Homological invariants of Legendrian submanifolds Lecture 2

Frédéric Bourgeois

Laboratoire de Mathématiques d'Orsay
universitė
PARIS-SACLAY
FACULTÉ
DES SCIENCES
D'ORSAY

42nd Winter school Geometry and Physics Srni, 15-22 January 2022

Geometric setup from lecture 1

Work in $Y=\mathbb{R}^{2 n-1}$ with std contact structure $\xi_{0}=\operatorname{ker} \lambda_{0}$,

$$
\lambda_{0}=d z-\sum_{i=1}^{n-1} y_{i} d x_{i} .
$$

Geometric setup from lecture 1

Work in $Y=\mathbb{R}^{2 n-1}$ with std contact structure $\xi_{0}=\operatorname{ker} \lambda_{0}$,

$$
\lambda_{0}=d z-\sum_{i=1}^{n-1} y_{i} d x_{i} .
$$

$\Lambda \subset\left(Y, \xi_{0}\right)$ closed, connected Legendrian submanifold.

Geometric setup from lecture 1

Work in $Y=\mathbb{R}^{2 n-1}$ with std contact structure $\xi_{0}=\operatorname{ker} \lambda_{0}$,

$$
\lambda_{0}=d z-\sum_{i=1}^{n-1} y_{i} d x_{i} .
$$

$\Lambda \subset\left(Y, \xi_{0}\right)$ closed, connected Legendrian submanifold.
Symplectization $\left(\mathbb{R} \times Y, d\left(e^{t} \lambda_{0}\right)\right)$, equipped with compatible almost complex structure J.

Geometric setup from lecture 1

Work in $Y=\mathbb{R}^{2 n-1}$ with std contact structure $\xi_{0}=\operatorname{ker} \lambda_{0}$,

$$
\lambda_{0}=d z-\sum_{i=1}^{n-1} y_{i} d x_{i}
$$

$\Lambda \subset\left(Y, \xi_{0}\right)$ closed, connected Legendrian submanifold.
Symplectization $\left(\mathbb{R} \times Y, d\left(e^{t} \lambda_{0}\right)\right)$, equipped with compatible almost complex structure J.

Moduli spaces of J-holomorphic disks $\mathcal{M}\left(c^{+} ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R}$.

Dimension of moduli spaces

For each Reeb chord c of Λ, choose a "capping path" in \wedge connecting the endpoints of c.
\rightsquigarrow path of Lagrangian subspaces in ($\xi, d \lambda$) trivial symplectic bundle.
\rightsquigarrow Maslov index $\mu(c)$, if c is nondegenerate,

$$
\text { i.e. } T_{c(0)} \wedge \pitchfork T_{c(1)} \wedge \text { in } \xi
$$

Dimension of moduli spaces

For each Reeb chord c of Λ, choose a "capping path" in \wedge connecting the endpoints of c.
\rightsquigarrow path of Lagrangian subspaces in ($\xi, d \lambda$) trivial symplectic bundle.
\rightsquigarrow Maslov index $\mu(c)$, if c is nondegenerate,

$$
\text { i.e. } T_{c(0)} \wedge \pitchfork T_{c(1)} \wedge \text { in } \xi
$$

Set $|c|=\mu(c)-1$.

Dimension of moduli spaces

For each Reeb chord c of Λ, choose a "capping path" in Λ connecting the endpoints of c.
\rightsquigarrow path of Lagrangian subspaces in ($\xi, d \lambda$) trivial symplectic bundle.
\rightsquigarrow Maslov index $\mu(c)$, if c is nondegenerate,

$$
\text { i.e. } T_{c(0)} \wedge \pitchfork T_{c(1)} \wedge \text { in } \xi \text {. }
$$

Set $|c|=\mu(c)-1$.
Assume the Maslov class of Λ vanishes, i.e. all loops in Λ have a zero Maslov index.
$\rightsquigarrow|c|$ is independent of all choices.

Dimension of moduli spaces

For each Reeb chord c of Λ, choose a "capping path" in Λ connecting the endpoints of c.
\rightsquigarrow path of Lagrangian subspaces in ($\xi, d \lambda$) trivial symplectic bundle.
\rightsquigarrow Maslov index $\mu(c)$, if c is nondegenerate,

$$
\text { i.e. } T_{c(0)} \wedge \pitchfork T_{c(1)} \wedge \text { in } \xi \text {. }
$$

Set $|c|=\mu(c)-1$.
Assume the Maslov class of Λ vanishes,
i.e. all loops in Λ have a zero Maslov index.
$\rightsquigarrow|c|$ is independent of all choices.
The dimension of moduli space $\mathcal{M}\left(c^{+} ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right)$is given by

$$
\left|c^{+}\right|-\sum_{j=1}^{\ell}\left|c_{\ell}^{-}\right|
$$

Chekanov-Eliashberg algebra

Perturb \wedge by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

Chekanov-Eliashberg algebra

Perturb \wedge by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.
Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_{2} freely generated by Reeb chords of Λ.

Chekanov-Eliashberg algebra

Perturb \wedge by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.
Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_{2} freely generated by Reeb chords of Λ.

Define differential $\partial: \mathscr{A} \rightarrow \mathscr{A}$ of degree -1 by

$$
\partial c=\sum_{c_{1}^{-}, \ldots, c_{\ell}^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} c_{1}^{-} \ldots c_{\ell}^{-}
$$

Chekanov-Eliashberg algebra

Perturb \wedge by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.
Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_{2} freely generated by Reeb chords of Λ.

Define differential $\partial: \mathscr{A} \rightarrow \mathscr{A}$ of degree -1 by

$$
\partial c=\sum_{c_{1}^{-}, \ldots, c_{\ell}^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} c_{1}^{-} \ldots c_{\ell}^{-} .
$$

Terms in the boundary of \mathcal{M} cancel in pairs.

All terms correspond to $\partial \circ \partial$.

$$
\rightsquigarrow \partial \circ \partial=0 .
$$

Chekanov-Eliashberg algebra

Perturb \wedge by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.
Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_{2} freely generated by Reeb chords of Λ.

Define differential $\partial: \mathscr{A} \rightarrow \mathscr{A}$ of degree -1 by

$$
\partial c=\sum_{c_{1}^{-}, \ldots, c_{\ell}^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} c_{1}^{-} \ldots c_{\ell}^{-}
$$

Then $\partial \circ \partial=0$, so that (\mathscr{A}, ∂) is a DGA.

Chekanov-Eliashberg algebra

Perturb \wedge by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.
Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_{2} freely generated by Reeb chords of Λ.

Define differential $\partial: \mathscr{A} \rightarrow \mathscr{A}$ of degree -1 by

$$
\partial c=\sum_{c_{1}^{-}, \ldots, c_{\ell}^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} c_{1}^{-} \ldots c_{\ell}^{-}
$$

Then $\partial \circ \partial=0$, so that (\mathscr{A}, ∂) is a DGA.
Theorem (Ekholm, Etnyre, Sullivan)
$L C H_{*}(\Lambda)=H_{*}(\mathscr{A}, \partial)$ is well-defined and invariant under
Legendrian isotopy.

Example: right-handed trefoil

Example: right-handed trefoil

Example: right-handed trefoil

Generators a_{1}, a_{2}

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\partial b_{1}=\partial b_{2}=\partial b_{3}=0
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 . \\
& \partial a_{1}=
\end{aligned}
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 . \\
& \partial a_{1}=1+
\end{aligned}
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 . \\
& \partial a_{1}=1+b_{1}+
\end{aligned}
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 . \\
& \partial a_{1}=1+b_{1}+b_{3}+
\end{aligned}
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 \\
& \partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1}
\end{aligned}
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 \\
& \partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
& \partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{aligned}
$$

Example: right-handed trefoil

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\begin{aligned}
& \partial b_{1}=\partial b_{2}=\partial b_{3}=0 \\
& \partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
& \partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{aligned}
$$

But it is still very difficult to compute ker ∂ and then $\operatorname{LCH}(\Lambda)$!

Augmentations

Definition
An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ of degree 0 such that $\varepsilon \circ \partial=0$ and $\varepsilon(1)=1$.

Augmentations

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ of degree 0 such that $\varepsilon \circ \partial=0$ and $\varepsilon(1)=1$.
If $\varepsilon_{1}, \varepsilon_{2}$ are augmentations of (\mathscr{A}, ∂),
a linear map $K: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ is an $\left(\varepsilon_{1}, \varepsilon_{2}\right)$-derivation if $K(a b)=\varepsilon_{1}(a) K(b)+K(a) \varepsilon_{2}(b)$ for all $a, b \in \mathscr{A}$.

Augmentations

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ of degree 0 such that $\varepsilon \circ \partial=0$ and $\varepsilon(1)=1$.
If $\varepsilon_{1}, \varepsilon_{2}$ are augmentations of (\mathscr{A}, ∂),
a linear map $K: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ is an $\left(\varepsilon_{1}, \varepsilon_{2}\right)$-derivation if $K(a b)=\varepsilon_{1}(a) K(b)+K(a) \varepsilon_{2}(b)$ for all $a, b \in \mathscr{A}$.
Definition
Augmentations $\varepsilon_{1}, \varepsilon_{2}$ are DGA-homotopic if there exists an $\left(\varepsilon_{1}, \varepsilon_{2}\right)$-derivation K of degree +1 such that $\varepsilon_{1}-\varepsilon_{2}=K \circ \partial$.

Augmentations

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ of degree 0 such that $\varepsilon \circ \partial=0$ and $\varepsilon(1)=1$.
If $\varepsilon_{1}, \varepsilon_{2}$ are augmentations of (\mathscr{A}, ∂),
a linear map $K: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ is an $\left(\varepsilon_{1}, \varepsilon_{2}\right)$-derivation if $K(a b)=\varepsilon_{1}(a) K(b)+K(a) \varepsilon_{2}(b)$ for all $a, b \in \mathscr{A}$.
Definition
Augmentations $\varepsilon_{1}, \varepsilon_{2}$ are DGA-homotopic if there exists an $\left(\varepsilon_{1}, \varepsilon_{2}\right)$-derivation K of degree +1 such that $\varepsilon_{1}-\varepsilon_{2}=K \circ \partial$.
$[\varepsilon]=$ DGA-homotopy class of ε.
Theorem
$\{[\varepsilon] \mid \varepsilon$ augm. for $\Lambda\}$ is invariant under Legendrian isotopy.

Augmentations

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ of degree 0 such that $\varepsilon \circ \partial=0$ and $\varepsilon(1)=1$.
If $\varepsilon_{1}, \varepsilon_{2}$ are augmentations of (\mathscr{A}, ∂),
a linear map $K: \mathscr{A} \rightarrow \mathbb{Z}_{2}$ is an $\left(\varepsilon_{1}, \varepsilon_{2}\right)$-derivation if $K(a b)=\varepsilon_{1}(a) K(b)+K(a) \varepsilon_{2}(b)$ for all $a, b \in \mathscr{A}$.
Definition
Augmentations $\varepsilon_{1}, \varepsilon_{2}$ are DGA-homotopic if there exists an
($\varepsilon_{1}, \varepsilon_{2}$)-derivation K of degree +1 such that $\varepsilon_{1}-\varepsilon_{2}=K \circ \partial$.
$[\varepsilon]=$ DGA-homotopy class of ε.
Theorem
$\{[\varepsilon] \mid \varepsilon$ augm. for $\Lambda\}$ is invariant under Legendrian isotopy.
Example: Legendrian $\wedge \subset(Y, \xi)$.
Exact lagrangian filling $L \subset\left(\mathbb{R} \times Y, d\left(e^{t} \lambda\right)\right) \rightsquigarrow$ augmentation ε_{L}.

Linearized LCH

Let C_{*} be the graded vector space generated by Reeb chords.

Linearized LCH

Let C_{*} be the graded vector space generated by Reeb chords.
Define $\partial^{\varepsilon}: C_{*} \rightarrow C_{*-1}$ by
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.

Linearized LCH

Let C_{*} be the graded vector space generated by Reeb chords.
Define $\partial^{\varepsilon}: C_{*} \rightarrow C_{*-1}$ by $\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Then $\varepsilon \circ \partial=0$ implies $\partial^{\varepsilon} \circ \partial^{\varepsilon}=0$.

Left: term in $\partial^{\varepsilon} \circ \partial^{\varepsilon}$.

Right:
zero term.

Linearized LCH

Let C_{*} be the graded vector space generated by Reeb chords.
Define $\partial^{\varepsilon}: C_{*} \rightarrow C_{*-1}$ by
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Then $\varepsilon \circ \partial=0$ implies $\partial^{\varepsilon} \circ \partial^{\varepsilon}=0$.
Theorem
$L C H_{*}^{\varepsilon}(\Lambda)=H_{*}\left(C, \partial^{\varepsilon}\right)$ depends only on $[\varepsilon]$ and
$\left\{L C H_{*}^{[\varepsilon]}(\Lambda) \mid \varepsilon\right.$ augm. for $\left.\Lambda\right\}$ is invariant under Leg. isotopy.

Linearized LCH

Let C_{*} be the graded vector space generated by Reeb chords.
Define $\partial^{\varepsilon}: C_{*} \rightarrow C_{*-1}$ by
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Then $\varepsilon \circ \partial=0$ implies $\partial^{\varepsilon} \circ \partial^{\varepsilon}=0$.
Theorem
$L C H_{*}^{\varepsilon}(\Lambda)=H_{*}\left(C, \partial^{\varepsilon}\right)$ depends only on $[\varepsilon]$ and
$\left\{\mathrm{LCH}_{*}^{[\varepsilon]}(\Lambda) \mid \varepsilon\right.$ augm. for $\left.\Lambda\right\}$ is invariant under Leg. isotopy.
$L C H_{*}^{\varepsilon}(\Lambda)$ is much easier to compute, but forgets all noncommutative content.

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}			

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1		

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0		

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{4}	0	0	

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3} .
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=$

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3} .
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=b_{2}$,

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3} .
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}} a_{2}=b_{2}$.

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}} a_{2}=b_{2}$.
Homology classes:
$\left[a_{1}+a_{2}\right],\left[b_{1}\right],\left[b_{3}\right]$.

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}} a_{2}=b_{2}$.
Homology classes:
$\left[a_{1}+a_{2}\right],\left[b_{1}\right],\left[b_{3}\right]$.
Poincaré polynomial:
$t+2$

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}} a_{2}=b_{2}$.
Homology classes:
$\left[a_{1}+a_{2}\right],\left[b_{1}\right],\left[b_{3}\right]$.
Poincaré polynomial:
$t+2$

Get Poincaré polynomial $t+2$ for all ε_{i}.

Example: right-handed trefoil 2

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3} .
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:
$\partial^{\varepsilon_{1}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}} a_{2}=b_{2}$.
Homology classes:
$\left[a_{1}+a_{2}\right],\left[b_{1}\right],\left[b_{3}\right]$.
Poincaré polynomial:
$t+2$

Get Poincaré polynomial $t+2$ for all ε_{i}.
Are the augmentations ε_{i} DGA-homotopic or not?

Bilinearized LCH

Linearized differential:
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.

Bilinearized LCH

Linearized differential:
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Idea: use 2 augmentations $\varepsilon_{1}, \varepsilon_{2}$ instead of one!

Bilinearized LCH

Linearized differential:
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Idea: use 2 augmentations $\varepsilon_{1}, \varepsilon_{2}$ instead of one!
Define $\partial^{\varepsilon_{1}, \varepsilon_{2}}: C_{*} \rightarrow C_{*-1}$ by $\partial^{\varepsilon_{1}, \varepsilon_{2}} \boldsymbol{c}=\sum_{c_{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon_{1}\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon_{2}\left(c_{\ell}^{-}\right)$.

Bilinearized LCH

Linearized differential:
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Idea: use 2 augmentations $\varepsilon_{1}, \varepsilon_{2}$ instead of one!
Define $\partial^{\varepsilon_{1}, \varepsilon_{2}}: C_{*} \rightarrow C_{*-1}$ by $\partial^{\varepsilon_{1}, \varepsilon_{2}} \boldsymbol{c}=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon_{1}\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon_{2}\left(c_{\ell}^{-}\right)$.

Then $\partial^{\varepsilon_{1}, \varepsilon_{2}} \circ \partial^{\varepsilon_{1}, \varepsilon_{2}}=0$.

Bilinearized LCH

Linearized differential:
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Idea: use 2 augmentations $\varepsilon_{1}, \varepsilon_{2}$ instead of one!
Define $\partial^{\varepsilon_{1}, \varepsilon_{2}}: C_{*} \rightarrow C_{*-1}$ by $\partial^{\varepsilon_{1}, \varepsilon_{2}} \boldsymbol{c}=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon_{1}\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon_{2}\left(c_{\ell}^{-}\right)$.

Then $\partial^{\varepsilon_{1}, \varepsilon_{2}} \circ \partial^{\varepsilon_{1}, \varepsilon_{2}}=0$.
Theorem (B., Chantraine)
$L C H_{*}^{\varepsilon_{1}, \varepsilon_{2}}(\Lambda)=H_{*}\left(C, \partial^{\varepsilon_{1}, \varepsilon_{2}}\right)$ depends only on $\left[\varepsilon_{1}\right]$, $\left[\varepsilon_{2}\right]$, and
$\left\{\mathrm{LCH}_{*}^{\left[\varepsilon_{1}\right],\left[\varepsilon_{2}\right]}(\Lambda) \mid \varepsilon\right.$ augm. for $\left.\lambda\right\}$ is invariant under Leg. isotopy.

Bilinearized LCH

Linearized differential:
$\partial^{\varepsilon} c=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon\left(c_{\ell}^{-}\right)$.
Idea: use 2 augmentations $\varepsilon_{1}, \varepsilon_{2}$ instead of one!
Define $\partial^{\varepsilon_{1}, \varepsilon_{2}}: C_{*} \rightarrow C_{*-1}$ by $\partial^{\varepsilon_{1}, \varepsilon_{2}} \boldsymbol{c}=\sum_{c^{-}} \# \mathcal{M}\left(c ; c_{1}^{-}, \ldots, c_{\ell}^{-}\right) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon_{1}\left(c_{1}^{-}\right) \ldots c_{j}^{-} \ldots \varepsilon_{2}\left(c_{\ell}^{-}\right)$.

Then $\partial^{\varepsilon_{1}, \varepsilon_{2}} \circ \partial^{\varepsilon_{1}, \varepsilon_{2}}=0$.
Theorem (B., Chantraine)
$L C H_{*}^{\varepsilon_{1}, \varepsilon_{2}}(\Lambda)=H_{*}\left(C, \partial^{\varepsilon_{1}, \varepsilon_{2}}\right)$ depends only on $\left[\varepsilon_{1}\right]$, $\left[\varepsilon_{2}\right]$, and $\left\{\mathrm{LCH}_{*}^{\left[\varepsilon_{1}\right],\left[\varepsilon_{2}\right]}(\Lambda) \mid \varepsilon\right.$ augm. for $\left.\lambda\right\}$ is invariant under Leg. isotopy.
$L C H_{*}^{\varepsilon_{1}, \varepsilon_{2}}(\Lambda)$ is still convenient to compute, but also remembers some noncommutative content!

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:
Bilinearized differential:

$$
\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=
$$

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3} .
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Bilinearized differential:

$$
\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=b_{2},
$$

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Bilinearized differential:

$$
\begin{aligned}
& \partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=b_{2}, \\
& \partial^{\varepsilon_{1}, \varepsilon_{2}} a_{2}=b_{1} .
\end{aligned}
$$

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Bilinearized differential:
$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{2}=b_{1}$.
Homology classes:
[b_{3}].

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial a_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Bilinearized differential:
$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=b_{2}$,
$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{2}=b_{1}$.
Homology classes:
[b_{3}].
Poincaré polynomial:
1

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial \boldsymbol{a}_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:
Bilinearized differential:
$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=b_{2}$,

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{2}=b_{1}$.
Homology classes:
[b_{3}].
Poincaré polynomial: 1

Get Poincaré polynomial 1 for all $\left(\varepsilon_{i}, \varepsilon_{j}\right)$ with $i \neq j$.

Example: right-handed trefoil 3

Generators $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$ with $\left|a_{i}\right|=1$ and $\left|b_{j}\right|=0$.

$$
\left\{\begin{array}{l}
\partial a_{1}=1+b_{1}+b_{3}+b_{3} b_{2} b_{1} \\
\partial \boldsymbol{a}_{2}=1+b_{1}+b_{3}+b_{1} b_{2} b_{3}
\end{array}\right.
$$

Augmentations:
Bilinearized differential:
$\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{1}=b_{2}$,

	b_{1}	b_{2}	b_{3}
ε_{1}	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

$$
\partial^{\varepsilon_{1}, \varepsilon_{2}} a_{2}=b_{1} .
$$

Homology classes:
[b_{3}].
Poincaré polynomial: 1

Get Poincaré polynomial 1 for all $\left(\varepsilon_{i}, \varepsilon_{j}\right)$ with $i \neq j$.
Since $1 \neq t+2$, all $\left[\varepsilon_{i}\right]$ are distinct!

Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given \wedge, bilinearized LCH is a complete invariant for $[\varepsilon]$.

Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given \wedge, bilinearized LCH is a complete invariant for $[\varepsilon]$.
Augmentation category for $\wedge:$: (B., Chantraine)
Objects are augmentations for \wedge,

Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given \wedge, bilinearized LCH is a complete invariant for $[\varepsilon]$.
Augmentation category for \wedge : (B., Chantraine)
Objects are augmentations for \wedge, $\operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is the cochain complex for $L C H_{\varepsilon_{1}, \varepsilon_{2}}^{*}(\Lambda)$,

Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given \wedge, bilinearized LCH is a complete invariant for $[\varepsilon]$.
Augmentation category for \wedge : (B., Chantraine)
Objects are augmentations for Λ, $\operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is the cochain complex for $L C H_{\varepsilon_{1}, \varepsilon_{2}}^{*}(\Lambda)$, + higher operations,
e.g. $\mu_{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}}^{2}: \operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right) \otimes \operatorname{Mor}\left(\varepsilon_{2}, \varepsilon_{3}\right) \rightarrow \operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{3}\right)$

Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given \wedge, bilinearized LCH is a complete invariant for $[\varepsilon]$.
Augmentation category for \wedge : (B., Chantraine)
Objects are augmentations for \wedge, $\operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is the cochain complex for $L C H_{\varepsilon_{1}, \varepsilon_{2}}^{*}(\Lambda)$, + higher operations,

$$
\text { e.g. } \mu_{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}}^{2}: \operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right) \otimes \operatorname{Mor}\left(\varepsilon_{2}, \varepsilon_{3}\right) \rightarrow \operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{3}\right)
$$

A term in

$$
\mu_{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}}^{2}\left(c_{1}, c_{2}\right)
$$

Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given \wedge, bilinearized LCH is a complete invariant for $[\varepsilon]$.
Augmentation category for \wedge : (B., Chantraine)
Objects are augmentations for \wedge, $\operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is the cochain complex for $L C H_{\varepsilon_{1}, \varepsilon_{2}}^{*}(\Lambda)$, + higher operations,

$$
\text { e.g. } \mu_{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}}^{2}: \operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{2}\right) \otimes \operatorname{Mor}\left(\varepsilon_{2}, \varepsilon_{3}\right) \rightarrow \operatorname{Mor}\left(\varepsilon_{1}, \varepsilon_{3}\right)
$$

A term in

$$
\mu_{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}}^{2}\left(c_{1}, c_{2}\right) .
$$

$\rightsquigarrow A_{\infty}$-category, analogous to the Fukaya category in symplectic geometry.

Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff)
For any closed Legendrian $\Lambda \subset\left(\mathbb{R}^{2 n+1}, \xi_{0}\right)$, we have a long exact sequence
$\ldots \rightarrow H_{k+1}(\Lambda) \xrightarrow{\sigma_{n-k-1}} L C H_{\varepsilon}^{n-k-1}(\Lambda) \rightarrow \operatorname{LCH}_{k}^{\varepsilon}(\Lambda) \xrightarrow{\tau_{k}} H_{k}(\Lambda) \rightarrow \ldots$
where the maps τ_{k} and σ_{k} are adjoint to each other.

Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff)
For any closed Legendrian $\Lambda \subset\left(\mathbb{R}^{2 n+1}, \xi_{0}\right)$, we have a long exact sequence
$\ldots \rightarrow H_{k+1}(\Lambda) \xrightarrow{\sigma_{n-k-1}} L C H_{\varepsilon}^{n-k-1}(\Lambda) \rightarrow L C H_{k}^{\varepsilon}(\Lambda) \xrightarrow{\tau_{k}} H_{k}(\Lambda) \rightarrow \ldots$
where the maps τ_{k} and σ_{k} are adjoint to each other.
Original motivation: Arnold chord conjecture,
i.e. the number of Reeb chords of Λ is at least $\frac{1}{2} \operatorname{dim} H(\Lambda)$.

Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff)
For any closed Legendrian $\Lambda \subset\left(\mathbb{R}^{2 n+1}, \xi_{0}\right)$, we have a long exact sequence
$\ldots \rightarrow H_{k+1}(\Lambda) \xrightarrow{\sigma_{n-k-1}} L C H_{\varepsilon}^{n-k-1}(\Lambda) \rightarrow \operatorname{LCH}_{k}^{\varepsilon}(\Lambda) \xrightarrow{\tau_{k}} H_{k}(\Lambda) \rightarrow \ldots$
where the maps τ_{k} and σ_{k} are adjoint to each other.
Original motivation: Arnold chord conjecture,
i.e. the number of Reeb chords of Λ is at least $\frac{1}{2} \operatorname{dim} H(\Lambda)$.

Theorem
For any closed Legendrian $\Lambda \subset\left(\mathbb{R}^{2 n+1}, \xi_{0}\right)$, we have a long exact sequence
$\ldots \rightarrow H_{k+1}(\Lambda) \xrightarrow{\sigma_{n-k-1}} L C H_{\varepsilon_{2}, \varepsilon_{1}}^{n-k-1}(\Lambda) \rightarrow L C H_{k}^{\varepsilon_{1}, \varepsilon_{2}}(\Lambda) \xrightarrow{\tau_{k}} H_{k}(\Lambda) \rightarrow \ldots$
where the maps τ_{k} and σ_{k} are adjoint to each other.

Geography of (bi)linearized LCH

Definition

$\ell L C H$-admissible polynomial: $P(t)=q(t)+p(t)+t^{n-1} p\left(t^{-1}\right)$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0.

Geography of (bi)linearized LCH

Definition

$\ell L C H$-admissible polynomial: $P(t)=q(t)+p(t)+t^{n-1} p\left(t^{-1}\right)$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0.

Theorem (B., Sabloff, Traynor)
P is $\ell L C H$-admissible iff there exist \wedge closed, connected and ε with Poincaré polynomial of $L \mathrm{CH}^{\varepsilon}(\Lambda)$ equal to P.

Geography of (bi)linearized LCH

Definition
$\ell L C H$-admissible polynomial: $P(t)=q(t)+p(t)+t^{n-1} p\left(t^{-1}\right)$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0.
Theorem (B., Sabloff, Traynor)
P is $\ell L C H$-admissible iff there exist \wedge closed, connected and ε with Poincaré polynomial of $L C H^{\varepsilon}(\Lambda)$ equal to P.

Model for $p(t)=t$.

Geography of (bi)linearized LCH

Definition
$\ell L C H$-admissible polynomial: $P(t)=q(t)+p(t)+t^{n-1} p\left(t^{-1}\right)$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0.

Theorem (B., Sabloff, Traynor)

P is $\ell L C H$-admissible iff there exist \wedge closed, connected and ε with Poincaré polynomial of $L \mathrm{CH}^{\varepsilon}(\Lambda)$ equal to P.

Definition
bLCH-admissible polynomial: $P(t)=q(t)+p(t)$, where q and p have non-negative integral coefficients, q has degree $<n$, zero coeff. in deg <0 and $q(0)=1$, $p(-1)$ is even if n is odd and $p(-1)=0$ if n is even.

Geography of (bi)linearized LCH

Definition
$\ell L C H$-admissible polynomial: $P(t)=q(t)+p(t)+t^{n-1} p\left(t^{-1}\right)$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0.

Theorem (B., Sabloff, Traynor)

P is $\ell L C H$-admissible iff there exist \wedge closed, connected and ε with Poincaré polynomial of $L \mathrm{CH}^{\varepsilon}(\Lambda)$ equal to P.

Definition

bLCH-admissible polynomial: $P(t)=q(t)+p(t)$, where q and p have non-negative integral coefficients, q has degree $<n$, zero coeff. in deg <0 and $q(0)=1$, $p(-1)$ is even if n is odd and $p(-1)=0$ if n is even.
Theorem (B., Galant)
P is $b L C H$-admissible iff there exist \wedge closed, connected and $\left[\varepsilon_{1}\right] \neq\left[\varepsilon_{2}\right]$ with Poincaré pol. of $L C H^{\varepsilon_{1}, \varepsilon_{2}}(\Lambda)$ equal to P.

