Homological invariants of Legendrian submanifolds Lecture 1

Frédéric Bourgeois

Laboratoire de Mathématiques d'Orsay

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY

42nd Winter school Geometry and Physics Srni, 15–22 January 2022

Contact structures

Y = smooth manifold of dimension 2n - 1.

Definition

Contact structure ξ on Y = hyperplane distribution maximally non integrable:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\xi = \ker \lambda \Longrightarrow \lambda \wedge (d\lambda)^{n-1} \neq 0.$$

Contact structures

Y = smooth manifold of dimension 2n - 1.

Definition

Contact structure ξ on Y = hyperplane distribution maximally non integrable:

$$\xi = \ker \lambda \Longrightarrow \lambda \wedge (d\lambda)^{n-1} \neq 0.$$

Example: in
$$\mathbb{R}^{2n-1}$$
, ξ_0 is

$$dz - \sum_{i=1}^{n-1} y_i dx_i = 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contact structures

Y = smooth manifold of dimension 2n - 1.

Definition

Contact structure ξ on Y = hyperplane distribution maximally non integrable:

$$\xi = \ker \lambda \Longrightarrow \lambda \wedge (d\lambda)^{n-1} \neq 0.$$

Example: in
$$\mathbb{R}^{2n-1}$$
, ξ_0 is

$$dz - \sum_{i=1}^{n-1} y_i dx_i = 0.$$

Theorem (Darboux)

This is the unique local model for contact structures.

Definition $\Lambda \subset (Y, \xi)$ is Legendrian if $T_p \Lambda \subset \xi_p$ for all $p \in \Lambda$, and if dim $\Lambda = \frac{1}{2} \dim \xi$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition $\Lambda \subset (Y, \xi)$ is Legendrian if $T_p \Lambda \subset \xi_p$ for all $p \in \Lambda$, and if dim $\Lambda = \frac{1}{2} \dim \xi$.

In $(\mathbb{R}^{2n-1}, \xi_0)$, the front projection is defined by $\sigma : \mathbb{R}^{2n-1} \to \mathbb{R}^n : (x, y, z) \mapsto (x, z)$. We can recover Λ from $\sigma(\Lambda)$ via $y_i = \frac{\partial z}{\partial x_i}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition $\Lambda \subset (Y, \xi)$ is Legendrian if $T_p \Lambda \subset \xi_p$ for all $p \in \Lambda$, and if dim $\Lambda = \frac{1}{2} \dim \xi$.

In $(\mathbb{R}^{2n-1}, \xi_0)$, the front projection is defined by $\sigma : \mathbb{R}^{2n-1} \to \mathbb{R}^n : (x, y, z) \mapsto (x, z)$. We can recover Λ from $\sigma(\Lambda)$ via $y_i = \frac{\partial z}{\partial x_i}$.

No vertical tangencies!

Definition $\Lambda \subset (Y, \xi)$ is Legendrian if $T_p \Lambda \subset \xi_p$ for all $p \in \Lambda$, and if dim $\Lambda = \frac{1}{2} \dim \xi$.

In $(\mathbb{R}^{2n-1}, \xi_0)$, the front projection is defined by $\sigma : \mathbb{R}^{2n-1} \to \mathbb{R}^n : (x, y, z) \mapsto (x, z).$ We can recover Λ from $\sigma(\Lambda)$ via $y_i = \frac{\partial z}{\partial x_i}$.

No vertical tangencies!

It is natural to study Λ modulo Legendrian isotopy \rightsquigarrow generalization of knot theory

In dim 3, every knot type can be realized by a Legendrian knot, and splits into infinitely many Legendrian isotopy classes.

In dim 3, every knot type can be realized by a Legendrian knot, and splits into infinitely many Legendrian isotopy classes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical invariants: obtained from algebraic topology of Lagrangian and symplectic vector bundles.

In dim 3, every knot type can be realized by a Legendrian knot, and splits into infinitely many Legendrian isotopy classes.

Classical invariants: obtained from algebraic topology of Lagrangian and symplectic vector bundles.

In dim 3, classical invariants are $(tb, r) \in \mathbb{Z}^2$.

In dim 3, every knot type can be realized by a Legendrian knot, and splits into infinitely many Legendrian isotopy classes.

Classical invariants: obtained from algebraic topology of Lagrangian and symplectic vector bundles.

Leg. unknots (Eliashberg-Fraser) -3 -2 -1 -1 th -3

In dim 3, classical invariants are $(tb, r) \in \mathbb{Z}^2$.

Chekanov $\overline{5_2}$ knots: classical invariants do not always suffice.

・ロト・西ト・ヨト・日下 ひゃぐ

X = manifold of dimension 2n.

Definition

Symplectic structure ω on X = closed, nondegenerate 2-form:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $d\omega = 0$ and $\omega^{\wedge n} \neq 0$.

X = manifold of dimension 2n.

Definition

Symplectic structure ω on X = closed, nondegenerate 2-form: $d\omega = 0$ and $\omega^{\wedge n} \neq 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example: in \mathbb{R}^{2n} , $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$. Darboux: unique local model for symplectic structures.

X = manifold of dimension 2n.

Definition

Symplectic structure ω on X = closed, nondegenerate 2-form: $d\omega = 0$ and $\omega^{\wedge n} \neq 0$.

(日) (日) (日) (日) (日) (日) (日)

Example: in \mathbb{R}^{2n} , $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$. Darboux: unique local model for symplectic structures.

Definition $L \subset (X, \omega)$ is Lagrangian if $\omega|_{T_pL} = 0$ for all $p \in L$, and if dim $L = \frac{1}{2} \dim X$.

X = manifold of dimension 2n.

Definition

Symplectic structure ω on X = closed, nondegenerate 2-form: $d\omega = 0$ and $\omega^{\wedge n} \neq 0$.

Example: in \mathbb{R}^{2n} , $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$. Darboux: unique local model for symplectic structures.

Definition

$$L \subset (X, \omega)$$
 is Lagrangian if $\omega|_{T_pL} = 0$ for all $p \in L$,
and if dim $L = \frac{1}{2} \dim X$.

Example: (X, g, J) Kähler manifold $\rightsquigarrow \omega = g(\cdot, J \cdot)$ symplectic.

A D F A 同 F A E F A E F A Q A

X = manifold of dimension 2n.

Definition

Symplectic structure ω on X = closed, nondegenerate 2-form: $d\omega = 0$ and $\omega^{\wedge n} \neq 0$.

Example: in \mathbb{R}^{2n} , $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$. Darboux: unique local model for symplectic structures.

Definition

$$L \subset (X, \omega)$$
 is Lagrangian if $\omega|_{T_pL} = 0$ for all $p \in L$,
and if dim $L = \frac{1}{2} \dim X$.

Example: (X, g, J) Kähler manifold $\rightsquigarrow \omega = g(\cdot, J \cdot)$ symplectic.

Gromov (1985): use almost complex structure *J* on (X, ω) \rightarrow Gromov-Witten invariants = count of *J*-holomorphic curves.

For $(Y, \xi = \ker \lambda)$: $(\xi, d\lambda)$ is a symplectic vector bundle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For $(Y, \xi = \ker \lambda)$: $(\xi, d\lambda)$ is a symplectic vector bundle.

Definition

A compatible complex structure is $J: \xi \rightarrow \xi$ such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► $J^2 = -I$,

•
$$d\lambda(J\cdot, J\cdot) = d\lambda(\cdot, \cdot),$$

•
$$d\lambda(\cdot, J\cdot) > 0.$$

For $(Y, \xi = \ker \lambda)$: $(\xi, d\lambda)$ is a symplectic vector bundle.

Definition

A compatible complex structure is $J: \xi \rightarrow \xi$ such that

► $J^2 = -I$,

•
$$d\lambda(J\cdot, J\cdot) = d\lambda(\cdot, \cdot),$$

•
$$d\lambda(\cdot, J\cdot) > 0.$$

Symplectization $(\mathbb{R} \times Y, \omega = d(e^t \lambda))$, with $t \in \mathbb{R}$. For $(Y, \xi) = (\mathbb{R}^{2n-1}, \xi_0)$, extend *J* to $\mathbb{R} \times Y \ni (t, p)$ by $J\frac{\partial}{\partial t} = \frac{\partial}{\partial z}$. The cylinder $L = \mathbb{R} \times \Lambda$ is Lagrangian.

For $(Y, \xi = \ker \lambda)$: $(\xi, d\lambda)$ is a symplectic vector bundle.

Definition

A compatible complex structure is $J: \xi \rightarrow \xi$ such that

► $J^2 = -I$,

•
$$d\lambda(J\cdot, J\cdot) = d\lambda(\cdot, \cdot),$$

•
$$d\lambda(\cdot, J\cdot) > 0.$$

Symplectization $(\mathbb{R} \times Y, \omega = d(e^t \lambda))$, with $t \in \mathbb{R}$. For $(Y, \xi) = (\mathbb{R}^{2n-1}, \xi_0)$, extend *J* to $\mathbb{R} \times Y \ni (t, p)$ by $J\frac{\partial}{\partial t} = \frac{\partial}{\partial z}$. The cylinder $L = \mathbb{R} \times \Lambda$ is Lagrangian.

Definition

 $F : \mathbb{D}^2 \subset \mathbb{C} \to \mathbb{R} \times Y$ is J-holomorphic if $df \circ i = J \circ df$. Boundary condition: $F(\partial \mathbb{D}^2) \subset L \rightsquigarrow$ well-posed elliptic problem.

For $(Y, \xi = \ker \lambda)$: $(\xi, d\lambda)$ is a symplectic vector bundle.

Definition

A compatible complex structure is $J : \xi \rightarrow \xi$ such that

► $J^2 = -I$,

•
$$d\lambda(J\cdot, J\cdot) = d\lambda(\cdot, \cdot),$$

•
$$d\lambda(\cdot, J\cdot) > 0.$$

Symplectization $(\mathbb{R} \times Y, \omega = d(e^t \lambda))$, with $t \in \mathbb{R}$. For $(Y, \xi) = (\mathbb{R}^{2n-1}, \xi_0)$, extend *J* to $\mathbb{R} \times Y \ni (t, p)$ by $J\frac{\partial}{\partial t} = \frac{\partial}{\partial z}$. The cylinder $L = \mathbb{R} \times \Lambda$ is Lagrangian.

Definition

 $F : \mathbb{D}^2 \subset \mathbb{C} \to \mathbb{R} \times Y$ is J-holomorphic if $df \circ i = J \circ df$. Boundary condition: $F(\partial \mathbb{D}^2) \subset L \rightsquigarrow$ well-posed elliptic problem.

BUT all such *F* are constant: $\int_{\mathbb{D}^2} F^* \omega = \int_{\partial \mathbb{D}^2} F^*(e^t \lambda) = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Need to allow punctures $z_1^+, \ldots, z_k^+, z_1^-, \ldots, z_\ell^-$ on $\partial \mathbb{D}^2$: $F = (a, f) : \mathbb{D}^2 \setminus \{z^+, z^-\} \to \mathbb{R} \times Y$ also satisfies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Need to allow punctures $z_1^+, \ldots, z_k^+, z_1^-, \ldots, z_\ell^-$ on $\partial \mathbb{D}^2$: $F = (a, f) : \mathbb{D}^2 \setminus \{z^+, z^-\} \to \mathbb{R} \times Y$ also satisfies

$$\begin{split} \lim_{z \to z_i^{\pm}} a(z) &= \pm \infty, \\ \lim_{z \to z_i^{\pm}} f(z) &= \\ c_i^{\pm} (\mp \frac{T_i^{\pm}}{\pi} \arg(z - z_i^{\pm})), \end{split}$$

・ コット (雪) (小田) (コット 日)

Need to allow punctures $z_1^+, \ldots, z_k^+, z_1^-, \ldots, z_\ell^-$ on $\partial \mathbb{D}^2$: $F = (a, f) : \mathbb{D}^2 \setminus \{z^+, z^-\} \to \mathbb{R} \times Y$ also satisfies

・ コット (雪) (小田) (コット 日)

where c_i^{\pm} are Reeb chords of Λ of length T_i^{\pm} , i.e. trajectories of $\frac{\partial}{\partial z}$ with endpoints on Λ .

Need to allow punctures $z_1^+, \ldots, z_k^+, z_1^-, \ldots, z_\ell^-$ on $\partial \mathbb{D}^2$: $F = (a, f) : \mathbb{D}^2 \setminus \{z^+, z^-\} \to \mathbb{R} \times Y$ also satisfies

where c_i^{\pm} are Reeb chords of Λ of length T_i^{\pm} , i.e. trajectories of $\frac{\partial}{\partial z}$ with endpoints on Λ .

Allow all positions of punctures, modulo biholomorphisms \rightsquigarrow moduli space $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)$ with \mathbb{R} -action.

(日) (日) (日) (日) (日) (日) (日)

Need to allow punctures $z_1^+, \ldots, z_k^+, z_1^-, \ldots, z_\ell^-$ on $\partial \mathbb{D}^2$: $F = (a, f) : \mathbb{D}^2 \setminus \{z^+, z^-\} \to \mathbb{R} \times Y$ also satisfies

where c_i^{\pm} are Reeb chords of Λ of length T_i^{\pm} , i.e. trajectories of $\frac{\partial}{\partial z}$ with endpoints on Λ .

Allow all positions of punctures, modulo biholomorphisms \rightsquigarrow moduli space $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)$ with \mathbb{R} -action.

$$\int_{\mathbb{D}^2} F^* d\omega = +\infty$$
 and $0 \leq \int_{\mathbb{D}^2} F^* d\lambda = \sum_{i=1}^k T_i^+ - \sum_{i=1}^\ell T_i^-$.

Can count elements in $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)/\mathbb{R}$ of dim 0, i.e. rigid holomorphic disks.

Can count elements in $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)/\mathbb{R}$ of dim 0, i.e. rigid holomorphic disks.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

BUT this cannot be invariant under Legendrian isotopy, because the Reeb chords c_i^{\pm} are not.

Can count elements in $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)/\mathbb{R}$ of dim 0, i.e. rigid holomorphic disks.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

BUT this cannot be invariant under Legendrian isotopy, because the Reeb chords c_i^{\pm} are not.

Vertical segment with parallel tangents = Reeb chord.

Can count elements in $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)/\mathbb{R}$ of dim 0, i.e. rigid holomorphic disks.

BUT this cannot be invariant under Legendrian isotopy, because the Reeb chords c_i^{\pm} are not.

Vertical segment with parallel tangents = Reeb chord.

Can easily create new Reeb chords by Legendrian isotopy, or sometimes destroy them.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Can count elements in $\mathcal{M}(c_1^+, \ldots, c_k^+; c_1^-, \ldots, c_\ell^-)/\mathbb{R}$ of dim 0, i.e. rigid holomorphic disks.

BUT this cannot be invariant under Legendrian isotopy, because the Reeb chords c_i^{\pm} are not.

Vertical segment with parallel tangents = Reeb chord.

Can easily create new Reeb chords by Legendrian isotopy, or sometimes destroy them.

Instead, count of disks \rightsquigarrow coefficients in a differential: \rightsquigarrow chain complex generated by Reeb chords, \rightsquigarrow homological invariants of Legendrian submanifolds.

Morse function $\eta: M \to \mathbb{R}$ + auxiliary metric *g*. Critical points and gradient trajectories \rightsquigarrow Morse homology.

Morse function $\eta: M \to \mathbb{R}$ + auxiliary metric *g*. Critical points and gradient trajectories \rightsquigarrow Morse homology.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

```
M \rightsquigarrow space of paths \gamma : [0, 1] \rightarrow Y with \gamma(0), \gamma(1) \in \Lambda.
```

Morse function $\eta: M \to \mathbb{R}$ + auxiliary metric *g*. Critical points and gradient trajectories \rightsquigarrow Morse homology.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $M \rightsquigarrow$ space of paths $\gamma : [0, 1] \rightarrow Y$ with $\gamma(0), \gamma(1) \in \Lambda$. $\eta \rightsquigarrow$ action functional $\mathcal{A}(\gamma) = \int_0^1 \gamma^* \lambda$, critical points = Reeb chords.

Morse function $\eta: M \to \mathbb{R}$ + auxiliary metric *g*. Critical points and gradient trajectories \rightsquigarrow Morse homology.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\begin{split} M &\rightsquigarrow \text{space of paths } \gamma : [0, 1] \to Y \text{ with } \gamma(0), \gamma(1) \in \Lambda. \\ \eta &\rightsquigarrow \text{ action functional } \mathcal{A}(\gamma) = \int_0^1 \gamma^* \lambda, \\ \text{ critical points = Reeb chords.} \\ g &\rightsquigarrow J \text{ to define } L^2 \text{-gradient for } \mathcal{A}: \\ \langle \nabla \mathcal{A}(\gamma), \zeta \rangle = \int_0^1 g(J\dot{\gamma}(\theta), \zeta(\theta)) \, d\theta \end{split}$$

Morse function $\eta: M \to \mathbb{R}$ + auxiliary metric *g*. Critical points and gradient trajectories \rightsquigarrow Morse homology.

 $\begin{array}{l} M \rightsquigarrow \text{ space of paths } \gamma : [0, 1] \rightarrow Y \text{ with } \gamma(0), \gamma(1) \in \Lambda. \\ \eta \rightsquigarrow \text{ action functional } \mathcal{A}(\gamma) = \int_0^1 \gamma^* \lambda, \\ \text{ critical points = Reeb chords.} \\ g \rightsquigarrow J \text{ to define } L^2 \text{-gradient for } \mathcal{A}: \\ \langle \nabla \mathcal{A}(\gamma), \zeta \rangle = \int_0^1 g(J\dot{\gamma}(\theta), \zeta(\theta)) \, d\theta \\ \text{gradient flow eqs } \rightsquigarrow \text{ Cauchy-Riemann eqs: } \frac{\partial F}{\partial s} = -J \frac{\partial F}{\partial \theta}. \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Morse function $\eta: M \to \mathbb{R}$ + auxiliary metric *g*. Critical points and gradient trajectories \rightsquigarrow Morse homology.

 $\begin{array}{l} M \rightsquigarrow \text{space of paths } \gamma : [0,1] \rightarrow Y \text{ with } \gamma(0), \gamma(1) \in \Lambda. \\ \eta \rightsquigarrow \text{action functional } \mathcal{A}(\gamma) = \int_0^1 \gamma^* \lambda, \\ \text{critical points = Reeb chords.} \\ g \rightsquigarrow J \text{ to define } L^2 \text{-gradient for } \mathcal{A}: \\ \langle \nabla \mathcal{A}(\gamma), \zeta \rangle = \int_0^1 g(J\dot{\gamma}(\theta), \zeta(\theta)) \, d\theta \\ \text{gradient flow eqs } \rightsquigarrow \text{Cauchy-Riemann eqs: } \frac{\partial F}{\partial s} = -J \frac{\partial F}{\partial \theta}. \end{array}$

Limits of analogy: compactification of moduli spaces.

More negative punctures can appear.

Very general framework (Eliashberg, Givental, Hofer) for holomorphic curves in symplectic cobordisms (with or without Λ).

(ロ) (同) (三) (三) (三) (○) (○)

Very general framework (Eliashberg, Givental, Hofer) for holomorphic curves in symplectic cobordisms (with or without Λ).

Hol. curves with *k* positive and ℓ negative punctures. Remember that $\sum_{i=1}^{k} T_i^+ - \sum_{i=1}^{\ell} T_i^- \ge 0$ so $k \ge 1$.

・ロト・日本・日本・日本・日本

Very general framework (Eliashberg, Givental, Hofer) for holomorphic curves in symplectic cobordisms (with or without Λ).

Hol. curves with *k* positive and ℓ negative punctures. Remember that $\sum_{i=1}^{k} T_i^+ - \sum_{i=1}^{\ell} T_i^- \ge 0$ so $k \ge 1$.

	k = 1 and genus 0		$k \geq 1$ and $\ell \geq 0$	
	"ℓ = 1 "	$\ell \geq 0$	genus = 0	genus \geq 0
no Λ	cylindrical or	contact	rational	SFT
	linearized CH	homol. (CH)	SFT	
٨	linearized	Leg. CH	version due	not defined
	LCH	(LCH)	to Ekholm	not denned

・ロト・日本・日本・日本・日本

Very general framework (Eliashberg, Givental, Hofer) for holomorphic curves in symplectic cobordisms (with or without Λ).

Hol. curves with *k* positive and ℓ negative punctures. Remember that $\sum_{i=1}^{k} T_i^+ - \sum_{i=1}^{\ell} T_i^- \ge 0$ so $k \ge 1$.

	k = 1 and genus 0		$k \geq 1$ and $\ell \geq 0$	
	"ℓ = 1 "	$\ell \geq 0$	genus = 0	genus \geq 0
no Λ	cylindrical or	contact	rational	SFT
	linearized CH	homol. (CH)	SFT	
٨	linearized	Leg. CH	version due	not defined
	LCH	(LCH)	to Ekholm	not denned

Next lectures:

focus on linearized LCH, its variants and properties.