
Diffusion in almost-Riemannian geometry 3/3

Ugo Boscain (CNRS, LJLL, Sorbonne Université, Paris)
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We have seen the definition of 2-ARS as the generalized Riemannian
structure obtained locally by declaring that a pair of vector fields satisfying
the Hormander condition is an orthonormal frame

→if the orthonormal frame is global we say that it is free

We have seen

properties of the singular set

type of points (Riemannian Grushin and Tangency) and normal forms

Geodesics: they are smooth and can cross the singular set, but

spheres of finite diameter can have infinite (Riemannian)
volume and infinite (Riemannian) perimeter
a conjugate locus could be present even if the curvature is
always negative where it is defined



A Gauss Bonnet Theorem



The Riemannian Gauss-Bonnet theorem

Theorem (Gauss-Bonnet)

Let M be a 2D, compact, orientable Riemannian manifold. Then
∫

M
KdA = 2π χ(M) = 2π(2− 2g)

can we extend such a result in the AR context?

Of course this cannot be done directly. For instance for 2-step structures we
have that K → −∞ on the singular set.



Definition

A 2-ARS is orientable if U is orientable as vector bundle.

Roughly this is equivalent to ask that we can take all matrices of changes of
orthonormal frames in SO(2).

Y1(q) = cos(θ)X1(q) + sin(θ)X2(q),

Y2(q) = − sin(θ)X1(q) + cos(θ)X2(q).

→This concept is unrelated from the orientability of M .
→There exists non orientable structures on orientable manifolds and
viceversa.

Definition

A 2-ARS is fully orientable if

it is orientable

and M is orientable.



Definition

Consider a fully-orientable, 2-step 2-ARS. Let ω ∈ Λ2(M) be a never
vanishing two-form, defining an orientation on M . Define

M± = {p ∈ Ωi \ Z| i ∈ I,±ω(Xi, Yi)(p) > 0} (1)

We call signed curvature the function (defined on M \ Z)
Ks(p) =

{
K(p), if p ∈M+,
−K(p), if p ∈M−,

(2)

M
+ M

+M
−M

−

K  =Ks K  =−Ks

K  =−Ks

K  =Ks

For every ε > 0, let Mε = {p ∈M | d(p,Z) > ε} We say that Ks is
integrable on M if

lim
ε→0

∫

Mε

Ks dA (3)

exists and is finite. In this case we denote such limit by
∫
KsdA.



Theorem

Consider a fully-orientable, 2-step 2-ARS. Then
∫

KsdA = 2π(χ(M+)− χ(M−)), (4)

where χ denotes the Euler characteristic.



Free structures

Lemma

If M is orientable and the 2-step 2-ARS is free (⇒ fully orientable) then
(χ(M+)− χ(M−)) = 0.

Corollary

Let M be a compact oriented two-dimensional manifold and consider a free
2-step 2-ARS on it. Then

∫

KsdA = 0 (5)

This is a deep fact: If the metric is defined globally by a couple of vector
fields, then

∫
KsdA = 0. This is what happens in Riemannian geometry: on

the torus!

→we “force the manifold to be parallelizable by accepting singularities”





Non free structures

If the structure is not free one can prove that

χ(M+)− χ(M−) = e(U)

Where e(U) is the Euler number of U .
and then

Theorem

Consider a fully-orientable, 2-step 2-ARS. Then
∫

KsdA = 2πe(U) (6)

Extensions in presence of tangency points are possible, but less natural.



Diffusion and Schroedinger evolution on 2-ARS



How to define the heat and the Schroedinger equation in a 2-ARS?

∂tφ =
1

2
∆φ, i∂tφ = −~

2

2
∆φ

What is the right operator ∆?

∆ = X2
1 +X2

2 is not a good choice because

it is not invariant by change of orthonormal frame

it is not global if the structure cannot be defined with one frame only

To have an invariant operator the simplest thing is to look for an operator
of the form

∆ = divω ◦ grad
(the definition of grad extends with no difficulties to ARSs)

The problem is the choice of ω. We have ∞+ 1 choices

either we choose from outside a regular volume ω ⇒ we get a well
defined hypoelliptic operator but then the diffusion will depend on ω

or we take the Riemannian area dA. In this case we obtain the
Laplace-Beltrami operator which diverges on Z.

in 2-ARS an intrinsic volume which is not diverging is not known (in a
sense it does not exist)



Let us start to study the (diverging) Laplace Beltrami operator

∆ = divdA ◦ grad = X2
1 (φ) +X2

2 (φ) + div(X1)X1(φ) + div(X2)X2(φ)

The first order term are diverging

For the Grushin metric X1 = ∂x, X2 = x∂y, dA = 1
|x|

and we obtain

∆φ := divdA(grad(φ)) =
(
∂2
x + x2∂2

y −
1

x
∂x

)
φ,

If we take ω = dx dy we obtain

∆̃φ := divω(grad(φ)) =
(
∂2
x + x2∂2

y

)
φ,



Is there a propagation of the heat through the singular set? (same question
for the Schroedinger equation)

This question is essentially equivalent to

Q: Let M be a 2D manifold endowed with a 2-ARS. Let Ω be a connected
component of M \ Z. Let ∆ be the corresponding Laplace-Beltrami defined
on C∞

0 (Ω). Is ∆ essentially self-adjoint on L2(Ω, dA)?

→If ∆ is essentially self-adjoint on L2(Ω, dA) then the Cauchy
problems for the heat and Schoredinger equations are well defined in
L2(Ω, dA) without the need of boundary conditions ⇒ no propagation.

→If it is not essentially self-adjoint then one needs boundary conditions.
For instance

Dirichlet-like conditions (killing condition)

Neumann-like (reflecting condition)

other conditions permitting to connect the two sides
(bridging extensions see [B. Prandi 2016])



A a priori one expects a negative answer to this question (i.e. ∆ is not
essentially self adjoint) since a positive answer would imply that neither the
heat flow, neither a quantum particle can pass through Z, while classical
geodesics cross it with no singularities.

initial condition singular set (contains all the zeros)geodesics

X2

X1

X2

X1

X2

X1



A positive answer

Theorem (U.B, Camille Laurent, 2013)

Let M be a 2D compact orientable manifold endowed with a 2-ARS.
Assume that

(H) for every q ∈M , N(q) + [N,N](q) = TqM .

Let Ω be a connected component of M \ Z. Then ∆ with domain C∞
0 (Ω) is

essentially self-adjoint on L2(Ω, dA).

Remark (H) is an open condition implying that
→Z is a finite union of non-intersecting circles
→only Riemannian and Grushin points are present
→the compactness hypothesis is not necessary (but simplify the statement)



Consequences

Corollary

Consider the unique solution φ of the Schroedinger equation,

i∂tφ = −~
2

2
∆φ (7)

φ(0) = φ0 ∈ L2(M,dA) (8)

with φ0 supported in a connected component Ω of M \ Z. Then, φ(t) is
supported in Ω for any t ≥ 0. The same holds for the solution of the heat or
for the solution of the wave equation.

initial condition singular set (contains all the zeros)geodesics

X2

X1

X2

X1

X2

X1



Idea of the proof of the self-adjointness: the Grushin
cylinder

The Grushin Cylinder is the Grushin plane in which we compactifies
the y variable

x
y

By setting f =
√
|x|g

∂2
x + x2∂2

y −
1

x
∂x on L2( 1

|x|
dx dy)

⇓

∂2
x + x2∂2

y −
3

4

1

x2
on L2(dx dy)

(9)



By making Fourier transform in y, we are reduced to study the
selfadjointness of:

∂2
x −

3

4

1

x2
− k2x2 on ]0,∞[

i.e. of −∂2
x +

3

4

1

x2
+ k2x2 on ]0,∞[

Proposition (Reed-Simon)

The operator −∂2
x + c

|x|2
defined on L2(]0,+∞[) with domain C∞

0 (]0,+∞[)

is essentially self-adjoint if and only c ≥ 3
4
.

(uses the limit-point limit circle theory Weyl’s Theorem)

→The rest of the proof for an almost Riemannian structure consists in
generalizing this result for a normal form around a connected component of
the singular set and to treat it as a perturbation of the Grushin case.



Remarks

the explosion of the area naturally acts as a barrier, which prevents
the particles from crossing the degeneracy zone.

One cannot relate the heat kernel pt(q1, q2) to the distance as in the
Riemannian case

−4t log pt(q1, q2)→ d(q1, q2)
2 (Varadhan ’67) is not true on ARSs

No semiclassical theory for the Schroedinger equation

→such a phenomenon is today called Quantum Confinement (and there are
today many further results on rank-varying Sub-Riemannian structures, see
Rizzi, Prandi, Seri, Franceschi)

→The theorem is not proved in presence of tangency points (hard open
question)



heat blocking by the Grushin singularity: a Random
walk interpretation

In Riemannian geometry the Laplacian can be constructed as the generator
of a limit random walk.
We consider a particle that

at time zero is in q0;

at time δt jumps on a point q1 of the sphere of radius ε centered in q0,
uniformly on the sphere, by following a geodesic;

at time 2δt jumps on a point q2 of the sphere of radius ε centered in
q1 uniformly on the sphere, by following a geodesic;

.......

q2 M

q0
q1



If φ is the density of probability of finding the particle in q we have that:

ε

M
q

how much φ is increasing at a point q in time δt is proportional to the
difference between the average of φ in a sphere of radius ε centered in q and
the value of φ(q, t).

φ(q, t+ δt)− φ(q, t) =
∫

Sn−1

(

φ
(
expq(ε, θ), t

)
− φ(q, t)

)

dθ.

Dividing by δt we obtain

φ(q, t+ δt)− φ(q, t)
δt

=
1

δt

∫

Sn−1

(

φ
(
expq(ε, θ), t

)
− φ(q, t)

)

dθ.

Taking the parabolic scaling (↔ infinite velocity) δt = ε2, and for δt→ 0,

∂tφ = Lφ, where Lφ(q, t) = lim
ε→0

1

ε2

∫

Sn−1

(

φ
(
expq(ε, θ), t

)
− φ(q, t)

)

dθ

︸ ︷︷ ︸

. (10)

generator of the random walk



in Riemannian geometry ∆ is proportional to L

Up to constants we have

L = lim
ε→0

1

ε2

∫

Sn−1

(

φ
(
expq(ε, θ), t

)
− φ(q, t)

)

dθ= ∆

there is a way of passing from convergence of the operator to convergence of
the process.



in 2D almost-Riemannian geometry.......

in 2D almost-Riemannian geometry the front and the sphere are not

admissible curves when they intersect the singular set. Hence their
length is infinite and the heat is trapped in the singularity!

e.g. for the Grushin plane

-1.0 -0.5 0.5 1.0

-0.3

-0.2

-0.1

0.1

0.2

0.3

Singular set
Sphere

→We do not have a so intuitive interpretation for the Schroedinger equation



→For the Grushin plane we proved that we are stochastically incomplete
i.e. that ∫

M

φ(t, q)dA(q) is decreasing

(the singular set is eating the heat)

→the quantum sphere is an example of compact manifolds (⇒ geodesically
complete) that is stochastically incomplete.

(in Riemannian geometry on compact manifold we are always geodesically
and stochastically complete)



Schroedinger evolution

Some new results



Schroedinger: semiclassical interpretation

In quantum mechanics semiclassical analysis says roughly:

if ψ is wave packet solution of the Schroedinger equation, then for
~→ 0, its maximum satisfies the classical equation of the motion.

However the theory is delicate and on Riemannian manifolds even how to

construct the quantum operator starting from the classical

Hamiltonian is not obvious (the quantization procedure is not unique).

H(p, q) =
1

2

(
〈p,X1(q)〉2 + 〈p,X2(q)〉2

)
=

1

2
gijpipj

⇓

??? − ~
2

2m
∆ ???



→there are many possible quantizations (i.e., ways of writing the
Schroedinger equation starting from the classical Hamiltonian) that can be
divided in two categories:

intrinsic quantizations (usually called “geometric quantizations”)

extrinsic quantizations (using the embedding in Rn)



the intrinsic approach: Geometric quantization

Literature on geometric quantization, path integrals etc. suggests that in a
Riemannian manifold in dimension 2

H(p, q) =
1

2

(
〈p,X1(q)〉2 + 〈p,X2(q)〉2

)
=

1

2
gijpipj

⇓

− ~
2

2m
(∆− cK(q))

where

K(q) is the Gaussian curvature. In dimension ≥ 2 one should use the
scalar curvature R (notice that R = 2K in dimension two).

c ≥ 0 is a constant that depends on the quantization procedure. Most

used values are c = 0, 1
3
, 1
2
, 2
3
. See [Andersson-Driver1999]

formal expansion methods: c = 1

3
, c = 1

2
, c = 2

3
;

geometric quantization: c ∈ [0, 2/3]. Weyl quantization
c = 0;
path integral: there is an ambiguity reflecting in the
ambiguity of c.

for ~→ 0 for a Riemannian manifolds the curvature term becomes
irrelevant, but for 2-ARS this is not the case since it is diverging.



For the Grushin cylinder
(after the unitary transformation L2( 1

|x|
dx dy)→ L2(dx dy))

i~∂tψ = − ~
2

2m
(∆− cK)ψ

= − ~
2

2m

(

(∂2
x + x2∂2

y −
3

4

1

x2
)− c(− 2

x2
)
)

ψ

=
~
2

2m

(

− (∂2
x + x2∂2

y) +
3
4
− 2c

x2

)

ψ

→Clearly for c = 3/8 the divergence term disappear and we are not
essentially self-adjoint in R+ ×R.

→Actually all c > 0 destroy the self-adjointness because 3
4
− 2c > 3

4

(remember the Reed-Simon theorem).



Theorem

Let M be a 2D compact orientable manifold endowed with a 2-ARS.
Assume that

(H) for every q ∈M , N(q) + [N,N](q) = TqM .

Let Ω be a connected component of M \ Z. Then ∆− cK(q) with domain
C∞

0 (Ω) is essentially self-adjoint on L2(Ω, dA) iff c = 0.

→For c > 0 one should be able to recover the classical limit for certain
self-adjoint extensions. “How” is an interesting open question.

→again the compactness hypothesis is not necessary

→For the proof see:

c ∈ [0, 1/2) I. Beschastnyi, E. Pozzoli, U. B. Quantum Confinement
for the Curvature Laplacian −∆+ cK on 2D-Almost-Riemannian
Manifolds. Potential Theory 2022.

c ≥ 1/2, I. Beschastnyi, Closure of the Laplace-Beltrami operator on
2D almost-Riemannian manifolds and semi-Fredholm properties of
differential operators on Lie manifolds. arXiv:2104.07745

The second case is harder because −∆+ cK is not “non-negative modulo a
Kato small perturbation”.



If we remove the 2-step hypotheses the situation could be very different.
For instance for the structure

X1 =

(
1
0

)

, X2 =

(
0
xα

)

, α ∈ R

(for α integer this structure is almost-Riemannian of step 1 + α)

the description of the self-adjointness for ∆− cK is given by:



the extrinsic approach

Beside geometric quantization, there is a different approach making
appearing curvature terms in the operator.

Consider a surface S in R3 and let us consider an ε-neighborhood of it.

Let us put boundary conditions (Dirichlet-Dirichlet or Neumann-Neumann)

Let us consider the corresponding Laplacians and after a suitable blow up
let us send ε to zero. We have:
Lε

NN = ∆+ o(ε)

Lε
DD = −

(
π
2ε

)2
+∆+ (2K − 4H2) + o(ε)

(these convergences are weak limits on special test functions)

→here K is the Gaussian curvature and H is the mean curvature
→See Duclos, Exner [1995], Lampart, Teufel, Wachsmuth [2010] for
quantum waveguides and Krejcirik [2014].



For the heat equation only the NN (or periodic) boundary conditions
make sense since Dirichlet conditions implies a killing of the process.

For the Schroedinger equation both boundary conditions make sense
(DD after renormalization)

for the Schroedinger equation other mixed conditions make sense.



Comparison between intrinsic and extrinsic quantization

Geometric Quantization extrinsic quantization

∆ (Neumann-Neumann)
∆− cK, c ≥ 0

∆ + 2K − 4H2 (Dirichlet-Dirichlet)

Claim Geometric quantization coincides with extrinsic quantization only
for c = 0 and for Neumann-Neumann boundary conditions.



can we embed the Grushin Cylinder in R3 and compute

∆+ 2K − 4H2 ?

→the embedding of the Grushin cylinder can have other applications



can we compute ∆ + 2K − 4H2 for the Grushin
cylinder?

The Grushin cylinder is too singular to be embedded globally in R3.
However we can embed part of it.

For x ∈ [1,∞[ and y ∈ [0, 2π] it can be embedded isometrically in R3 as

z1 = const+

∫ x

1

√

1− 1

s4
ds, z2 =

cos(y)

x
, z3 =

sin(y)

x
, here (z1, z2, z3) ∈ R

3

(Grushin’s trumpet bell)

here the coordinate x in
(

1 0

0 1

x2

)

is the curvilinear lenght

of the red curve



→In this case K = − 2

x

H =
x4 − 3

2x
√
x4 − 1

∆ + 2K − 4H2 = (∂2
x + x2∂2

y −
3

4

1

x2
) + 2

(

− 2

x2

)

− 4
( x4 − 3

2x
√
x4 − 1

)2

= ∂2
x + x2∂2

y −
1

x− 1
+O(1) for x→ 1

Claim (expected result): On [1,∞[×S1, this operator is not essentially
self-adjoint.



Can we go closer to zero?

If one would like to embed the Grushin cylinder closer to zero up to 1/n
one should wind it n2 times.

More precisely for x ∈ [ 1
n
,∞[ and y ∈ [0, 2π] we can be embedded

isometrically in R3 as the surface:

z1 = const+
1

n

∫ nx

1

√

1− 1

s4
ds, z2 =

cos(n2y)

n2x
, z3 =

sin(n2y)

n2x

This embedding is only local since the surface is winded n2 times.

here const is fixed
in such a way that z1(x = 1) = 1

independently of c



In this case H = n4x4−3

2x
√

n4x4−1
diverges at x = 1

n
and ∆ + 2K − 4H2 is not

essentially self adjoint in [ 1
n
,∞[.

→it is hard (and not very meaninful) to to say something for n→∞.



Concluding

while for the heat equation the self-adjointness of ∆ on M \ Z (in the
2-step hypothesis) can be well understood in terms of random walks, for the
Schroedinger equations this is harder to be interpreted.

→intrinsic quantizations provides ∆− cK which is not self-adjoint except
for c = 0.
→extrinsic quantization provides ∆ (NN) or ∆ + 2K − 4H2 (DD).

the first choice coincide with c = 0 of the intrinsic quantization.

the second choice cannot be studied at the singularity since the
embedding become singular before.



Definition

The Euler number a fully orientable 2D almost-Riemannian structure
(U, f) on a compact manifold M is the Euler number e(U) of U. It is the
self-intersection number of M in U, where M is identified with the zero
section.



self-adjointness

we have to specify what we mean by ∆ at the singularity
l

study the self-adjointness of ∆.

Working with self-adjoint operators is crucial because:

Stone’s theorem

On any Hilbert space there is a one-to-one correspondence,

A self-adjoint operator ←→ e−itA strongly continuous
unitary group

Theorem

On any Hilbert space there is a one-to-one correspondence,

A nonpositive definite
self-adjoint operator

←→ etA strongly continuous
semigroup



Self-adjointness of the Laplacian

Let Ω be an open subset of M (possibly coinciding with M).

we recall that an operator L : D(L) ⊂ H → H is (we assume D(L) dense):

symmetric if 〈Lu, v〉 = 〈u,Lv〉
self-adjoint if it is symmetric and D(L∗) = D(L)

As for the standard Laplacian, ∆ is never self-adjoint on L2(Ω, ω) since the
domain of ∆∗ (that is H2) is larger than the domain of ∆ (e.g., C∞

c , or C2
c

or {φ ∈ C2 ∩ L2 with ∆φ ∈ L2}) .
Then one defines ∆ on C∞c (Ω). We say A is a self-adjoint extension of ∆ if

D(∆|C∞

c (N)) ⊂ D(A) = D(A∗) ⊂ D(∆∗)

A∗φ = ∆∗φ for any φ ∈ D(A).



We have two cases:

→There are several self-adjoint extensions. Each self-adjoint
extension corresponds to a different choice of conditions at ∂Ω.

→there exists only one such extension. In this case the operator is
called essentially self-adjoint and the extension the Friedrichs

extension. Conditions at ∂Ω are automatically satisfied.



what is important for us is that

if ∆ is essentially self-adjoint then the Cauchy problems for the heat and
Schroedinger equations are well posed without the need of boundary

conditions

for the Schroedinger equation the essential self-adjointness is a
necessay and sufficient condition for the well-posedness of the problem

for the heat equation it is a sufficient condition


