Diffusion in almost-Riemannian geometry

Ugo Boscain (CNRS, LJLL, Sorbonne Université, Paris)

January 18, 2022

Almost Riemannian structures are generalized Riemannian structures that include the Grushin plane for which a (generalized) orthonormal frame is given by

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{x}, \quad(x, y) \in \mathbf{R}^{2}
$$

On $\mathbf{R}^{2} \backslash\{x=0\}$ we have $g=\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{x^{2}}\end{array}\right), d A=\frac{1}{|x|} d x d y, \quad K=-\frac{2}{x^{2}}$

origin of 2-ARS

■ context of Hypoelliptic operators:
■ Baouendi, '67, Grushin '70, Franchi-Lanconelli '84

$$
\left(\tilde{\Delta}=\partial_{x}^{2}+x^{2} \partial_{y}^{2}\right)
$$

■ example of rank varying sub-Riemannian stuctures
■ Gromov, Bellaiche, '96.

- context of optimal control:

■ control of three level quantum system (2006, Charlot, Chambrion, U.B.)

- orbital transfer in space mechanics (2009, Bonnard, Caillau et al.)

plan of the 3 lectures

■ definition of 2D-Almost Riemannian Manifold

- normal forms
- properties of the singular set
- geodesics
- a Gauss-Bonnet theorem

■ heat and Schroedinger evolution for the Laplace-Beltrami operator

$$
\Delta(\cdot)=\operatorname{div}(\operatorname{grad}(\cdot))
$$

We restrict to dimension 2 (it is already rich enough). Some results can be extended to higher dimension

I will follow the Chapter 9 of
[1] A. Agrachev, D. Barilari, and U. Boscain. A Comprehensive Introduction to sub-Riemannian Geometry, volume 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2020.

Definition of a 2D Riemannian manifold

2D-Riemannian Manifold (M, g)

- M 2D-differentiable manifold

■ g_{q} is a positive definite, symmetric, bilinear form on $T_{q} M$, $q \rightarrow g_{q}$ is smooth
$\rightarrow\|v\|:=\sqrt{g_{q}(v, v)}, \quad g_{q}(v, w)=\|v\|\|w\| \cos (\theta), \quad v, w \in T_{q} M$
\rightarrow Given $\gamma:[0, T] \rightarrow M$, A.C., one defines $\ell(\gamma)=\int_{0}^{T} \sqrt{g_{\gamma(t)}(\dot{\gamma}, \dot{\gamma})} d t$
\rightarrow Distance between two points
$d\left(q_{0}, q_{1}\right)=\inf \left\{\ell(\gamma) \mid \gamma(0)=q_{0}, \gamma(T)=q_{1}\right\} \Rightarrow$ Metric Structure (compatible with the topological structure of M)

In Riemannian geometry, the problem of finding the distance between two points can be locally written as an Optimal Control Problem:
$X_{1}(q), X_{2}(q)$ local orthonormal moving frame i.e.

$$
g\left(X_{1}, X_{1}\right)=1, g\left(X_{1}, X_{2}\right)=0, \quad g\left(X_{2}, X_{2}\right)=1 .
$$

$$
\left\{\begin{array}{l}
\dot{\gamma}(t)=u_{1}(t) X_{1}(\gamma(t))+u_{2}(t) X_{2}(\gamma(t)), \quad \gamma(0)=q_{0}, \quad \gamma(T)=q_{1} \\
\min \int_{0}^{T}\|\dot{\gamma}(t)\| d t=\min \int_{0}^{T} \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} d t=\min \int_{0}^{T} \sqrt{u_{1}(t)^{2}+u_{2}(t)^{2}} d t
\end{array}\right.
$$

observ. 1: X_{1} and X_{2} are always linearly independent
observ. 2: this construction is global only if M is parallelizable (the only compact orientable is the torus)

2D almost-Riemannian structure

Definition

A 2-ARS is the generalized Riemannian structure obtained locally by declaring that a pair of smooth vector fields X_{1}, X_{2} which:

- can become collinear

■ but satisfy the Hörmander (or Lie Bracket generating) condition

$$
\forall q \operatorname{dim}\left(\operatorname{span}_{q}\left\{X_{1}, X_{2},\left[X_{1}, X_{2}\right],\left[X_{1},\left[X_{1}, X_{2}\right]\right] \ldots\right\}=2\right.
$$

is an orthonormal frame.

■ where X_{1} and X_{2} are linearly independent, they define a Riemannian metric

■ on the set \mathcal{Z} where X_{1} and X_{2} are parallel we are not Riemannian (we will see that $g, d A, K$ explodes on \mathcal{Z})

However

$$
\begin{aligned}
d\left(q_{0}, q_{1}\right)=\inf \left\{\int_{0}^{T} \sqrt{u_{1}(t)^{2}+u_{2}(t)^{2}} d t \mid\right. & \dot{\gamma}=u_{1}(t) X_{1}+u_{2}(t) X_{2} \\
& \left.\gamma(0)=q_{0}, \gamma(T)=q_{1}\right\}
\end{aligned}
$$

is well-defined and continuous and gives to M a structure of metric space compatible with its original topological structure.

This is essentially the Chow theorem (which states that Hormander condition implies finiteness and continuity of the distance)
\rightarrow notice that now $\dot{\gamma}=u_{1}(t) X_{1}+u_{2}(t) X_{2}$, is no longer a definition of $u_{1}(t)$ and $u_{2}(t)$ but it is a constraint on the dynamics.

The globalization can be made in different equivalent

ways:

■ by writing compatibility conditions between charts

$$
\left\{\begin{array}{l}
Y_{1}(q)=\cos (\theta) X_{1}(q)+\sin (\theta) X_{2}(q) \\
Y_{2}(q)=-\sin (\theta) X_{1}(q)+\cos (\theta) X_{2}(q)
\end{array}\right.
$$

■ defining a 2 -ARS as an Euclidean bundle

Definition

Let M be a 2D connected smooth manifold. A 2D-almost-Riemannian structure on M is a pair (\mathbf{U}, f) where
$■ \mathbf{U}$ is an Euclidean bundle over M of rank 2. We denote each fiber by U_{q}, the scalar product on U_{q} by $(\cdot \mid \cdot) q$.
■ $f: \mathbf{U} \rightarrow T M$ is a smooth map that is a morphism of vector bundles i.e. $f\left(U_{q}\right) \subseteq T_{q} M$ i.e. the following diagram is commutative

and f is linear on fibers.
■ $\boldsymbol{\Delta}=\{f(\sigma) \mid \sigma: M \rightarrow \mathbf{U}$ smooth section $\}$, is a bracket-generating family of vector fields.

Definition

An orthonormal frame for the 2D almost-Riemannian structure on Ω is the pair of vector fields $\left\{F_{1}, F_{2}\right\}:=\left\{f \circ \sigma_{1}, f \circ \sigma_{2}\right\}$ where $\left\{\sigma_{1}, \sigma_{2}\right\}$ is an orthonormal frame for $(\cdot \mid \cdot)_{q}$ on a local trivialization $\Omega \times \mathbf{R}^{2}$ of \mathbf{U}.

On a local trivialization $\Omega \times \mathbf{R}^{2}$, the map f can be written as $f(q, u)=u_{1} F_{1}(q)+u_{2} F_{2}(q)$.

Free structures

\rightarrow If the structure is defined by a single pair of smooth vector fields we say that the structure is "free" (free structures are particularly interesting).
\rightarrow Recall that zeros of vector fields are related to the topology of the manifold e.g. if M is compact orientable, the Riemannian metric defined by two globally defined vector fields is always singular (excepted for the torus)

velocities with modulus 1

Example 1: the Grushin plane

The Grushin plane that is the generalized Riemannian structure on the plane for which an orthonormal frame is given by

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{x}, \quad(x, y) \in \mathbf{R}^{2}
$$

On $\mathbf{R}^{2} \backslash\{x=0\}$ we have $g=\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{x^{2}}\end{array}\right), d A=\frac{1}{|x|} d x d y, \quad K=-\frac{2}{x^{2}}$

Example 2: The Quantum Sphere

$$
M=S^{2}, \quad X=\left(\begin{array}{c}
-y \tag{2}\\
x \\
0
\end{array}\right), \quad Y=\left(\begin{array}{c}
0 \\
-x_{3} \\
y
\end{array}\right),
$$

Integral Curves of X

Integral Curves of Y

It is called the quantum sphere because this problem describes a controlled 3 level quantum problem (STIRAP process)

Let us recall some definitions and notations

- The distribution is defined as $\mathbf{\Delta}(q)=\{X(q) \mid X \in \mathbf{\Delta}\}=f\left(U_{q}\right) \subseteq T_{q} M$.

■ The step of the structure at $q \in M$ is the minimal $s \in \mathbf{N}, s \geq 1$ such that $\mathbf{\Delta}_{s}(q)=T_{q} M$, where $\mathbf{\Delta}_{1}:=\mathbf{\Delta}, \mathbf{\Delta}_{i+1}:=\mathbf{\Delta}_{i}+\left[\mathbf{\Delta}_{1}, \mathbf{\Delta}_{i}\right]$, for $i \geq 1$.

- The (almost-Riemannian) norm of a vector $v \in \boldsymbol{\Delta}_{q}$ is

$$
\|v\|:=\min \left\{|u|, u \in U_{q} \quad \text { s.t. } \quad v=f(q, u)\right\}
$$

\rightarrow example

■ An admissible curve is a Lipschitz curve $\gamma:[0, T] \rightarrow M$ such that there exists a measurable and essentially bounded function $u:[0, T] \ni t \mapsto u(t) \in U_{\gamma(t)}$, called control function, such that $\dot{\gamma}(t)=f(\gamma(t), u(t))$, for a.e. $t \in[0, T]$.
\rightarrow example

- The minimal control of an admissible curve γ is

$$
u^{*}(t):=\operatorname{argmin}\left\{|u|, u \in U_{\gamma(t)} \text { s.t. } \dot{\gamma}(t)=f(\gamma(t), u)\right\}
$$

(for all t differentiability point of γ).
\rightarrow The minimal control is measurable.

- The (almost-Riemannian) length of an admissible curve $\gamma:[0, T] \rightarrow M$ is

$$
\ell(\gamma):=\int_{0}^{T}\|\dot{\gamma}(t)\| d t=\int_{0}^{T}\left|u^{*}(t)\right| d t
$$

- The (almost-Riemannian) distance between two points $q_{0}, q_{1} \in M$ is

$$
\begin{equation*}
d\left(q_{0}, q_{1}\right)=\inf \left\{\ell(\gamma) \mid \gamma:[0, T] \rightarrow M \text { admissible, } \gamma(0)=q_{0}, \gamma(T)=q_{1}\right\} \tag{3}
\end{equation*}
$$

is well-defined and continuous and gives to M a structure of metric space compatible with its original topological structure.

Some properties of length minimizers (local)

Existence. As a corollay of the Filippov theorem one has:

Theorem

Let $q_{0} \in M$. There exists $\varepsilon>0$ such that for every $q_{1} \in B_{q_{0}}(\varepsilon)$ there exists a length minimizing curve joining q_{0} to q_{1}.
\rightarrow this is as in Riemannian geometry. However even for ε small, the minimizer could be not unique.

Geodesics. Cannot be computed as in the Riemannian case with

$$
\ddot{q}^{i}+\Gamma_{j k}^{i} \dot{q}^{j} \dot{q}^{k}=0
$$

because this equation needs as initial condition $q^{i}(0)$ and $\dot{q}^{i}(0)$, but the $\dot{q}^{i}(0)$ are not all independent

Minimizers are computed with the Pontryagin Maximum Principle

Consider the problem

$$
\begin{gathered}
\dot{q}=u_{1}(t) X_{1}(q)+u_{2}(t) X_{2}(q) \\
\int_{0}^{T} \sqrt{u_{1}(t)^{2}+u_{2}(t)^{2}} d t \rightarrow \min \\
\quad q(0) \in \mathcal{S}, \quad q(T) \in \mathcal{T}
\end{gathered}
$$

(\mathcal{S}, and \mathcal{T} zero or 1-dimensional manifolds)
If $(q(\cdot), u(\cdot))$ is a minimizer defined on $[0, T]$ and parameterized by constant velocity, then there exists a Lipschitz covector $p(\cdot)$ such that one or both the following conditions are satisfied:
$\mathbf{A B N}\left\langle p(t), X_{i}(q(t)\rangle \equiv 0, \quad i=1,2, \quad p(0) \neq 0\right.$
NOR $u_{i}(t)=\left\langle p(t), X_{i}(q(t)\rangle \quad i=1,2\right.$, and $q(\cdot)$ and $p(\cdot)$ are solution to the Hamiltonian system corresponding to

$$
H=\frac{1}{2}\left(\left\langlep(t), X_{1}(q(t)\rangle^{2}+\left\langle p(t), X_{2}(q(t)\rangle^{2}\right)\right.\right.
$$

Moreover $\left\langle p(0), T_{q(0)} \mathcal{S}\right\rangle=0$ and $\left\langle p(T), T_{q(T)} \mathcal{T}\right\rangle=0$
$\rightarrow H=1 / 2$ when trajectories are parameterized by arclength.
\rightarrow small pieces of normals are minimizers

Theorem

For every q_{0} there exists a system of coordinates and a local orthonormal frame around q_{0} such that

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{f\left(x_{1}, x_{2}\right)}
$$

Moreover integral curves of X_{1} are normal Pontryagin extremals
\rightarrow Proof

Since

$$
\left[\binom{1}{0},\binom{0}{f\left(x_{1}, x_{2}\right)}\right]=\binom{0}{\partial_{1} f\left(x_{1}, x_{2}\right)}
$$

we have thatin $(0,0)$ the structure is:

- step 1 if $f(0,0) \neq 0$
- step 2 if $f(0,0)=0$ and $\partial_{1} f(0,0) \neq 0$
- etc.

If the step is s at q then there exists $U(q)$ such that for every $\bar{q} \in U(q)$ we have that the step in \bar{q} is \leq than the step in q.

We are going to specify the normal forms at the different type of points

How big is the singular set ?

Theorem

Let μ be a smooth volume on M (not the Riemannian one!!!). Then \mathcal{Z} has zero μ-volume
\rightarrow Proof.
As a consequence 2-ARS are Riemannian in an open and dense subset of M.

Basic properties of the singular set 2

\rightarrow Under generic conditions (when M is compact, for all systems in an open and dense subset of all 2D-ARS in the C^{∞} topology)

■ the singular set \mathcal{Z} is a 1-dimensional embedded submanifold

- There are three type of points (here $\boldsymbol{\Delta}(q)=\operatorname{Span}\left(X_{1}, X_{2}\right)$):

■ Riemannian points where X_{1}, X_{2} are linearly independent,
■ Grushin points where $\boldsymbol{\Delta}(q)$ is 1-dimensional and $\operatorname{dim}(\mathbf{\Delta}(q)+[\mathbf{\Delta}, \mathbf{\Delta}](q))=2$
(in this case $\boldsymbol{\Delta}(q)$ is transversal to \mathcal{Z})
■ tangency points where $\operatorname{dim}(\mathbf{\Delta}(q)+[\mathbf{\Delta}, \mathbf{\Delta}](q))=1$ and the missing direction is obtained with one more bracket.
$(\mathbf{\Delta}(q)$ is tangent to \mathcal{Z} and these points are isolated)

■ In a compact manifold \mathcal{Z} is a set of non-intersecting circles

Basic properties of the singular set 3

There are sets of finite diameter and infinite area (w.r.t. the intrinsic distance and area)

Theorem

Let Ω be a bounded open set such that $\Omega \cap \mathcal{Z} \neq \emptyset$. Then

$$
\operatorname{diam}(\Omega) \leq \infty \text { and } \int_{\Omega \backslash \mathcal{Z}} d A=\infty
$$

Example on the Grushin Plane

