Diffusion in almost-Riemannian geometry

Ugo Boscain (CNRS, LJLL, Sorbonne Université, Paris)

January 18, 2022

Almost Riemannian structures are generalized Riemannian structures that include the Grushin plane for which a (generalized) orthonormal frame is given by

On
$$\mathbf{R}^2 \setminus \{x = 0\}$$
 we have $g = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{x^2} \end{pmatrix}$, $dA = \frac{1}{|x|} dx dy$, $K = -\frac{2}{x^2}$

• context of Hypoelliptic operators:

Baouendi, '67, Grushin '70, Franchi-Lanconelli '84 $(\tilde{\Delta} = \partial_x^2 + x^2 \partial_y^2).$

example of rank varying sub-Riemannian stuctures

Gromov, Bellaiche, '96.

context of optimal control:

- control of three level quantum system (2006, Charlot, Chambrion, U.B.)
- orbital transfer in space mechanics (2009, Bonnard, Caillau et al.)

plan of the 3 lectures

- definition of 2D-Almost Riemannian Manifold
- normal forms
- properties of the singular set
- geodesics
- a Gauss-Bonnet theorem
- heat and Schroedinger evolution for the Laplace-Beltrami operator

$$\Delta(\cdot) = \operatorname{div}(\operatorname{grad}(\cdot))$$

We restrict to dimension 2 (it is already rich enough). Some results can be extended to higher dimension

I will follow the Chapter 9 of

[1] A. Agrachev, D. Barilari, and U. Boscain. A Comprehensive Introduction to sub-Riemannian Geometry, volume 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2020.

2D-Riemannian Manifold (M,g)

- \blacksquare *M* 2D-differentiable manifold
- **g**_q is a positive definite, symmetric, bilinear form on T_qM , $q \rightarrow g_q$ is smooth

 \rightarrow Distance between two points

 $d(q_0, q_1) = \inf\{\ell(\gamma) | \gamma(0) = q_0, \gamma(T) = q_1\} \Rightarrow$ Metric Structure

(compatible with the topological structure of M)

In Riemannian geometry, the problem of finding the distance between two points can be locally written as an Optimal Control Problem:

 $X_1(q), X_2(q)$ local orthonormal moving frame i.e.

$$g(X_1, X_1) = 1, \ g(X_1, X_2) = 0, \ g(X_2, X_2) = 1.$$

$$\begin{cases} \dot{\gamma}(t) = u_1(t)X_1(\gamma(t)) + u_2(t)X_2(\gamma(t)), \quad \gamma(0) = q_0, \quad \gamma(T) = q_1\\ \min \int_0^T \|\dot{\gamma}(t)\| dt = \min \int_0^T \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} dt = \min \int_0^T \sqrt{u_1(t)^2 + u_2(t)^2} dt \end{cases}$$

t

observ. 1: X_1 and X_2 are always linearly independent observ. 2: this construction is global only if M is parallelizable (the only compact orientable is the torus)

Definition

A 2-ARS is the generalized Riemannian structure obtained locally by declaring that a pair of smooth vector fields X_1, X_2 which:

- can become collinear
- but satisfy the Hörmander (or Lie Bracket generating) condition

$$\forall q \dim(\operatorname{span}_q \{X_1, X_2, [X_1, X_2], [X_1, [X_1, X_2]] \dots\} = 2$$

is an orthonormal frame.

- where X_1 and X_2 are linearly independent, they define a Riemannian metric
- on the set \mathcal{Z} where X_1 and X_2 are parallel we are not Riemannian (we will see that g, dA, K explodes on \mathcal{Z})

However

$$d(q_0, q_1) = \inf\{\int_0^T \sqrt{u_1(t)^2 + u_2(t)^2} dt \mid \dot{\gamma} = u_1(t)X_1 + u_2(t)X_2, \\ \gamma(0) = q_0, \ \gamma(T) = q_1\}$$

is well-defined and continuous and gives to ${\cal M}$ a structure of metric space compatible with its original topological structure.

This is essentially the Chow theorem (which states that Hormander condition implies finiteness and continuity of the distance)

 \rightarrow notice that now $\dot{\gamma} = u_1(t)X_1 + u_2(t)X_2$, is no longer a definition of $u_1(t)$ and $u_2(t)$ but it is a constraint on the dynamics.

The globalization can be made in different equivalent ways:

• by writing compatibility conditions between charts

 $\begin{cases} Y_1(q) = \cos(\theta)X_1(q) + \sin(\theta)X_2(q), \\ Y_2(q) = -\sin(\theta)X_1(q) + \cos(\theta)X_2(q). \end{cases}$

defining a 2-ARS as an Euclidean bundle

Definition

Let M be a 2D connected smooth manifold. A 2D-almost-Riemannian structure on M is a pair (\mathbf{U}, f) where

- **U** is an Euclidean bundle over M of rank 2. We denote each fiber by U_q , the scalar product on U_q by $(\cdot|\cdot)q$.
- $f: \mathbf{U} \to TM$ is a smooth map that is a morphism of vector bundles i.e. $f(U_q) \subseteq T_qM$ i.e. the following diagram is commutative $\mathbf{U} \xrightarrow{f} TM$

(1)

and f is linear on fibers.

■ $\blacktriangle = \{f(\sigma) \mid \sigma : M \to \mathbf{U} \text{ smooth section}\}$, is a bracket-generating family of vector fields.

πυ

Definition

An orthonormal frame for the 2D almost-Riemannian structure on Ω is the pair of vector fields $\{F_1, F_2\} := \{f \circ \sigma_1, f \circ \sigma_2\}$ where $\{\sigma_1, \sigma_2\}$ is an orthonormal frame for $(\cdot | \cdot)_q$ on a local trivialization $\Omega \times \mathbf{R}^2$ of **U**.

On a local trivialization $\Omega \times \mathbf{R}^2$, the map f can be written as $f(q, u) = u_1 F_1(q) + u_2 F_2(q)$.

 \rightarrow If the structure is defined by a single pair of smooth vector fields we say that the structure is "free" (free structures are particularly interesting).

 \rightarrow Recall that zeros of vector fields are related to the topology of the manifold e.g. if M is compact orientable, the Riemannian metric defined by two globally defined vector fields is always singular (excepted for the torus)

velocities with modulus 1

The Grushin plane that is the generalized Riemannian structure on the plane for which an orthonormal frame is given by

$$X_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 0 \\ x \end{pmatrix}, \quad (x, y) \in \mathbf{R}^{2}$$

$$\begin{pmatrix} y \\ X_{1} \\ X_{2} \\ X_{1} \\ X_{1} \\ X_{2} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\$$

Example 2: The Quantum Sphere

$$M = S^{2}, \quad X = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 \\ -x_{3} \\ y \end{pmatrix}, \quad (2)$$

It is called the quantum sphere because this problem describes a controlled 3 level quantum problem (STIRAP process)

Let us recall some definitions and notations

- The distribution is defined as $\blacktriangle(q) = \{X(q) \mid X \in \blacktriangle\} = f(U_q) \subseteq T_q M.$
- The step of the structure at $q \in M$ is the minimal $s \in \mathbf{N}$, $s \ge 1$ such that $\blacktriangle_s(q) = T_q M$, where $\blacktriangle_1 := \blacktriangle$, $\blacktriangle_{i+1} := \blacktriangle_i + [\blacktriangle_1, \blacktriangle_i]$, for $i \ge 1$.
- The (almost-Riemannian) norm of a vector $v \in \blacktriangle_q$ is

$$||v|| := \min\{|u|, u \in U_q \text{ s.t. } v = f(q, u)\}.$$

 \rightarrow example

- An admissible curve is a Lipschitz curve $\gamma : [0, T] \to M$ such that there exists a measurable and essentially bounded function $u : [0, T] \ni t \mapsto u(t) \in U_{\gamma(t)}$, called *control function*, such that $\dot{\gamma}(t) = f(\gamma(t), u(t))$, for a.e. $t \in [0, T]$. \rightarrow example
- The minimal control of an admissible curve γ is

 $u^*(t) := \operatorname{argmin}\{|u|, \ u \in U_{\gamma(t)} \ \text{ s.t. } \ \dot{\gamma}(t) = f(\gamma(t), u)\}$

(for all t differentiability point of γ).

 \rightarrow The minimal control is measurable.

• The (almost-Riemannian) length of an admissible curve $\gamma : [0,T] \to M$ is

$$\ell(\gamma) := \int_0^T \|\dot{\gamma}(t)\| dt = \int_0^T |u^*(t)| dt.$$

• The (almost-Riemannian) distance between two points $q_0, q_1 \in M$ is $d(q_0, q_1) = \inf\{\ell(\gamma) \mid \gamma : [0, T] \to M \text{ admissible}, \ \gamma(0) = q_0, \ \gamma(T) = q_1\}.$ (3)

is well-defined and continuous and gives to M a structure of metric space compatible with its original topological structure.

Existence. As a corollay of the Filippov theorem one has:

Theorem

Let $q_0 \in M$. There exists $\varepsilon > 0$ such that for every $q_1 \in B_{q_0}(\varepsilon)$ there exists a length minimizing curve joining q_0 to q_1 .

 $\to \!$ this is as in Riemannian geometry. However even for ε small, the minimizer could be not unique.

Geodesics. Cannot be computed as in the Riemannian case with

$$\ddot{q}^i + \Gamma^i_{jk} \dot{q}^j \dot{q}^k = 0$$

because this equation needs as initial condition $q^i(0)$ and $\dot{q}^i(0)$, but the $\dot{q}^i(0)$ are not all independent

Minimizers are computed with the Pontryagin Maximum Principle

Consider the problem

$$\dot{q} = u_1(t)X_1(q) + u_2(t)X_2(q)$$
$$\int_0^T \sqrt{u_1(t)^2 + u_2(t)^2} \, dt \to \min$$
$$q(0) \in \mathcal{S}, \quad q(T) \in \mathcal{T}$$

(\mathcal{S} , and \mathcal{T} zero or 1-dimensional manifolds)

If $(q(\cdot), u(\cdot))$ is a minimizer defined on [0, T] and parameterized by constant velocity, then there exists a Lipschitz covector $p(\cdot)$ such that one or both the following conditions are satisfied:

ABN $\langle p(t), X_i(q(t)) \rangle \equiv 0, \quad i = 1, 2, \quad p(0) \neq 0$

NOR $u_i(t) = \langle p(t), X_i(q(t)) \rangle$ i = 1, 2, and $q(\cdot)$ and $p(\cdot)$ are solution to the Hamiltonian system corresponding to

$$H = \frac{1}{2} (\langle p(t), X_1(q(t))^2 + \langle p(t), X_2(q(t))^2)$$

Moreover $\langle p(0), T_{q(0)}S \rangle = 0$ and $\langle p(T), T_{q(T)}T \rangle = 0$ $\rightarrow H = 1/2$ when trajectories are parameterized by arclength. \rightarrow small pieces of normals are minimizers

Theorem

For every q_0 there exists a system of coordinates and a local orthonormal frame around q_0 such that

$$X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 \\ f(x_1, x_2) \end{pmatrix}$$

Moreover integral curves of X_1 are normal Pontryagin extremals

 \rightarrow Proof

Since

$$\left[\left(\begin{array}{c} 1\\ 0 \end{array} \right), \left(\begin{array}{c} 0\\ f(x_1, x_2) \end{array} \right) \right] = \left(\begin{array}{c} 0\\ \partial_1 f(x_1, x_2) \end{array} \right)$$

we have that (0,0) the structure is:

step 1 if $f(0,0) \neq 0$

• step 2 if
$$f(0,0) = 0$$
 and $\partial_1 f(0,0) \neq 0$

etc..

If the step is s at q then there exists U(q) such that for every $\bar{q} \in U(q)$ we have that the step in \bar{q} is \leq than the step in q.

We are going to specify the normal forms at the different type of points

Theorem

Let μ be a smooth volume on M (not the Riemannian one!!!). Then \mathcal{Z} has zero μ -volume

 \rightarrow Proof.

As a consequence 2-ARS are Riemannian in an open and dense subset of M.

Basic properties of the singular set 2

 \rightarrow Under generic conditions (when *M* is compact, for all systems in an open and dense subset of all 2D-ARS in the C^{∞} topology)

- \blacksquare the singular set $\mathcal Z$ is a 1-dimensional embedded submanifold
- There are three type of points (here $\blacktriangle(q) = Span(X_1, X_2)$):
 - **Riemannian points** where X_1 , X_2 are linearly independent,
 - Grushin points where $\blacktriangle(q)$ is 1-dimensional and $\dim(\blacktriangle(q) + [\bigstar, \bigstar](q)) = 2$

(in this case $\blacktriangle(q)$ is transversal to \mathcal{Z})

tangency points where dim(▲(q) + [▲, ▲](q)) = 1 and the missing direction is obtained with one more bracket.
 (▲(q) is tangent to Z and these points are isolated)

In a compact manifold \mathcal{Z} is a set of non-intersecting circles

Basic properties of the singular set 3

There are sets of finite diameter and infinite area (w.r.t. the intrinsic distance and area)

Theorem

Let Ω be a bounded open set such that $\Omega \cap \mathcal{Z} \neq \emptyset$. Then

diam(
$$\Omega$$
) $\leq \infty$ and $\int_{\Omega \setminus Z} dA = \infty$

Example on the Grushin Plane

