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2D almost-Riemannian structure

Definition

A 2-ARS is the generalized Riemannian structure obtained locally by
declaring that a pair of smooth vector fields X1, X2 which:

can become collinear

but satisfy the Hörmander (or Lie Bracket generating) condition

∀ q dim(span
q
{X1, X2, [X1, X2], [X1, [X1, X2]] . . .} = 2

is an orthonormal frame.

where X1 and X2 are linearly independent, they define a Riemannian
metric

on the set Z where X1 and X2 are parallel we are not Riemannian
(we will see that g, dA, K explodes on Z)

When the structure is defined globally by a pairs of vector fields only then
it is called free



Example 1: the Grushin plane

The Grushin plane that is the generalized Riemannian structure on the
plane for which an orthonormal frame is given by

X1 =

(

1
0

)

, X2 =

(

0
x

)

, (x, y) ∈ R2

y

X1

X2

x



Free structures are particularly important



Theorem

For every q0 there exists a system of coordinates and a local orthonormal
frame around q0 such that

X1 =

(

1
0

)

, X2 =

(

0
f(x1, x2)

)

Moreover integral curves of X1 are normal Pontryagin extremals



Z = {(x1, x2) | f(x1, x2) = 0}.

on M \ Z one has

g(x1,x2) =

(

1 0
0 1

f(x1,x2)2

)

,

dA(x1,x2) =
1

|f(x1, x2)|
dx1 dx2,

K(x1, x2) =
f(x1, x2)∂

2
x1
f(x1, x2)− 2 (∂x1

f(x1, x2))
2

f(x1, x2)2
.

For Grushin f = x1 and g =

(

1 0
0 1

x2

1

)

, dA = 1
|x1|

dx1 dx2, K = − 2
x2

1



Since
[(

1
0

)

,

(

0
f(x1, x2)

)]

=

(

0
∂1f(x1, x2)

)

we have that in (0, 0) the structure is:

step 1 if f(0, 0) 6= 0

step 2 if f(0, 0) = 0 and ∂1f(0, 0) 6= 0

etc..

If the step is s at q then there exists U(q) such that for every q̄ ∈ U(q) we
have that the step in q̄ is ≤ than the step in q.

We are going to specify the normal forms at the different type of points



The different type of points



The different type of points 1/3

if N1(q) = TqM (i.e., if q /∈ Z)
we say that q is a Riemannian point. In this case we have the
normal form

X1 =

(

1
0

)

, X2 =

(

0

eφ(x1,x2)

)

if N1(q) 6= TqM and N2(q) = TqM (i.e., if the step is 2 at q)
we say that q is a Grushin point. In this case we have the normal
form

X1 =

(

1
0

)

, X2 =

(

0

x1e
φ(x1,x2)

)

in both cases we could normalize φ(0, x2) = 0.

Lemma

If the step is at most 2 on M (i.e., if only Riemannian and Grushin points
are present, i.e., if N(q) + [N,N](q) = TqM, ∀q) then Z is an embedded
1-D submanifold

→proof.

these are the nice 2-ARS.



The different type of points 2/3

if N1(q) 6= TqM , N2(q) 6= TqM and N3(q) = TqM (i.e., if the step is 3
at q) we say that q is a Tangency point.

Lemma (application of Thom’s transversality theorem)

Generically (i.e. for an open and dense subset of all the 2-ARS on M w.r.t.
the C2-topology (standard if M is compact or Whitney if M is non
compact) one has that

f(x1, x2) = 0 and ∂x1
f(x1, x2) = 0 occur only at isolated points.

moreover at these points one has ∂x2
f 6= 0 and ∂2

x1
f 6= 0.

• generically Z is a 1-D embedded submanifold
• generically only Riemannian, Grushin and Tangency points are present
• generically at tangency points we have the normal form.

X1 =

(

1
0

)

, X2 =

(

0

(x2 − x2
1ψ(x1))e

φ(x1,x2)

)

, ψ(0) 6= 0.

Tangencyspan(X1, X2)

Z

Grushin



The different type of points 3/3: n example of tangency
point

M = R2, X =

(

1
0

)

, Y =

(

0
y − x2

)

,

g(x, y) =

(

1 0
0 1

(y−x2)2

)

, dA =
1

|y − x2|
dx ∧ dy,

K(x, y) =
−2

(

3 x2 + y
)

(x2 − y)2
.

K=0

y=x^2

−K

K

The presence of Tangency points in generic structures renders their study
quite a challenge.....



Properties of the singular set
(beyond the fact that it is a 1-D manifold in the generic

case)



How big is the singular set ?

Theorem

Let µ be a smooth volume on M (not the Riemannian one!!!). Then Z has
zero µ-volume

→Proof.

As a consequence 2-ARS are Riemannian in an open and dense subset of M .



Basic properties of the singular set 3

There are sets of finite diameter and infinite area (w.r.t. the intrinsic
distance and area)

Theorem

Let Ω be a bounded open set such that Ω ∩ Z 6= ∅. Then

diam(Ω) ≤ ∞ and

∫

Ω\Z

dA = ∞

Example on the Grushin Plane

X1

X2

x

y

dA =
1

|x|dx dy



Minimizers



Minimizers are computed with the Pontryagin
Maximum Principle

Consider the problem: q̇ = u1(t)X1(q) + u2(t)X2(q)
∫ T

0

√

u1(t)2 + u2(t)2 dt→ min

q(0) ∈ S , q(T ) ∈ T

(S , and T zero or 1-dimensional manifolds)

If (q(·), u(·)) is a minimizer defined on [0, T ] and parameterized by constant
velocity, then there exists a Lipschitz covector p(·) such that one or both
the following conditions are satisfied:

(ABN) 〈p(t),Xi(q(t)〉 ≡ 0, i = 1, 2, p(0) 6= 0

(NOR) ui(t) = 〈p(t),Xi(q(t)〉 i = 1, 2, and q(·) and p(·) are solution to
the Hamiltonian system corresponding to

H =
1

2
(〈p(t),X1(q(t)〉

2 + 〈p(t),X2(q(t)〉
2)

Moreover 〈p(0), Tq(0)S〉 = 0 and 〈p(T ), Tq(T )T 〉 = 0
→H = 1/2 when trajectories are parameterized by arclength.
→normals extremals are smooth and small pieces are minimizers (geodesics)
→abnormal extremals could be nonsmooth (for a general SR problem) and

could be nonminimizing....



Lemma

If γ defined in [a, b] is an abnormal extremal then it is trivial i.e.,
γ(t) ≡ q0 ∈ Z.

→proof

As a consequence for 2-ARs, geodesics are smooth.



Basic properties of Geodesics 1

(archlength) geodesics are projections on the q space of Hamiltonian
solutions of:

H(p, q) =
1

2

(

〈p,X1(q)〉
2 + 〈p,X2(q)〉

2)

corresponding to the level set H = 1/2.

For 2-ARS all Riemannian quanities expodes, but geodesics are smooth and
can cross the singular set with no singularities

Example (geodesics from (−1, 0) on the Grushin plane, T = 2.7)

singular set



Basic properties of Geodesics 2

the presence of a singular set permits the conjugate locus to be nonempty
even if k < 0, ∀ q
[Agrachev, Boscain, Sigalotti, DCDS, 2008]

k = − 2
x2

Conjugate Locus
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Singular Set

Cut locus

Starting from a Riemannian point
Geodesics and Front for Grushin

→The “length” of a sphere intersecting the singular set is ∞.
→For people interested in singularity theory, this is the sole example of
generic singularity in the analytic category that I am able to build with
trigonometric functions..... it is almost-Riemannian



Basic properties of geodesics 3

Small spheres starting from the singular set are never smooth. (fixed a
starting point on Z, for every ε there exists a geodesics shorter than ε that
already lost optimality)

-1.0 -0.5 0.5 1.0

-0.3

-0.2

-0.1

0.1

0.2

0.3

Singular set
Sphere

Geodesics and front for the Grushin plane, starting from the singular set.



A Gauss Bonnet Theorem



Theorem (Gauss-Bonnet)

Let M be a 2D, compact, orientable Riemannian manifold. Then
∫

M
KdA = 2π χ(M) = 2π(2− 2g)

can we extend such a result in the AR context?



Definition

A 2-ARS is orientable if U is orientable as vector bundle or equivalent if we
can take all matrices of changes of orthonormal frames in SO(2).

This concept is unrelated from the orientability of M . There exists non
orientable structures on orientable manifolds and viceversa.



Definition

Let M be an orientable manifold and consider an oriented, 2-step 2-ARS
on it. Let ω ∈ Λ2(M) be a never vanishing two-form, defining an
orientation on M . Define

M± = {p ∈ Ωi \ Z| i ∈ I,±ω(Xi, Yi)(p) > 0} (1)

We call signed curvature the function (defined on M \ Z)

Ks(p) =

{

K(p), if p ∈M+,
−K(p), if p ∈M−,

(2)

M
+ M

+M
−M

−

K  =Ks K  =−Ks

K  =−Ks

K  =Ks

For every ε > 0, let Mε = {p ∈M | d(p,Z) > ε} We say that Ks is
integrable on M if

lim
ε→0

∫

Mε

Ks dA (3)

exists exists and is finite. In this case we denote such limit by
∫

KsdA.



Theorem

Let M be a compact oriented two-dimensional manifold and consider an
oriented 2-step 2-ARS on it. Then

∫

KsdA = 2π(χ(M+)− χ(M−)), (4)

where χ denotes the Euler characteristic.



Free structures

Lemma

If the 2-step 2-ARS is free then it is orientable and (χ(M+)− χ(M−)) = 0.

Corollary

Let M be a compact oriented two-dimensional manifold and consider a free
2-step 2-ARS on it. Then

∫

KsdA = 0 (5)

This is a deep fact: If the metric is defined globally by a couple of vector
fields, then

∫

KsdA = 0. This is what happens in Riemannian geometry: on
the torus!

→we “force the manifold to be parallelizable by accepting singularities”



K = 2πχ(M)

M

dA

 index of zeros=χ (M)Σ )(

M

Ks dA =0

Riemannian

construction

A Riemannian structure defined globally

by the vector fields

Almost Riemannian
(trivialized)
construction

A Riemannian structure without

topolgy implies zeros of vector fields

(only) on the torus the two constructions coincide

(topological information)

has singularities

(topological information)

singularities is defined 
on charts by vector fields

Manifold M (compact orientable)

locally



If the structure is not free then one should consider the Euclidean bundle U
defining the ARS. Then if U is orientable we have

P

∫

M

KdAs = e(U)

Extensions in presence of tangency points are possible, but less natural.


