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Contact structures

Y = smooth manifold of dimension 2n − 1.

Definition
Contact structure ξ on Y = hyperplane distribution maximally
non integrable:

ξ = kerλ =⇒ λ ∧ (dλ)n−1 6= 0.

Example: in R2n−1, ξ0 is

dz −
n−1∑
i=1

yidxi = 0.
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Theorem (Darboux)
This is the unique local model for contact structures.
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Legendrian submanifolds

Definition
Λ ⊂ (Y , ξ) is Legendrian if TpΛ ⊂ ξp for all p ∈ Λ,

and if dim Λ = 1
2 dim ξ.

In (R2n−1, ξ0), the front projection is defined by
σ : R2n−1 → Rn : (x , y , z) 7→ (x , z).

We can recover Λ from σ(Λ) via yi = ∂z
∂xi
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No vertical
tangencies!

It is natural to study Λ modulo Legendrian isotopy
 generalization of knot theory
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Classifying Legendrians?
In dim 3, every knot type can be realized by a Legendrian knot,
and splits into infinitely many Legendrian isotopy classes.

Classical invariants: obtained from algebraic topology of
Lagrangian and symplectic vector bundles.

Leg. unknots (Eliashberg-Fraser)

In dim 3, classical
invariants are
(tb, r) ∈ Z2.

Chekanov 52 knots:
classical invariants do
not always suffice.
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Parallel with symplectic geometry

X = manifold of dimension 2n.

Definition
Symplectic structure ω on X = closed, nondegenerate 2-form:

dω = 0 and ω∧n 6= 0.

Example: in R2n, ω0 =
∑n

i=1 dxi ∧ dyi .
Darboux: unique local model for symplectic structures.

Definition
L ⊂ (X , ω) is Lagrangian if ω|TpL = 0 for all p ∈ L,

and if dim L = 1
2 dim X.

Example: (X ,g, J) Kähler manifold ω = g(·, J·) symplectic.

Gromov (1985): use almost complex structure J on (X , ω)
 Gromov-Witten invariants = count of J-holomorphic curves.
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Almost complex structures in contact geometry

For (Y , ξ = kerλ): (ξ,dλ) is a symplectic vector bundle.

Definition
A compatible complex structure is J : ξ → ξ such that
I J2 = −I,
I dλ(J·, J·) = dλ(·, ·),
I dλ(·, J·) > 0.

Symplectization (R× Y , ω = d(etλ)), with t ∈ R.
For (Y , ξ) = (R2n−1, ξ0), extend J to R× Y 3 (t ,p) by J ∂

∂t = ∂
∂z .

The cylinder L = R× Λ is Lagrangian.

Definition
F : D2 ⊂ C→ R× Y is J-holomorphic if df ◦ i = J ◦ df .
Boundary condition: F (∂D2) ⊂ L well-posed elliptic problem.

BUT all such F are constant:
∫
D2 F ∗ω =

∫
∂D2 F ∗(etλ) = 0.
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Holomorphic disks in symplectizations

Need to allow punctures z+
1 , . . . , z

+
k , z−1 , . . . , z

−
` on ∂D2:

F = (a, f ) : D2 \ {z+, z−} → R× Y also satisfies

limz→z±
i

a(z) = ±∞,
limz→z±

i
f (z) =

c±i (∓T±
i
π arg(z − z±i )),

where c±i are Reeb chords of Λ of length T±i ,
i.e. trajectories of ∂

∂z with endpoints on Λ.

Allow all positions of punctures, modulo biholomorphisms
 moduli spaceM(c+

1 , . . . , c
+
k ; c−1 , . . . , c

−
` ) with R-action.∫

D2 F ∗dω = +∞ and 0 ≤
∫
D2 F ∗dλ =

∑k
i=1 T+

i −
∑`

i=1 T−i .
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Constructing Legendrian invariants

Can count elements inM(c+
1 , . . . , c

+
k ; c−1 , . . . , c

−
` )/R of dim 0,

i.e. rigid holomorphic disks.

BUT this cannot be invariant under Legendrian isotopy,
because the Reeb chords c±i are not.

Vertical segment
with parallel
tangents = Reeb
chord.

Can easily create new Reeb
chords by Legendrian
isotopy, or sometimes
destroy them.

Instead, count of disks coefficients in a differential:
 chain complex generated by Reeb chords,
 homological invariants of Legendrian submanifolds.
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Analogy with Morse theory

Morse function η : M → R + auxiliary metric g.
Critical points and gradient trajectories Morse homology.

M  space of paths γ : [0,1]→ Y with γ(0), γ(1) ∈ Λ.
η  action functional A(γ) =

∫ 1
0 γ
∗λ,

critical points = Reeb chords.
g  J to define L2-gradient for A:

〈∇A(γ), ζ〉 =
∫ 1

0 g(J γ̇(θ), ζ(θ)) dθ
gradient flow eqs Cauchy-Riemann eqs: ∂F

∂s = −J ∂F
∂θ .

Limits of analogy: compactification of moduli spaces.

More
negative
punctures
can
appear.
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Symplectic Field Theory (SFT) and all that

Very general framework (Eliashberg, Givental, Hofer)
for holomorphic curves in symplectic cobordisms
(with or without Λ).

Hol. curves with k positive and ` negative punctures.
Remember that

∑k
i=1 T+

i −
∑`

i=1 T−i ≥ 0 so k ≥ 1.

k = 1 and genus 0 k ≥ 1 and ` ≥ 0
“` = 1” ` ≥ 0 genus = 0 genus ≥ 0

no Λ
cylindrical or contact rational

SFT
linearized CH homol. (CH) SFT

Λ
linearized Leg. CH version due

not defined
LCH (LCH) to Ekholm

Next lectures:
focus on linearized LCH, its variants and properties.
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