Diffusion in almost-Riemannian geometry $2 / 3$

Ugo Boscain (CNRS, LJLL, Sorbonne Université, Paris)

January 19, 2022

2D almost-Riemannian structure

Definition

A 2-ARS is the generalized Riemannian structure obtained locally by declaring that a pair of smooth vector fields X_{1}, X_{2} which:

- can become collinear

■ but satisfy the Hörmander (or Lie Bracket generating) condition

$$
\forall q \operatorname{dim}\left(\operatorname{span}_{q}\left\{X_{1}, X_{2},\left[X_{1}, X_{2}\right],\left[X_{1},\left[X_{1}, X_{2}\right]\right] \ldots\right\}=2\right.
$$

is an orthonormal frame.

■ where X_{1} and X_{2} are linearly independent, they define a Riemannian metric

■ on the set \mathcal{Z} where X_{1} and X_{2} are parallel we are not Riemannian (we will see that $g, d A, K$ explodes on \mathcal{Z})

When the structure is defined globally by a pairs of vector fields only then it is called free

Example 1: the Grushin plane

The Grushin plane that is the generalized Riemannian structure on the plane for which an orthonormal frame is given by

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{x}, \quad(x, y) \in \mathbf{R}^{2}
$$

Free structures are particularly important

(only) on the torus the two constructions coincide

Theorem

For every q_{0} there exists a system of coordinates and a local orthonormal frame around q_{0} such that

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{f\left(x_{1}, x_{2}\right)}
$$

Moreover integral curves of X_{1} are normal Pontryagin extremals

■ $\mathcal{Z}=\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}, x_{2}\right)=0\right\}$.
■ on $M \backslash \mathcal{Z}$ one has

$$
\begin{aligned}
& g_{\left(x_{1}, x_{2}\right)}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{f\left(x_{1}, x_{2}\right)^{2}}
\end{array}\right), \\
& d A_{\left(x_{1}, x_{2}\right)}=\frac{1}{\left|f\left(x_{1}, x_{2}\right)\right|} d x_{1} d x_{2}, \\
& K\left(x_{1}, x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right) \partial_{x_{1}}^{2} f\left(x_{1}, x_{2}\right)-2\left(\partial_{x_{1}} f\left(x_{1}, x_{2}\right)\right)^{2}}{f\left(x_{1}, x_{2}\right)^{2}} .
\end{aligned}
$$

For Grushin $f=x_{1}$ and $g=\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{x_{1}^{2}}\end{array}\right), d A=\frac{1}{\left|x_{1}\right|} d x_{1} d x_{2}, \quad K=-\frac{2}{x_{1}^{2}}$

Since

$$
\left[\binom{1}{0},\binom{0}{f\left(x_{1}, x_{2}\right)}\right]=\binom{0}{\partial_{1} f\left(x_{1}, x_{2}\right)}
$$

we have that in $(0,0)$ the structure is:

- step 1 if $f(0,0) \neq 0$
- step 2 if $f(0,0)=0$ and $\partial_{1} f(0,0) \neq 0$
- etc.

If the step is s at q then there exists $U(q)$ such that for every $\bar{q} \in U(q)$ we have that the step in \bar{q} is \leq than the step in q.

We are going to specify the normal forms at the different type of points

The different type of points

The different type of points $1 / 3$

■ if $\boldsymbol{\Delta}_{1}(q)=T_{q} M$ (i.e., if $q \notin \mathcal{Z}$)
we say that q is a Riemannian point. In this case we have the normal form

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{e^{\phi\left(x_{1}, x_{2}\right)}}
$$

■ if $\boldsymbol{\Delta}_{1}(q) \neq T_{q} M$ and $\boldsymbol{\Delta}_{2}(q)=T_{q} M$ (i.e., if the step is 2 at q) we say that q is a Grushin point. In this case we have the normal form

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{x_{1} e^{\phi\left(x_{1}, x_{2}\right)}}
$$

in both cases we could normalize $\phi\left(0, x_{2}\right)=0$.

Lemma

If the step is at most 2 on M (i.e., if only Riemannian and Grushin points are present, i.e., if $\left.\mathbf{\Delta}(q)+[\mathbf{\Delta}, \mathbf{\Delta}](q)=T_{q} M, \forall q\right)$ then \mathcal{Z} is an embedded 1-D submanifold
\rightarrow proof.
these are the nice 2 -ARS.

The different type of points $2 / 3$

■ if $\boldsymbol{\Delta}_{1}(q) \neq T_{q} M, \boldsymbol{\Delta}_{2}(q) \neq T_{q} M$ and $\boldsymbol{\Delta}_{3}(q)=T_{q} M$ (i.e., if the step is 3 at q) we say that q is a Tangency point.

Lemma (application of Thom's transversality theorem)

Generically (i.e. for an open and dense subset of all the 2-ARS on M w.r.t. the C^{2}-topology (standard if M is compact or Whitney if M is non compact) one has that

$$
f\left(x_{1}, x_{2}\right)=0 \text { and } \partial_{x_{1}} f\left(x_{1}, x_{2}\right)=0 \text { occur only at isolated points. }
$$

moreover at these points one has $\partial_{x_{2}} f \neq 0$ and $\partial_{x_{1}}^{2} f \neq 0$.

- generically \mathcal{Z} is a $1-\mathrm{D}$ embedded submanifold
- generically only Riemannian, Grushin and Tangency points are present
- generically at tangency points we have the normal form.

$$
X_{1}=\binom{1}{0}, \quad X_{2}=\binom{0}{\left(x_{2}-x_{1}^{2} \psi\left(x_{1}\right)\right) e^{\phi\left(x_{1}, x_{2}\right)}}, \quad \psi(0) \neq 0
$$

$-\mathcal{Z}$	\square $\operatorname{span}\left(X_{1}, X_{2}\right)$	
Grushin		

The different type of points $3 / 3$: n example of tangency point

$$
\begin{aligned}
& M=\mathbf{R}^{2}, \quad X=\binom{1}{0}, \quad Y=\binom{0}{y-x^{2}}, \\
& g(x, y)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{\left(y-x^{2}\right)^{2}}
\end{array}\right), \quad d A=\frac{1}{\left|y-x^{2}\right|} d x \wedge d y, \\
& K(x, y)=\frac{-2\left(3 x^{2}+y\right)}{\left(x^{2}-y\right)^{2}} .
\end{aligned}
$$

The presence of Tangency points in generic structures renders their study quite a challenge.....

Properties of the singular set
 (beyond the fact that it is a 1-D manifold in the generic case)

How big is the singular set ?

Theorem

Let μ be a smooth volume on M (not the Riemannian one!!!). Then \mathcal{Z} has zero μ-volume
\rightarrow Proof.
As a consequence 2-ARS are Riemannian in an open and dense subset of M.

Basic properties of the singular set 3

There are sets of finite diameter and infinite area (w.r.t. the intrinsic distance and area)

Theorem

Let Ω be a bounded open set such that $\Omega \cap \mathcal{Z} \neq \emptyset$. Then

$$
\operatorname{diam}(\Omega) \leq \infty \text { and } \int_{\Omega \backslash \mathcal{Z}} d A=\infty
$$

Example on the Grushin Plane

Minimizers

Minimizers are computed with the Pontryagin Maximum Principle

Consider the problem:

$$
\dot{q}=u_{1}(t) X_{1}(q)+u_{2}(t) X_{2}(q)
$$

$$
\begin{aligned}
& \int_{0}^{T} \sqrt{u_{1}(t)^{2}+u_{2}(t)^{2}} d t \rightarrow \min \\
& \quad q(0) \in \mathcal{S}, \quad q(T) \in \mathcal{T}
\end{aligned}
$$

(\mathcal{S}, and \mathcal{T} zero or 1-dimensional manifolds)
If $(q(\cdot), u(\cdot))$ is a minimizer defined on $[0, T]$ and parameterized by constant velocity, then there exists a Lipschitz covector $p(\cdot)$ such that one or both the following conditions are satisfied:
$(\mathbf{A B N})\left\langle p(t), X_{i}(q(t)\rangle \equiv 0, \quad i=1,2, \quad p(0) \neq 0\right.$
(NOR) $u_{i}(t)=\left\langle p(t), X_{i}(q(t)\rangle \quad i=1,2\right.$, and $q(\cdot)$ and $p(\cdot)$ are solution to the Hamiltonian system corresponding to

$$
H=\frac{1}{2}\left(\left\langlep(t), X_{1}(q(t)\rangle^{2}+\left\langle p(t), X_{2}(q(t)\rangle^{2}\right)\right.\right.
$$

Moreover $\left\langle p(0), T_{q(0)} \mathcal{S}\right\rangle=0$ and $\left\langle p(T), T_{q(T)} \mathcal{T}\right\rangle=0$
$\rightarrow H=1 / 2$ when trajectories are parameterized by arclength.
\rightarrow normals extremals are smooth and small pieces are minimizers (geodesics)
\rightarrow abnormal extremals could be nonsmooth (for a general SR problem) and could be nonminimizing....

Lemma

If γ defined in $[a, b]$ is an abnormal extremal then it is trivial i.e., $\gamma(t) \equiv q_{0} \in \mathcal{Z}$.
\rightarrow proof
As a consequence for 2-ARs, geodesics are smooth.

Basic properties of Geodesics 1

(archlength) geodesics are projections on the q space of Hamiltonian solutions of:

$$
H(p, q)=\frac{1}{2}\left(\left\langle p, X_{1}(q)\right\rangle^{2}+\left\langle p, X_{2}(q)\right\rangle^{2}\right)
$$

corresponding to the level set $H=1 / 2$.
For 2-ARS all Riemannian quanities expodes, but geodesics are smooth and can cross the singular set with no singularities

Example (geodesics from $(-1,0)$ on the Grushin plane, $T=2.7$)

Basic properties of Geodesics 2

the presence of a singular set permits the conjugate locus to be nonempty even if $k<0, \forall q$
[Agrachev, Boscain, Sigalotti, DCDS, 2008]

$$
k=-\frac{2}{x^{2}}
$$

\rightarrow The "length" of a sphere intersecting the singular set is ∞.
\rightarrow For people interested in singularity theory, this is the sole example of generic singularity in the analytic category that I am able to build with trigonometric functions..... it is almost-Riemannian

Basic properties of geodesics 3

Small spheres starting from the singular set are never smooth. (fixed a starting point on \mathcal{Z}, for every ε there exists a geodesics shorter than ε that already lost optimality)

Geodesics and front for the Grushin plane, starting from the singular set.

A Gauss Bonnet Theorem

Theorem (Gauss-Bonnet)

Let M be a 2D, compact, orientable Riemannian manifold. Then $\int_{M} K d A=2 \pi \chi(M)=2 \pi(2-2 \mathbf{g})$
can we extend such a result in the AR context?

Definition

A 2-ARS is orientable if \mathbf{U} is orientable as vector bundle or equivalent if we can take all matrices of changes of orthonormal frames in $S O(2)$.

This concept is unrelated from the orientability of M. There exists non orientable structures on orientable manifolds and viceversa.

Definition

Let M be an orientable manifold and consider an oriented, 2-step 2-ARS on it. Let $\omega \in \Lambda^{2}(M)$ be a never vanishing two-form, defining an orientation on M. Define

$$
\begin{equation*}
M^{ \pm}=\left\{p \in \Omega_{i} \backslash \mathcal{Z} \mid \quad i \in I, \pm \omega\left(X_{i}, Y_{i}\right)(p)>0\right\} \tag{1}
\end{equation*}
$$

We call signed curvature the function (defined on $M \backslash \mathcal{Z}$)

$$
\overline{K_{s}(p)}= \begin{cases}K(p), & \text { if } p \in M^{+}, \tag{2}\\ -K(p), & \text { if } p \in M^{-},\end{cases}
$$

For every $\varepsilon>0$, let $M_{\varepsilon}=\{p \in M \mid d(p, \mathcal{Z})>\varepsilon\}$ We say that K_{s} is integrable on M if

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{M_{\varepsilon}} K_{s} d A \tag{3}
\end{equation*}
$$

exists exists and is finite. In this case we denote such limit by $\int \mathcal{K}_{s} d A$.

Theorem

Let M be a compact oriented two-dimensional manifold and consider an oriented 2-step 2-ARS on it. Then

$$
\begin{equation*}
\int \mathcal{K}_{s} d A=2 \pi\left(\chi\left(M^{+}\right)-\chi\left(M^{-}\right)\right) \tag{4}
\end{equation*}
$$

where χ denotes the Euler characteristic.

Free structures

Lemma

If the 2-step 2-ARS is free then it is orientable and $\left(\chi\left(M^{+}\right)-\chi\left(M^{-}\right)\right)=0$.

Corollary

Let M be a compact oriented two-dimensional manifold and consider a free 2-step 2-ARS on it. Then

$$
\begin{equation*}
\int \mathcal{K}_{s} d A=0 \tag{5}
\end{equation*}
$$

This is a deep fact: If the metric is defined globally by a couple of vector fields, then $\int \mathcal{K}_{s} d A=0$. This is what happens in Riemannian geometry: on the torus!
\rightarrow we "force the manifold to be parallelizable by accepting singularities"

(only) on the torus the two constructions coincide

If the structure is not free then one should consider the Euclidean bundle \mathbf{U} defining the ARS. Then if \mathbf{U} is orientable we have

$$
P \int_{M} K d A_{s}=e(\mathbf{U})
$$

Extensions in presence of tangency points are possible, but less natural.

