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Almost Riemannian structures are generalized Riemannian structures that
include the Grushin plane for which a (generalized) orthonormal frame is
given by

X1 =

(

1
0

)

, X2 =

(

0
x

)

, (x, y) ∈ R
2

y

X1

X2

x

On R2 \ {x = 0} we have g =

(

1 0
0 1

x2

)

, dA = 1
|x|

dx dy, K = − 2
x2



origin of 2-ARS

context of Hypoelliptic operators:

Baouendi, ’67, Grushin ’70, Franchi-Lanconelli ’84
(∆̃ = ∂2

x + x2∂2

y).

example of rank varying sub-Riemannian stuctures

Gromov, Bellaiche, ’96.

context of optimal control:

control of three level quantum system (2006, Charlot,
Chambrion, U.B.)
orbital transfer in space mechanics (2009, Bonnard, Caillau
et al.)



plan of the 3 lectures

definition of 2D-Almost Riemannian Manifold

normal forms

properties of the singular set

geodesics

a Gauss-Bonnet theorem

heat and Schroedinger evolution for the Laplace-Beltrami operator

∆(·) = div(grad(·))

We restrict to dimension 2 (it is already rich enough). Some results can be
extended to higher dimension

I will follow the Chapter 9 of

[1] A. Agrachev, D. Barilari, and U. Boscain. A Comprehensive
Introduction to sub-Riemannian Geometry, volume 181 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2020.



Definition of a 2D Riemannian manifold

2D-Riemannian Manifold (M, g)

M 2D-differentiable manifold

gq is a positive definite, symmetric, bilinear form on TqM ,
q → gq is smooth

→ ‖v‖ :=
√

gq(v, v), gq(v, w) = ‖v‖‖w‖ cos(θ), v, w ∈ TqM

→ Given γ : [0, T ] → M , A.C., one defines ℓ(γ) =
∫ T

0

√

gγ(t)(γ̇, γ̇)dt

→ Distance between two points

d(q0, q1) = inf{ℓ(γ)| γ(0) = q0, γ(T ) = q1} ⇒ Metric Structure

(compatible with the topological structure of M)



In Riemannian geometry, the problem of finding the distance

between two points can be locally written as an Optimal Control

Problem:

X1(q), X2(q) local orthonormal moving frame i.e.

g(X1, X1) = 1, g(X1, X2) = 0, g(X2, X2) = 1.







γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)), γ(0) = q0, γ(T ) = q1

min
∫ T

0
‖γ̇(t)‖dt = min

∫ T

0

√

g(γ̇(t), γ̇(t))dt = min
∫ T

0

√

u1(t)2 + u2(t)2dt

observ. 1: X1 and X2 are always linearly independent
observ. 2: this construction is global only if M is parallelizable (the only
compact orientable is the torus)



2D almost-Riemannian structure

Definition

A 2-ARS is the generalized Riemannian structure obtained locally by
declaring that a pair of smooth vector fields X1, X2 which:

can become collinear

but satisfy the Hörmander (or Lie Bracket generating) condition

∀ q dim(span
q
{X1, X2, [X1, X2], [X1, [X1, X2]] . . .} = 2

is an orthonormal frame.

where X1 and X2 are linearly independent, they define a Riemannian
metric

on the set Z where X1 and X2 are parallel we are not Riemannian
(we will see that g, dA, K explodes on Z)



However

d(q0, q1) = inf{
∫ T

0

√

u1(t)2 + u2(t)2dt | γ̇ = u1(t)X1 + u2(t)X2,
γ(0) = q0, γ(T ) = q1}

is well-defined and continuous and gives to M a structure of metric space
compatible with its original topological structure.

This is essentially the Chow theorem (which states that Hormander
condition implies finiteness and continuity of the distance)

→notice that now γ̇ = u1(t)X1 + u2(t)X2, is no longer a definition of u1(t)
and u2(t) but it is a constraint on the dynamics.



The globalization can be made in different equivalent
ways:

by writing compatibility conditions between charts
{

Y1(q) = cos(θ)X1(q) + sin(θ)X2(q),
Y2(q) = − sin(θ)X1(q) + cos(θ)X2(q).

defining a 2-ARS as an Euclidean bundle

Definition

Let M be a 2D connected smooth manifold. A 2D-almost-Riemannian

structure on M is a pair (U, f) where

U is an Euclidean bundle over M of rank 2. We denote each
fiber by Uq, the scalar product on Uq by (·|·)q.
f : U → TM is a smooth map that is a morphism of vector
bundles i.e. f(Uq) ⊆ TqM i.e. the following diagram is
commutative U

πU
!!❉

❉

❉

❉

❉

❉

❉

❉

f
// TM

π

��

M

(1)

and f is linear on fibers.
N = {f(σ) | σ : M → U smooth section}, is a bracket-generating
family of vector fields.



Definition

An orthonormal frame for the 2D almost-Riemannian structure on Ω is the
pair of vector fields {F1, F2} := {f ◦ σ1, f ◦ σ2} where {σ1, σ2} is an
orthonormal frame for (· | ·)q on a local trivialization Ω×R2 of U.

On a local trivialization Ω×R2, the map f can be written as
f(q, u) = u1F1(q) + u2F2(q).



Free structures

→If the structure is defined by a single pair of smooth vector fields we say
that the structure is “free” (free structures are particularly interesting).

→Recall that zeros of vector fields are related to the topology of the
manifold e.g. if M is compact orientable, the Riemannian metric defined by
two globally defined vector fields is always singular (excepted for the torus)

singular set (contains all the zeros)

velocities with modulus 1

X2
X1

X2

X1

X2

X1



Example 1: the Grushin plane

The Grushin plane that is the generalized Riemannian structure on the
plane for which an orthonormal frame is given by

X1 =

(

1
0

)

, X2 =

(

0
x

)

, (x, y) ∈ R
2

y

X1

X2

x

On R2 \ {x = 0} we have g =

(

1 0
0 1

x2

)

, dA = 1
|x|

dx dy, K = − 2
x2



Example 2: The Quantum Sphere

M = S2, X =





−y
x
0



 , Y =





0
−x3

y



 , (2)

Integral Curves of YIntegral Curves of X

x
1

x
2

x
3

x
3

x
2

x
1 x

1

x
2

x
3

It is called the quantum sphere because this problem describes a controlled
3 level quantum problem (STIRAP process)



Let us recall some definitions and notations

The distribution is defined as N(q) = {X(q) | X ∈ N} = f(Uq) ⊆ TqM .

The step of the structure at q ∈ M is the minimal s ∈ N, s ≥ 1 such
that Ns(q) = TqM , where N1 := N, Ni+1 := Ni + [N1,Ni], for i ≥ 1.

The (almost-Riemannian) norm of a vector v ∈ Nq is

‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}.

→example



An admissible curve is a Lipschitz curve γ : [0, T ] → M such that
there exists a measurable and essentially bounded function
u : [0, T ] ∋ t 7→ u(t) ∈ Uγ(t), called control function, such that
γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ].

→example

The minimal control of an admissible curve γ is

u∗(t) := argmin{|u|, u ∈ Uγ(t) s.t. γ̇(t) = f(γ(t), u)}

(for all t differentiability point of γ).

→The minimal control is measurable.

The (almost-Riemannian) length of an admissible curve γ : [0, T ] → M
is

ℓ(γ) :=

∫ T

0

‖γ̇(t)‖dt =

∫ T

0

|u∗(t)|dt.

The (almost-Riemannian) distance between two points q0, q1 ∈ M is

d(q0, q1) = inf{ℓ(γ) | γ : [0, T ] → M admissible, γ(0) = q0, γ(T ) = q1}. (3)

is well-defined and continuous and gives to M a structure of metric space
compatible with its original topological structure.



Some properties of length minimizers (local)

Existence. As a corollay of the Filippov theorem one has:

Theorem

Let q0 ∈ M . There exists ε > 0 such that for every q1 ∈ Bq0(ε) there exists
a length minimizing curve joining q0 to q1.

→this is as in Riemannian geometry. However even for ε small, the
minimizer could be not unique.

Geodesics. Cannot be computed as in the Riemannian case with

q̈i + Γi
jk q̇

j q̇k = 0

because this equation needs as initial condition qi(0) and q̇i(0), but the
q̇i(0) are not all independent



Minimizers are computed with the Pontryagin
Maximum Principle

Consider the problem

q̇ = u1(t)X1(q) + u2(t)X2(q)
∫ T

0

√

u1(t)2 + u2(t)2 dt → min

q(0) ∈ S , q(T ) ∈ T

( S , and T zero or 1-dimensional manifolds)

If (q(·), u(·)) is a minimizer defined on [0, T ] and parameterized by constant
velocity, then there exists a Lipschitz covector p(·) such that one or both
the following conditions are satisfied:

ABN 〈p(t),Xi(q(t)〉 ≡ 0, i = 1, 2, p(0) 6= 0

NOR ui(t) = 〈p(t),Xi(q(t)〉 i = 1, 2, and q(·) and p(·) are solution to the
Hamiltonian system corresponding to

H =
1

2
(〈p(t),X1(q(t)〉

2 + 〈p(t),X2(q(t)〉
2)

Moreover 〈p(0), Tq(0)S〉 = 0 and 〈p(T ), Tq(T )T 〉 = 0
→H = 1/2 when trajectories are parameterized by arclength.
→small pieces of normals are minimizers



Theorem

For every q0 there exists a system of coordinates and a local orthonormal
frame around q0 such that

X1 =

(

1
0

)

, X2 =

(

0
f(x1, x2)

)

Moreover integral curves of X1 are normal Pontryagin extremals

→Proof



Since
[(

1
0

)

,

(

0
f(x1, x2)

)]

=

(

0
∂1f(x1, x2)

)

we have thatin (0, 0) the structure is:

step 1 if f(0, 0) 6= 0

step 2 if f(0, 0) = 0 and ∂1f(0, 0) 6= 0

etc..

If the step is s at q then there exists U(q) such that for every q̄ ∈ U(q) we
have that the step in q̄ is ≤ than the step in q.

We are going to specify the normal forms at the different type of points



How big is the singular set ?

Theorem

Let µ be a smooth volume on M (not the Riemannian one!!!). Then Z has
zero µ-volume

→Proof.

As a consequence 2-ARS are Riemannian in an open and dense subset of M .



Basic properties of the singular set 2

→Under generic conditions (when M is compact, for all systems in an open and

dense subset of all 2D-ARS in the C∞ topology)

the singular set Z is a 1-dimensional embedded submanifold

There are three type of points (here N(q) = Span(X1, X2)):

Riemannian points where X1, X2 are linearly independent,
Grushin points where N(q) is 1-dimensional and
dim(N(q) + [N,N](q)) = 2

(in this case N(q) is transversal to Z)
tangency points where dim(N(q) + [N,N](q)) = 1 and the
missing direction is obtained with one more bracket.
(N(q) is tangent to Z and these points are isolated)

Tangencyspan(X1,X2)

Z

Grushin

In a compact manifold Z is a set of non-intersecting circles



Basic properties of the singular set 3

There are sets of finite diameter and infinite area (w.r.t. the intrinsic
distance and area)

Theorem

Let Ω be a bounded open set such that Ω ∩ Z 6= ∅. Then

diam(Ω) ≤ ∞ and

∫

Ω\Z

dA = ∞

Example on the Grushin Plane

X1

X2

x

y

dA = 1

|x|dx dy


