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Almost Riemannian structures are generalized Riemannian structures that
include the Grushin plane for which a (generalized) orthonormal frame is

given by
x= (1 Xo=( Y (z,y) € R?
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Y X9
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origin of 2-ARS

m context of Hypoelliptic operators:
m Baouendi, '67, Grushin 70, Franchi-Lanconelli "84
(A =02 +a202).
m example of rank varying sub-Riemannian stuctures

m Gromov, Bellaiche, '96.

m context of optimal control:

m control of three level quantum system (2006, Charlot,
Chambrion, U.B.)

m orbital transfer in space mechanics (2009, Bonnard, Caillau
et al.)



plan of the 3 lectures

m definition of 2D-Almost Riemannian Manifold
= normal forms

m properties of the singular set

m geodesics

= a Gauss-Bonnet theorem

m heat and Schroedinger evolution for the Laplace-Beltrami operator

A(+) = div(grad(-))

We restrict to dimension 2 (it is already rich enough). Some results can be
extended to higher dimension

I will follow the Chapter 9 of

[1] A. Agrachev, D. Barilari, and U. Boscain. A Comprehensive
Introduction to sub-Riemannian Geometry, volume 181 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2020.



Definition of a 2D Riemannian manifold

2D-Riemannian Manifold (M, g)

m M 2D-differentiable manifold

m g4 is a positive definite, symmetric, bilinear form on 7, M,
q — g4 is smooth

= vl = Vga(v,0),  gq(v,w) = |lvlllw]| cos(8), v,w e TyM
— Given v : [0,T] — M, A.C., one defines {(y) = fOT v Gy (Y, F)dt

— Distance between two points
d(qo,q1) = inf{l(v)| v(0) = qo,v(T) = q1} = Metric Structure

(compatible with the topological structure of M)



In Riemannian geometry, the problem of finding the distance
between two points can be locally written as an Optimal Control
Problem:

X1(q), X2(q) local orthonormal moving frame i.e.

g(Xth) = 17 g(X17X2) = 07 g(X27X2) =1

V() = u () X1 (y(1) + u2() X2 (7(2), 7(0) = @0, Y(T)=a
mmfo 15 @@®)|ldt = mmfo Vg ))dt = mlnfo Vou(t)? + ua(t)2dt

observ. 1: X; and X2 are always linearly independent
observ. 2: this construction is global only if M is parallelizable (the only
compact orientable is the torus)



2D almost-Riemannian structure

A 2-ARS is the generalized Riemannian structure obtained locally by
declaring that a pair of smooth vector fields X1, X2 which:

m can become collinear

m but satisfy the Hérmander (or Lie Bracket generating) condition
A4 q dim(spanq{Xl, XQ, [Xl, XQ], [Xl, [Xl, XQ]] .. } =2
is an orthonormal frame.

m where X; and X» are linearly independent, they define a Riemannian
metric

m on the set Z where X; and X are parallel we are not Riemannian
(we will see that g, dA, K explodes on Z)



However

d(qo, 1) = inf{ [y v/ur(®) +Fua(6)%dt | 4 = ua(t) X1 + ua(t) X,

7(0) = qo, Y(T) = q1}

is well-defined and continuous and gives to M a structure of metric space
compatible with its original topological structure.

This is essentially the Chow theorem (which states that Hormander
condition implies finiteness and continuity of the distance)

—notice that now 4 = u1(t) X1 + u2(t) X2, is no longer a definition of w1 (t)
and wuz(t) but it is a constraint on the dynamics.



The globalization can be made in different equivalent

ways:

m by writing compatibility conditions between charts

{ Y1(q) = cos(0)X1(q) +sin(0) X2(q),
Y2(q) = —sin(0) X1 (q) + cos(0) X2(q).

m defining a 2-ARS as an Euclidean bundle

Definition

Let M be a 2D connected smooth manifold. A 2D-almost-Riemannian
structure on M is a pair (U, f) where

m U is an Euclidean bundle over M of rank 2. We denote each
fiber by U, the scalar product on U, by (-|-)g.

m f:U— TM is a smooth map that is a morphism of vector
bundles i.e. f(U,) C T,M i.e. the following diagram is
commutative U——-TM (1)

RN

M
and f is linear on fibers.

m A={f(0)|o: M — U smooth section}, is a bracket-generating
family of vector fields.



Definition

An orthonormal frame for the 2D almost-Riemannian structure on €2 is the
pair of vector fields {F1, F»} := {f o 01, f 0 02} where {01,022} is an
orthonormal frame for (- |-), on a local trivialization Q x R? of U.

On a local trivialization © x R?, the map f can be written as
fla,u) = urFi(q) + u2Fa(q).



Free structures

—If the structure is defined by a single pair of smooth vector fields we say
that the structure is “free” (free structures are particularly interesting).

—Recall that zeros of vector fields are related to the topology of the
manifold e.g. if M is compact orientable, the Riemannian metric defined by
two globally defined vector fields is always singular (excepted for the torus)

singular set (contains all the zeros)

.

velocities with modulus 1



Example 1: the Grushin plane

The Grushin plane that is the generalized Riemannian structure on the
plane for which an orthonormal frame is given by

1 0
X1=<0>, X2:<1,>5 (z,y) € R?
Y Xo
X

OnRz\{x:O}Wehaveg:< ),dA:ﬁdﬂcdy, K=-2%
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Example 2: The Quantum Sphere

—y 0
M=8, X=| =z |, Y= -z |, (2
0 Yy
Integral Curves of X Integral Curvesof Y
3
X5 X5
Xy X

1
It is called the quantum sphere because this problem describes a controlled
3 level quantum problem (STIRAP process)



Let us recall some definitions and notations

m The distribution is defined as A(q) = {X(q) | X € A} = f(Uy) CT,M.

m The step of the structure at ¢ € M is the minimal s € N, s > 1 such
that As(q) = Ty M, where A1 := A, Aj41 := A; + [A1, Ag], for ¢ > 1.

m The (almost-Riemannian) norm of a vector v € Aq is
lo|| := min{|u|, u € Uy s.t. v= f(q,u)}.

—example



m An admissible curve is a Lipschitz curve v : [0, 7] — M such that
there exists a measurable and essentially bounded function
u:[0,T] 3t u(t) € Uy, called control function, such that
A(t) = f(y(t),u(t)), for a.e. t € [0,T].

—example

m The minimal control of an admissible curve 7 is
u”(t) == argmin{|ul, u € Uy s.t. A(t) = f(y(t),u)}
(for all ¢ differentiability point of ).

—The minimal control is measurable.

m The (almost-Riemannian) length of an admissible curve v : [0,7] — M
is

T T
()= [ 1= [l
m The (almost-Riemannian) distance between two points qo, 1 € M is
d(qo, q1) = inf{€(7) [~ : [0,T] — M admissible, v(0) = go, ¥(T) = q1}. (3)

is well-defined and continuous and gives to M a structure of metric space
compatible with its original topological structure.



Some properties of length minimizers (local)

Existence. As a corollay of the Filippov theorem one has:

Theorem

Let qo € M. There exists € > 0 such that for every q1 € Bg,(¢) there exists
a length minimizing curve joining qo to q .

—this is as in Riemannian geometry. However even for £ small, the
minimizer could be not unique.

Geodesics. Cannot be computed as in the Riemannian case with
¢ +Tud'q" =0

because this equation needs as initial condition ¢*(0) and ¢*(0), but the
¢'(0) are not all independent



Minimizers are computed with the Pontryagin

Maximum Principle

Consider the problem
G = w1 (t)X1(q) + u2(t) X2(q)

/T Vui(t)? + uz2(t)? dt — min

q0)esS, oT)eT
(S, and T zero or 1-dimensional manifolds)
If (g(),u(+)) is a minimizer defined on [0, 7] and parameterized by constant
velocity, then there exists a Lipschitz covector p(-) such that one or both
the following conditions are satisfied:
NOR u;i(t) = (p(t), Xi(q(¥)) i=1,2, and ¢(-) and p(-) are solution to the
Hamiltonian system corresponding to

1
H= §(<P(t)7X1(Q(t)>2 + (p(1), X2(q(t))?)
Moreover (p(0),Ty(0)S) = 0 and (p(T'), TyryT) =0
—H = 1/2 when trajectories are parameterized by arclength.
—small pieces of normals are minimizers



Theorem

For every qo there exists a system of coordinates and a local orthonormal
frame around qo such that

() o)

Moreover integral curves of X; are normal Pontryagin extremals

— Proof



Since

( )( (er2) )]:<81f(a?1,wz)>

,0) the structure is:
,0) #
,0)—0and 01f(0,0) #0

we have thatin (0
m step 1 if f(0
m step 2 if f(0
m etc..

If the step is s at ¢ then there exists U(q) such that for every ¢ € U(q) we
have that the step in ¢ is < than the step in q.

We are going to specify the normal forms at the different type of points



How big is the singular set ?

Theorem

Let p be a smooth volume on M (not the Riemannian one!!!). Then Z has
zero p-volume

—Proof.

As a consequence 2-ARS are Riemannian in an open and dense subset of M.



Basic properties of the singular set 2

—Under generic conditions (when M is compact, for all systems in an open and
dense subset of all 2D-ARS in the C°° topology)

m the singular set Z is a 1-dimensional embedded submanifold
m There are three type of points (here A(g) = Span(X1, X2)):

m Riemannian points where X;, X5 are linearly independent,
m Grushin points where A(g) is 1-dimensional and
dim(A(q) + [A, Al(g)) =2
(in this case A(q) is transversal to Z)
m tangency points where dim(A(q) + [A, A](¢)) = 1 and the
missing direction is obtained with one more bracket.
(A(g) is tangent to Z and these points are isolated)

e I 5NF

span(X1, X2) Grushin Tangency

m In a compact manifold Z is a set of non-intersecting circles



Basic properties of the singular set 3

There are sets of finite diameter and infinite area (w.r.t. the intrinsic
distance and area)

Theorem

Let Q be a bounded open set such that QN Z # 0. Then

diam(Q2) < oo and / dA =0
o\zZ

Example on the Grushin Plane

dA = ‘%‘d:z: dy




