^{a}, \text { ghosts, auxiliaries }\right) & S_{\mathrm{CK}}^{\mathrm{Y}}=\int C_{i j} c_{a b} A^{i a} \square A^{j a}+F_{i j k} F_{a b c} A^{i a} A^{j b} A^{k c} \\
A^{i \tilde{z}}=\left(h_{\mu \nu}, B_{\mu \nu}, \varphi, \text { ghosts, auxiliaries }\right) & S_{\mathrm{DC}}^{\mathcal{N}=0}=\int C_{i j} C_{i \tilde{j}} A^{i \tilde{z}} \square A^{i \tilde{j}}+F_{i j k} F_{i \tilde{i j}} A^{i \tilde{z}} A^{i \tilde{j}} A^{k \tilde{k}}
\end{array}
$$

Key examples

Yang-Mills squared

- Pair kinematics: $S_{\text {BRST-CK }}^{Y M} \otimes \tilde{S}_{\text {BRST-CK }}^{Y M} \rightarrow S_{\text {DC }}^{\mathcal{N}=0}(\mathcal{N}=0$ supergravity $)$

$G \times \tilde{G}$ bi-adjoint scalar theory
- Pair colours: $S_{\text {BRST-CK }}^{Y M} \otimes \tilde{S}_{\text {BRST-CK }}^{Y M} \rightarrow S_{D C}^{\text {bi-adj }}$

$$
S_{D C}^{b i-a d j}=c_{a b} \tilde{c}_{\tilde{a} \tilde{b}} \Phi^{a \tilde{a}} \square \phi^{a \tilde{b}}+f_{a b c} \tilde{f}_{\tilde{a} \tilde{b} \tilde{c}} \Phi^{a \tilde{a}} \phi^{b \tilde{b}} \phi^{c \tilde{c}}
$$

- Cf. scattering equation formalism [Hodges '11; Cachazo-He-Yuan '13 '14]

BRST double copy fields and action

- Factor BRST complex (field space) into colour and kinematics:

$$
\mathfrak{g} \otimes \mathfrak{V} \otimes \mathfrak{S} \longrightarrow \mathfrak{V} \otimes \mathfrak{V} \otimes \mathfrak{S}
$$

fields				antifields		
factorisation	role	$L_{\infty} \mathrm{deg}$	dim	factorisation	L_{∞} deg	dim
$\lambda=[\mathrm{g}, \mathrm{g}] \mathrm{s}_{\times} \frac{1}{2} \lambda(x)$	ghost for ghost	-1	$\frac{d}{2}-3$	$\lambda^{+}=[\mathrm{a}, \mathrm{a}] \mathbf{s}_{x}^{+} \frac{1}{2} \lambda^{+}(x)$	4	$\frac{d}{2}+3$
$\Lambda=\left[\mathrm{g}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x} \Lambda_{\mu}(x)$	ghost	0	$\frac{d}{2}-2$	$\Lambda^{+}=\left[\mathrm{a}, \mathrm{v}^{\mu}\right] \mathbf{s}_{x}^{+} \Lambda_{\mu}^{+}$	3	$\frac{d}{2}+2$
$\gamma=[\mathrm{g}, \mathrm{n}] \mathrm{s}_{x} \gamma(x)$	NL field of Λ_{μ}	0	$\frac{d}{2}-2$	$\gamma^{+}=[\mathrm{a}, \mathrm{n}] \mathrm{s}_{x}^{+} \gamma^{+}(x)$	3	$\frac{d}{2}+2$
$B=\left[\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right] \mathrm{s}_{x} \frac{1}{2} B_{\mu \nu}(x)$	physical field	1	$\frac{d}{2}-1$	$B^{+}=\left[\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right] \mathrm{s}_{x}^{+} \frac{1}{2} B_{\mu \nu}^{+}(x)$	2	$\frac{d}{2}+1$
$\alpha=\left[\mathrm{n}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x} \alpha_{\mu}(x)$	NL field	1	$\frac{d}{2}-1$	$\alpha^{+}=\left[\mathrm{n}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x}^{+} \alpha_{\mu}^{+}(x)$	2	$\frac{d}{2}+1$
$\varepsilon=[\mathrm{g}, \mathrm{a}] \mathrm{s}_{x} \varepsilon(x)$	anti-ghost of Λ_{μ}	1	$\frac{\text { d }}{2}-1$	$\varepsilon^{+}=[\mathrm{g}, \mathrm{a}] \mathrm{s}_{x}^{+} \varepsilon^{+}(x)$	2	$\frac{d}{2}+1$
$\bar{\Lambda}=\left[\mathrm{a}, \mathrm{v}^{\mu}\right] \mathbf{s}_{x} \bar{\Lambda}_{\mu}(x)$	anti-ghost	2	- $\frac{d}{2}$	$\bar{\Lambda}^{+}=\left[\mathrm{g}, \mathrm{v}^{\mu}\right] \mathrm{s}_{x}^{+} \bar{\Lambda}_{\mu}^{+}(x)$	1	- ${ }^{2}$
$\bar{\gamma}=[\mathrm{a}, \mathrm{n}] \mathbf{s}_{x} \bar{\gamma}(x)$	NL field of $\bar{\Lambda}_{\mu}$	2	$\frac{d}{2}$	$\bar{\gamma}^{+}=[\mathrm{g}, \mathrm{n}] \mathrm{s}_{x}^{+} \bar{\gamma}^{+}(x)$	1	$\frac{d}{2}$
$\bar{\lambda}=[\mathrm{a}, \mathrm{a}] \mathrm{s}_{x} \frac{1}{2} \bar{\lambda}(x)$	anti-ghost of $\bar{\Lambda}_{\mu}$	3	$\frac{d}{2}+1$	$\bar{\lambda}^{+}=[\mathrm{g}, \mathrm{g}] \mathrm{s}_{x}^{+} \frac{1}{2} \bar{\lambda}^{+}(x)$	0	$\frac{d}{2}-1$
$X=\left(\mathrm{g}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x} X_{\mu}(x)$	ghost	0	$\frac{d}{2}-2$	$X^{+}=\left(\mathrm{a}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x}^{+} X_{\mu}^{+}(x)$	3	$\frac{d}{2}+2$
$\beta=(\mathrm{g}, \mathrm{n}) \mathrm{s}_{x} \beta(x)$	NL field of X_{μ}	0	$\frac{d}{2}-2$	$\beta^{+}=(\mathrm{a}, \mathrm{n}) \mathrm{s}_{x}^{+} \beta^{+}(x)$	3	$\frac{d}{2}+2$
$h=\left(\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right) \mathrm{s}_{\times} \frac{1}{2} h_{\mu \nu}(x)$	physical field	1	$\frac{d}{2}-1$	$h^{+}=\left(\mathrm{v}^{\mu}, \mathrm{v}^{\nu}\right) \mathrm{s}_{x}^{+} \frac{1}{2} h_{\mu \nu}^{+}(x)$	2	$\frac{d}{2}+1$
$\varpi=\left(\mathrm{n}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x} \varpi_{\mu}(x)$	NL field	1	$\frac{d}{2}-1$	$\varpi^{+}=\left(\mathrm{n}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x}^{+} \varpi_{\mu}^{+}(x)$	2	$\frac{d}{2}+1$
$\pi=(\mathrm{n}, \mathrm{n}) \mathrm{s}_{x} \frac{1}{2} \pi(x)$	NL field of ϖ_{μ}	1	$\frac{d}{2}-1$	$\pi^{+}=(\mathrm{n}, \mathrm{n}) \mathrm{s}_{x}^{+} \frac{1}{2} \pi^{+}(x)$	2	$\frac{d}{2}+1$
$\delta=(\mathrm{g}, \mathrm{a}) \mathrm{s}_{x} \delta(x)$	anti-ghost of X_{μ}	1	$\frac{d}{2}-1$	$\delta^{+}=(\mathrm{g}, \mathrm{a}) \mathrm{s}_{x}^{+} \delta^{+}(x)$	2	$\frac{d}{2}+1$
$\bar{X}=\left(\mathrm{a}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x} \bar{X}_{\mu}(x)$	anti-ghost	2	2	$\bar{X}^{+}=\left(\mathrm{g}, \mathrm{v}^{\mu}\right) \mathrm{s}_{x}^{+} \bar{X}_{\mu}(x)$	1	${ }^{2} \frac{d}{2}$
$\bar{\beta}=(\mathrm{a}, \mathrm{n}) \mathrm{s}_{x} \bar{\beta}(x)$	NL field of \bar{X}_{μ}	2	$\frac{d}{2}$	$\bar{\beta}^{+}=(\mathrm{g}, \mathrm{n}) \mathrm{s}_{x}^{+} \bar{\beta}^{+}(x)$	1	$\frac{d}{2}$

BRST Double-Copy: Fields and Action

- Double copy BRST-action uniquely determined:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{DC}}= \frac{1}{2} h_{\mu \nu} \square h^{\mu \nu}+\frac{1}{2} \varpi_{\mu} \square \varpi^{\mu}+\xi^{2}\left(\partial^{\mu} \varpi_{\mu}\right)^{2}+\frac{1}{2} \pi \square \pi \\
&-2 \xi \varpi^{\nu} \square \square^{\frac{1}{2}} \partial^{\mu} h_{\mu \nu}-2 \xi \pi \square^{\frac{1}{2}} \partial_{\mu} \varpi^{\mu}+2 \xi^{2} \pi \partial_{\mu} \partial_{\nu} h^{\mu \nu} \\
&-2 \bar{X}_{\mu} \square X^{\mu}-\delta \square \delta-2 \bar{\beta} \square \beta \\
& \operatorname{orm}\left\{\begin{array}{l}
+\frac{1}{2} B_{\mu \nu} \square B^{\mu \nu}-2 \bar{\Lambda}_{\mu} \square \Lambda^{\mu}+\alpha_{\mu} \square \alpha^{\mu}+\xi^{2}\left(\partial^{\mu} \alpha_{\mu}\right)^{2}+\varepsilon \square \varepsilon-\bar{\lambda} \square \lambda-2 \bar{\gamma} \square \gamma \\
-2 \xi \alpha^{\nu} \square \frac{1}{2} \partial^{\mu} B_{\mu \nu}-2 \xi \gamma \square^{\frac{1}{2}} \partial_{\mu} \bar{\Lambda}^{\mu}+2 \xi \bar{\gamma} \square^{\frac{1}{2}} \partial_{\mu} \Lambda^{\mu} \\
\\
-2 \xi \beta \square \frac{1}{2} \partial_{\mu} \bar{X}^{\mu}+2 \xi \bar{\beta} \square^{\frac{1}{2}} \partial_{\mu} X^{\mu}+\cdots
\end{array}\right.
\end{aligned}
$$

- Canonical field redefinition to Fierz-Pauli + Kalb-Ramond + dilaton action

$$
Q B=d \Lambda, \quad Q \Lambda=d \lambda, \quad Q \lambda=0
$$

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence (requires off-shell BRST CK duality)

$$
\begin{array}{rllc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{i \tilde{i} \tilde{k}} A^{i \tilde{z}} A^{i \tilde{j}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{\pi}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence (requires off-shell BRST CK duality)

$$
\begin{array}{rllc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} k} A^{i \tilde{\tau}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: is there some Q such that

$$
Q S_{\mathrm{DC}}^{\mathcal{N}=0}=0, \quad Q^{2}=0
$$

BRST Lagrangian Syngamy

BRST-Lagrangian CK duality \Rightarrow consistent syngamy

- No mention of CK duality - overly general?
- How do we know $S_{\mathrm{DC}}^{\mathcal{N}=0}$ is equivalent to true $S_{\mathrm{BRST}}^{\mathcal{N}=0}$?
- Semi-classical equivalence (requires off-shell BRST CK duality)

$$
\begin{array}{cccc}
F_{i j k} f_{a b c} A^{i a} A^{j b} A^{k c} & \rightarrow & F_{i j k} F_{\tilde{\imath} \tilde{j} \hat{k}} A^{i \tilde{\imath}} A^{j \tilde{J}} A^{k \tilde{k}} \\
\sum \frac{n c}{d} & \rightarrow & \sum \frac{n \tilde{n}}{d}
\end{array}
$$

- \Rightarrow physical (h, B, φ) tree-level amplitudes of $\mathcal{N}=0$ supergravity
- Cf. [Bern-Dennen-Huang-Kiermaier 1004.0693] for gravitons up to 6 points
- Quantum consistency: is there some Q such that

$$
Q S_{\mathrm{DC}}^{\mathcal{N}=0}=0, \quad Q^{2}=0
$$

Answer: double-copy operator $Q_{\text {DC }}$ (requires off-shell BRST CK duality)

BRST Lagrangian Syngamy

Double copy of BRST charge

- Double copy of BRST-action implies double copy BRST operator Q_{DC}

$$
\begin{aligned}
& Q A^{i a}=Q^{i}{ }_{j} A^{j a}+Q^{i}{ }_{j k} f^{a}{ }_{b c} A^{j b} A^{k c} \quad \tilde{Q} \tilde{A}^{\tilde{a i}}=Q^{\tilde{j}}{ }_{j} \tilde{A}^{\tilde{b} \tilde{j}}+\tilde{f}^{\tilde{a}}{ }_{b \tilde{c}} \tilde{Q}^{\tilde{i}}{ }_{j \tilde{k}} \tilde{A}^{\tilde{b} \tilde{j}} \tilde{A}^{\tilde{\tilde{k}}} \\
& Q_{\mathrm{DC}}=\underbrace{Q^{i}{ }_{j} A^{j \tilde{}}+Q^{i}{ }_{j k} F^{\tilde{i}}{ }_{j \tilde{k}} A^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{L}}+\underbrace{Q^{\tilde{\tilde{}}}{ }_{j} A^{i \tilde{j}}+F^{i}{ }_{j} Q^{\tilde{\tilde{}}}{ }_{j \tilde{k}} A^{j \tilde{j}} A^{k \tilde{k}}}_{Q_{R}}
\end{aligned}
$$

- Yang-Mills gauge \Rightarrow diffeomorphisms and 2 -form gauge symmetries:

$$
\begin{aligned}
& Q_{\mathrm{DC}}=Q_{\text {diffeo }}+Q_{2 \text {-form }}+\text { trivial symmetries } \\
& Q_{2 \text {-form }} B=\Lambda, \quad Q_{2 \text {-form }} \Lambda=\lambda \quad Q_{2 \text {-form }} \lambda=0
\end{aligned}
$$

Cf. [Anastasiou-LB-Duff-Hughes-Nagy '14]

BRST Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$ and $Q S_{B R S T}^{Y M}=0, Q^{2}=0$ can only rely on generic properties of $f^{a b c}$:

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

BRST Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$ and $Q S_{B R S T}^{Y M}=0, Q^{2}=0$ can only rely on generic properties of $f^{a b c}$:

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence

BRST Lagrangian Syngamy

All order double copy

- Since $F^{i j k}$ satisfy the same identities as $f^{a b c}$ and $Q S_{B R S T}^{Y M}=0, Q^{2}=0$ can only rely on generic properties of $f^{a b c}$:

$$
Q_{\mathrm{DC}} S_{\mathrm{DC}}=0, \quad Q_{\mathrm{DC}}^{2}=0
$$

- Semi-classical equivalence $+Q_{\mathrm{DC}} \Rightarrow$ quantum equivalence
- Double copy of symmetries generalises, e.g.

$$
\text { global susy } \times \text { gauge } \rightarrow \quad \text { local susy }
$$

- Straightforward supersymmetric completion

Generalisations

The double copy to all orders

- Given CK duality of the tree-level physical S-matrix we can run our argument:
- Non-linear sigma model [Chen-Du '13] \rightarrow special Galileon
- Orbifolding, fundamental couplings. . . [Johansson-Ochirov '14] \rightarrow plethora of supergravity theories
- Bagger-Lambert-Gustavsson [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow D=3$ maximal supergravity

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)

Super Yang-Mills and Supergravity

BRST-Lagrangian CK duality for super Yang-Mills

- Irreducible super Yang-Mills multiplets are CK duality respecting Cf. [Bjerrum-Bohr-Damgaard-Vanhove '09]
- Susy Ward identities: CK gluons + susy \Rightarrow CK gluini (Caveat: higher order operators can spoil this argument, since there are superamplitudes with vanishing all-gluon component)
- CK dual BRST-Lagrangian then follows with (essentially) no new ideas

$$
A^{\prime a}=\left(A^{i a}, \Psi^{x a}\right)=\left(A_{\mu}^{a}, \psi_{\alpha}^{a}, \text { ghosts, aux }\right)
$$

- Off-shell CK duality implies supersymmetry directly (exercise!)

$$
\begin{gathered}
S_{\mathrm{BRST}}^{\mathrm{SYM}}=\int C_{I J} C_{a b} A^{l a} \square A^{J a}+F_{I J K} f_{a b c} A^{l a} A^{J b} A^{K c} \\
\delta_{\epsilon} A^{i a}=F_{x y}^{i} \Psi^{\times a} \epsilon^{y}, \quad \delta_{\epsilon} \Psi^{\times a}=F_{j y}^{\times} A^{j a} \epsilon^{y}
\end{gathered}
$$

Super Yang-Mills and Supergravity

BRST-Lagrangian double copy

- $(\text { Type I super Yang-Mills })^{2}=$ Type IIA/B supergravity

$$
\begin{aligned}
& A^{\prime a}=\left(A_{\mu}{ }^{a}, \psi_{\alpha}{ }^{a}, \text { ghosts, aux }\right) \\
& A^{J \tilde{j}}=(h_{\mu \nu}, B_{\mu \nu}, \phi, \underbrace{\left.\Psi_{\alpha \nu}, \Psi_{\mu \beta}, F_{\alpha \beta}, \text { ghosts, aux }\right)}_{\text {gravitini }} \text { (R-R ficld }
\end{aligned}
$$

- Local NS-R sector susy follows from super Yang-Mills factors

$$
\mathcal{Q}_{\alpha} A_{\mu}{ }^{a}=\delta^{a}{ }_{b} \gamma_{\mu \alpha}{ }^{\beta} \psi_{\beta}{ }^{b}+\cdots \quad \longrightarrow \quad \mathcal{Q}_{\alpha} h_{\mu \nu}=\gamma_{(\mu \alpha}{ }^{\beta} \psi_{\beta \nu)}+\cdots
$$

- Super $\eta, \bar{\eta}$ and Nielsen-Kallosh χ ghosts

$$
\bar{c} \otimes \psi \sim \bar{\eta}, \quad c \otimes \psi \sim \eta, \quad b \otimes \psi \sim \chi
$$

- Similar for R-NS sector

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{array}{ll}
\text { IIA: } & \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
\text { IIB: } & 16 \otimes 16=10 \oplus 120 \oplus 126
\end{array}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths

Super Yang-Mills and Supergravity

Ramond-Ramond sector

- Double copy $\psi_{\alpha} \otimes \psi_{\beta}$ gives field strengths $F_{\alpha \beta}$, not potentials:
- Representation theory

$$
\begin{aligned}
& \text { IIA: } \overline{16} \otimes 16=1 \oplus 45 \oplus 210 \\
& \text { IIB: } 16 \otimes 16=10 \oplus 120 \oplus 126
\end{aligned}
$$

- The BRST transformation of the gluino has no linear contribution, $Q_{\mathrm{BRST}} \psi=[c, \psi]$, so $\psi \otimes \psi$ cannot transform as a potential
- R-R background fields couple to worldsheet through field strengths
- Type IIA/B action can be written in terms of field strengths, e.g.

$$
F_{2} \wedge \star F_{2}+\tilde{F}_{4} \wedge \star F_{4}+B_{2} \wedge \tilde{F}_{4} \wedge \tilde{F}_{4}+B_{2} \wedge B_{2} \wedge F_{2} \wedge \tilde{F}_{4}-\frac{1}{3} B_{2} \wedge B_{2} \wedge B_{2} \wedge F_{2} \wedge F_{2}
$$

Super Yang-Mills and Supergravity
Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}}=\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha}{ }^{\alpha^{\prime}} \not \partial_{\beta}{ }^{\beta^{\prime}} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \text { direct from double copy }
$$

$$
F_{\alpha \beta} \sim \sum_{\Gamma=0}^{d} \frac{1}{p!}\left(\gamma^{\left.\mu_{1} \ldots \mu_{c} c\right)} F_{\mu_{\mu}, \ldots \mu_{p}}\right\} \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots
$$

$$
\text { Aux. }(D-P-1) \text {-form } B\} \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots
$$

Undo Feynman gauge $\} \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots$

Super Yang-Mills and Supergravity

Sen's mechanism from double copy Ramond-Ramond sector

- Double copy R-R field strengths are elementary fields that correctly reproduce scattering amplitudes through their Feynman diagrams

$$
\begin{aligned}
\mathcal{L}_{\mathrm{R}-\mathrm{R}}^{\mathrm{DC}} & =\bar{F}^{\alpha \beta} \square^{-1} \not \partial_{\alpha} \alpha^{\prime} \not \partial_{\beta}^{\beta^{\prime}} F_{\alpha^{\prime} \beta^{\prime}}+\cdots \\
& \rightarrow-\frac{1}{2}\left(F \wedge \star F-\mathrm{d} F \wedge \star \square^{-1} \mathrm{~d} F\right)+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F-\frac{1}{2} B \wedge \star \square B+\cdots \\
& \rightarrow-\frac{1}{2} F \wedge \star F-\xi B \wedge \mathrm{~d} F+\frac{1}{2} \mathrm{~d} B \wedge \star \mathrm{~d} B+\cdots
\end{aligned}
$$

- Sen's mechanism [Sen '15] generalized to arbitrary (as opposed to self-dual) field strengths [BJKMSW '21]
- Sen's mechanism was motivated by IIB string field theory, where the R-R sector is naturally given in terms of bispinors - natural double copy shadow

Lecture 3: Homotopy CK Duality and Double Copy

The Homotopy Algebra of Colour-Kinematics Duality

- CK duality: kinematic algebra Hands on quantum field theory
- A: $B V_{\infty}^{\square}$ homotopy algebra Abstract mathematics [BJKMSW '22 (to appear)]

Gluons, quarks. Scattering amplitudes Symmetries of Nature

Natural generalisation of familiar Hodge-de Rham complex

- CK duality: a symmetry of Nature as a mug is a donut!

Batalin-Vilkovisky formalism

- In the case of open symmetries, BRST complex only up to e.o.m.

$$
\left.Q_{\mathrm{BRST}}^{2} \Phi\right|_{\Phi_{0}}=0
$$

- \Rightarrow extend the putative BRST complex

$$
\mathfrak{F}_{\mathrm{BV}}=T^{*}[1] \mathfrak{F}_{\mathrm{BRST}}
$$

- Fields Φ^{A} local coordinates on $\mathfrak{F}_{\text {BRST }}$, antifields Φ_{A}^{+}are fibre coordinates

Batalin-Vilkovisky formalism

- In the case of open symmetries, BRST complex only up to e.o.m.

$$
\left.Q_{\mathrm{BRST}}^{2} \Phi\right|_{\Phi_{0}}=0
$$

- \Rightarrow extend the putative BRST complex

$$
\mathfrak{F}_{\mathrm{BV}}=T^{*}[1] \mathfrak{F}_{\mathrm{BRST}}
$$

- Fields Φ^{A} local coordinates on $\mathfrak{F}_{\text {BRST }}$, antifields Φ_{A}^{+}are fibre coordinates
- Using canonical symplectic structure on $\mathfrak{F}_{\text {BV }}$ we extend $Q_{\text {BRST }}$ and $S_{\text {BRST }}$ to Q_{BV} and $S_{\mathrm{BV}}(\{-,-\}$ is degree $-1 \rightarrow$ Gerstenhaber algebra)

$$
\begin{gathered}
Q_{\mathrm{BV}}=\left\{S_{\mathrm{BV}},-\right\},\left.\quad S_{\mathrm{BVV}}\right|_{\mathfrak{F}_{\mathrm{BRST}}}=S_{\mathrm{BRST}} \quad \pi_{*} Q_{\mathrm{BV}}=Q_{\mathrm{BRST}} \\
Q_{\mathrm{BV}} S_{\mathrm{BV}}=\left\{S_{\mathrm{BV}}, S_{\mathrm{BV}}\right\}=0 \\
S_{\mathrm{BV}}\left[\phi, \phi^{+}\right]=S_{\mathrm{classical}}[\phi]+\phi_{A}^{+}\left(Q_{\mathrm{BV}} \phi\right)^{A}
\end{gathered}
$$

- Gauge-fixing fermion Ψ gives symplectomorphism

$$
\Phi \mapsto \Phi+\{\Psi, \Phi\}, \quad \Phi_{A}^{+} \mapsto \Phi_{A}^{+}+\frac{\delta}{\delta \Phi^{A}} \Psi
$$

Operads and homotopy algebras

- Operads: encode types of algebras (symmetric operad: monoid in the monoidal category of \mathbb{S}-modules)

$=$

- Powerful abstract reasoning for deducing concrete statements (e.g. Koszul duality)
- Given a chain complex with algebraic structure, can this structure be transferred to homotopy equivalent chain complexes?
- Yes, if we allow for a richer algebraic structure of higher operations:
homotopy algebras

Operads and homotopy algebras

- I will only leave the door to ∞-algebras ajar: you should push it open!
- Hossenfelder warned physicists to not get "Lost in Math", but getting lost can be fun! (And is the only way to discover something truly unexpected)

Operads and homotopy algebras

- I will only leave the door to ∞-algebras ajar: you should push it open!
- Hossenfelder warned physicists to not get "Lost in Math", but getting lost can be fun! (And is the only way to discover something truly unexpected)
- You won't be lost in the dark, there are excellent books:
'Operads in algebra, topology and physics', Martin Markl, Steve Shnider and Jim Stasheff
'Algebraic Operads’, Jean-Louis Loday and Bruno Vallette
'Algebraic Structure of String Field Theory', Martin Doubek, Branislav Jurčo, Martin Markl and Ivo Sachs

Homotopy algebras

- Informally: generalise familiar (associate, commutative, Lie...) algebras to include higher products satisfying higher relations up to homotopies

Homotopy algebras

- Informally: generalise familiar (associate, commutative, Lie...) algebras to include higher products satisfying higher relations up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras [Zwiebach '93; Hinich-Schechtman '93]:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

$$
[[x, y], z]+(-1)^{x(y+z)}[[y, z], x]+(-1)^{y(x+z)}[[x, z], y]=-[[x, y, z]]
$$

Homotopy algebras

- Informally: generalise familiar (associate, commutative, Lie...) algebras to include higher products satisfying higher relations up to homotopies
- Lie algebras $\rightarrow L_{\infty}$-algebras [Zwiebach '93; Hinich-Schechtman '93]:

Vector space	Graded vector space
$\mathfrak{g}=V_{0}$	$\mathfrak{L}=\bigoplus_{n} V_{n}$
Bracket	Higher brackets
$\mu_{2}=[-,-]$	$\mu_{1}=[-], \mu_{2}=[-,-], \mu_{3}=[-,-,-], \ldots$
Relations	Relations
Antisymmetry + Jacobi	Antisymmetry + homotopyJacobi

$$
[[x, y], z]+(-1)^{x(y+z)}[[y, z], x]+(-1)^{y(x+z)}[[x, z], y]=-[[x, y, z]]
$$

- Associative algebras $\rightarrow A_{\infty}$-algebras [Stasheff '63]
- Commutative algebras $\rightarrow C_{\infty}$-algebras [Kadeishvili '88]
- $B V$ algebras $\rightarrow B V_{\infty}$-algebras [Galvez-Carrillo-Tonks-Vallette '09]
- Lie algebras $\rightarrow E L_{\infty}$-algebras [LB-Kim-Saemann '21]

Homotopy Maurer-Cartan theory

- Inner product $\langle-,-\rangle: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ on dgLa (\mathfrak{g}, d) :

$$
\langle x, d y\rangle=(-)^{1+x+y+x y}\langle y, d x\rangle, \quad\langle x,[y, z]\rangle=(-)^{z(x+y)}\langle z,[x, y]\rangle
$$

- Cyclic structure $\langle-,-\rangle: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathbb{R}$ on L_{∞}-algebra $\left(\mathfrak{L}, \mu_{i}\right)$:

$$
\left\langle x_{1}, \mu_{i}\left(x_{2}, \ldots x_{i+1}\right)\right\rangle=(-)^{i+i\left(x_{1}+x_{i+1}\right)+x_{i+1} \sum_{j=1}^{i} x_{j}}\left\langle x_{i+1}, \mu_{i}\left(x_{1}, \ldots x_{i}\right)\right\rangle
$$

Homotopy Maurer-Cartan theory

- Inner product $\langle-,-\rangle: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ on dgLa (\mathfrak{g}, d) :

$$
\langle x, d y\rangle=(-)^{1+x+y+x y}\langle y, d x\rangle, \quad\langle x,[y, z]\rangle=(-)^{z(x+y)}\langle z,[x, y]\rangle
$$

- Cyclic structure $\langle-,-\rangle: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathbb{R}$ on L_{∞}-algebra $\left(\mathfrak{L}, \mu_{i}\right)$:

$$
\left\langle x_{1}, \mu_{i}\left(x_{2}, \ldots x_{i+1}\right)\right\rangle=(-)^{i+i\left(x_{1}+x_{i+1}\right)+x_{i+1} \sum_{j=1}^{j} x_{j}}\left\langle x_{i+1}, \mu_{i}\left(x_{1}, \ldots x_{i}\right)\right\rangle
$$

- (Homotopy) Maurer-Cartan element $a \in \mathfrak{g}(a \in \mathfrak{L})$ from (h) MC-action:

$$
\begin{gather*}
f_{a}=d a+\frac{1}{2}[a, a]=0, \quad S_{\mathrm{MC}}=\frac{1}{2}\langle a, d a\rangle+\frac{1}{3!}\langle a,[a, a]\rangle \\
F_{a}=\sum_{k} \frac{1}{k!} \mu_{k}(a, a, \ldots, a)=0, \quad S_{\mathrm{hMC}}=\sum_{k} \frac{1}{(k+1)!}\left\langle a, \mu_{k}(a, a, .\right. \tag{a}
\end{gather*}
$$

- Covariant derivative, Bianchi identity and gauge transformations:

$$
D_{\mathrm{a}} x=\sum_{k} \frac{(-1)^{k}}{k!} \mu_{k+1}(x, a, \ldots, a), \quad D_{\mathrm{a}} F_{a}=0, \quad \delta_{c} a=D_{a} c
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Chevalley-Eilenberg formulation of Lie algebra \mathfrak{g} with basis t_{a} :

$$
\begin{gathered}
\mathrm{CE}(\mathfrak{g})=\bar{T}\left(\mathfrak{g}[1]^{*}\right):=\bigoplus_{p=1}^{\infty} \operatorname{Sym}^{p}\left(\mathfrak{g}[1]^{*}\right) \\
Q t^{a}=-\frac{1}{2} f^{a}{ }_{b c} t^{b} t^{c}, \quad Q^{2}=0 \Leftrightarrow \mathrm{Jacobi}
\end{gathered}
$$

- Chevalley-Eilenberg formulation of L_{∞}-algebra \mathfrak{L} with basis t_{a} :

$$
\begin{gathered}
\operatorname{CE}(\mathfrak{L})=\bar{T}\left(\mathfrak{L}[1]^{*}\right) \\
Q t^{a}=-\sum_{n} \frac{1}{n!} \mu_{n}{ }^{a}{ }_{a_{1} \cdots a_{n}} t^{a_{1}} \cdots t^{a_{n}}, \quad Q^{2}=0 \Leftrightarrow \text { homotopy Jacobi }
\end{gathered}
$$

- Any BV field theory with $Q_{B V}$ corresponds to a cyclic L_{∞}-algebra in the CE picture, see e.g. [Jurčo-Raspollini-Saemann-Wolf '18]

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& & & \xrightarrow{\text { Id }} & \bar{C} & & \\
& \bar{c}^{+} & \xrightarrow{\text {-Id }} & b^{+} & &
\end{array}
$$

- Define 'superfield' \mathcal{A} as degree 1 element in $\left(\mathfrak{L}^{\mathrm{YM}}[1]\right)^{*} \otimes \mathfrak{L}^{\mathrm{YM}}$

$$
S_{\mathrm{BV}}^{\mathrm{YM}}\left[\phi, \phi^{+}\right]=S_{\mathrm{hMC}}[\mathcal{A}]
$$

Homotopy Algebras and BV Lagrangian Field Theories

- Yang-Mills theory $\mathfrak{L}^{\mathrm{YM}}$

$$
\begin{array}{ccccccc}
\mathfrak{L}_{0}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{1}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{2}^{\mathrm{YM}} & \oplus & \mathfrak{L}_{3}^{\mathrm{YM}} \\
c & \xrightarrow{d} & A & \xrightarrow{d^{\dagger} d} & A^{+} & \xrightarrow{d^{\dagger}} & c^{+} \\
& & & \xrightarrow{\text { Id }} & \bar{C} & & \\
& & \bar{c}^{+} & \xrightarrow{- \text { Id }} & b^{+} & &
\end{array}
$$

- Define 'superfield' \mathcal{A} as degree 1 element in $\left(\mathfrak{L}^{\mathrm{YM}}[1]\right)^{*} \otimes \mathfrak{L}^{\mathrm{YM}}$

$$
S_{\mathrm{BV}}^{\mathrm{YM}}\left[\phi, \phi^{+}\right]=S_{\mathrm{hMC}}[\mathcal{A}]
$$

- L_{∞} quasi-isomorphisms \longrightarrow physical equivalence (field redefinitions etc)
- Strictification: $\mu_{i}=0, i>2 \rightarrow$ cubic theory
- Minimal model: $\mu_{1}=0 \rightarrow$ tree scattering amplitudes

See [Jurčo-Raspollini-Saemann-Wolf '18; Jurčo-Macrelli-Saemann-Wolf '19]

Factorisation of Yang-Mills

- $\mathfrak{L}^{Y M}$ factorises [BJKMSW '21]

$$
\underbrace{\mathfrak{L}^{\mathrm{YM}}=\underbrace{\mathfrak{c o l o u r}}_{L_{\infty}} \otimes \underbrace{\mathfrak{k i n e m a t i c s}^{\mathfrak{k i n}_{\tau} \underbrace{\mathfrak{G c a l a r}}_{A_{\infty}}}}_{C_{\infty}}}
$$

- colour: gauge group Lie algebra
- kinematics: graded vector space of Poincaré representations of fields

$$
\begin{array}{cccccc}
\mathbb{R}[-1] & \oplus & \left(\mathbb{R}^{d} \oplus \mathbb{R}\right) & \oplus & \mathbb{R}[1] & \oplus
\end{array} \text { Auxiliaries }
$$

- $\mathfrak{s c a l a r}$: A_{∞}-algebra of a scalar field theory

$$
\langle-,-\rangle_{\mathrm{YM}}=\langle-,-\rangle_{\mathfrak{c o l o u r}}\langle-,-\rangle_{\mathfrak{E i n e m a t i c s}}\langle-,-\rangle_{\mathfrak{s c a l a r}}
$$

- Double copy:
$\mathfrak{c o l o u r} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r} \longrightarrow \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r}$

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Remarkable proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra:

1. There is a degree -1 unary map h on Zeitlin-Costello complex $\mathfrak{Z C}$

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

2. There is a $B V V_{\infty}$-algebra on $\mathfrak{Z C}$ that deforms the $B V_{\infty}$-algebras
3. Every such h is second order (in the graded sense) up to homotopy
4. Minimal model and strictification then implies CK duality of physics tree-level S-matrix

Homotopy algebra of CK duality

Michel Reiterer [1912.03110]

- Remarkable proof of on-shell tree-level CK duality for physical gluons via $B V_{\infty}^{\square}$-algebra:

1. There is a degree -1 unary map h on Zeitlin-Costello complex $\mathfrak{Z C}$

$$
h^{2}=0, \quad d h+h d=\square \quad \text { (plus some other conditions) }
$$

2. There is a $B V V_{\infty}$-algebra on $\mathfrak{Z C}$ that deforms the $B V_{\infty}$-algebras
3. Every such h is second order (in the graded sense) up to homotopy
4. Minimal model and strictification then implies CK duality of physics tree-level S-matrix

- Very special: only $D=4$ and strictly tree-level
- A little mysterious, e.g. requires a seven term identity
$\Delta^{2} \square=\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \Delta \square)-\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \mathrm{id} \otimes \square)$
- Reiterer is right, but let's make him righter!

Homotopy algebra of CK duality

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra (cf. [Getzler '93])

$$
\mathfrak{L}_{\mathrm{CK}}^{\mathrm{YM}}=\mathfrak{g} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r} \equiv \mathfrak{g} \otimes \mathfrak{K i n}
$$

Homotopy algebra of CK duality

- BRST-Lagrangian CK duality $\Leftrightarrow B V^{\square}$-algebra (cf. [Getzler '93])

$$
\mathfrak{L}_{\mathrm{CK}}^{\mathrm{YM}}=\mathfrak{g} \otimes \mathfrak{k i n e m a t i c s} \otimes_{\tau} \mathfrak{s c a l a r} \equiv \mathfrak{g} \otimes \mathfrak{K i n}
$$

- A $B V^{\square}$-algebra $(V, d,-\cdot-,[-,-], h)$ is a graded \mathfrak{H}-module V equipped with two \mathfrak{H}-linear unary operators $d, h: V \rightarrow V$ of degrees 1 and -1 , respectively, and two \mathfrak{H}-linear binary operators $-\cdot-,[-,-]: V \otimes_{K} V \rightarrow V$ (where $V \otimes_{k} V$ has been given the canonical \mathfrak{H}-module structure using the Hopf coproduct) of degrees 0 and -1 , respectively, such that

$$
\begin{aligned}
& d^{2}=0, \quad h^{2}=0, \quad d h+h d=\square \\
& d(x \cdot y)-d x \cdot y-(-1)^{x} x \cdot d y=0 \\
& h(x \cdot y)-h x \cdot y-(-1)^{x} x \cdot h y=[x, y] \\
& d[x, y]-[d x, y]-(-1)^{x}[x, d y]=\square(x \cdot y)-\square x \cdot y-x \cdot \square y
\end{aligned}
$$

and h is second order, \mathfrak{H} is a cocommutative Hopf algebra with central element \square compatible with a Hodge-twisted Hopf algebra [BJKMSW (to appear)]

Homotopy algebra of CK duality

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged: $B V_{\infty}^{\square}$

Homotopy algebra of CK duality

- The homotopy $B V^{\square}$-algebra depends on the ambient category
- In the usual category of chain complexes d is privileged: $B V_{\infty}^{\square}$
- Cat(Hodge): symmetric monoidal category of Hodge complexes (modules over Hodge-twisted Hopf algebras with central element \square)
$\Delta^{2} \square=\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \Delta \square)-\left(\mathrm{id}+\sigma_{(123)}+\sigma_{(123)}^{2}\right)(\mathrm{id} \otimes \mathrm{id} \otimes \square)$
- Then d and h are a part of the ambient structure
- Koszul res. in Cat(Hodge) is a $B V_{H \infty}^{\square}$-algebra: the algebra of CK duality
- $B V^{\square} \rightarrow B V_{H \infty}^{\square}$-algebra: integrating out auxiliary fields

Homotopy algebra of CK duality
Higher products:
$m_{n}^{0}\left(x_{1}, \ldots x_{n}\right) \quad$ Colour-stripped vertices of gauge-fixed action
$m_{p, q}^{0}\left(x_{1}, \ldots x_{n}\right)$ Tolotti-Weinzerl corrections for tree on-shell CK duality $m_{p, q, r}^{0}\left(x_{1}, \ldots x_{n}\right)$ Field red. vertices correcting for off-shell CK duality

Axioms (homotopy 'Jacobi' relations) \Rightarrow off-shell CK duality

$$
[[x, y], z] \pm[[y, z], x] \pm[[z, x], y]=\left(\square_{x y}+\square_{y z}+\square_{x z}\right) m_{1,2}^{0}(x, y, z)
$$

Purely tree-level calculations and one identity at any order:
$\sum_{p+q=n+2} n$-point tree with two internal (p-ary and q-ary) vertices $=n$-point tree with one internal (n-ary) vertex

Where next?

- AdS background [Zhou '21; Diwakar-Herderschee-Roiban-Teng '21 ...] \rightarrow Hopf algebra of universal enveloping algebra of AdS isometries
- Bagger-Lambert-Gustavsson CK duality [Bargheer-He-McLoughlin '12; Huang-Johansson '12] $\rightarrow m$-ary $B V^{\square}$ operads
- Matter coupling [Johansson-Ochirov '14] \rightarrow many-sorted $B V^{\square}$ operads
- String theory (modular envelope over) $B V_{\infty}^{L_{0}}$

$$
\{d, h\}=\square \quad \longrightarrow \quad\left\{Q, b_{0}\right\}=L_{0}
$$

Cf. $B V_{\infty}$ structure on TVOA [Galvez-Carrillo-Tonks-Vallette '09] lifting the $B V$-algebra structure on the BRST (co)homology [Lian-Zuckerman '93]

Thanks for listening

