Homological invariants
of Legendrian submanifolds
Lecture 2

Frédéric Bourgeois

Laboratoire de Mathématiques d’Orsay

université
u PARIS-SACLAY
“l Mathématiques FACULTE
Orsay DES SCIENCES

D’ORSAY

42nd Winter school Geometry and Physics
Srni, 15-22 January 2022



Geometric setup from lecture 1

Work in Y = R2"~1 with std contact structure &, = ker Ao,
Ao = dz — 7 yidx;.



Geometric setup from lecture 1

Work in Y = R?"~1 with std contact structure & = ker A,
Ao = dz — 7 yidx;.

A C (Y, &) closed, connected Legendrian submanifold.



Geometric setup from lecture 1

Work in Y = R?"~1 with std contact structure & = ker A,
Ao = dz — 7 yidx;.

A C (Y, &) closed, connected Legendrian submanifold.

Symplectization (R x Y, d(e')g)),
equipped with compatible almost complex structure J.



Geometric setup from lecture 1

Work in Y = R?"~1 with std contact structure & = ker A,
Ao = dz — 7 yidx;.

A C (Y, &) closed, connected Legendrian submanifold.

Symplectization (R x Y, d(e')g)),
equipped with compatible almost complex structure J.

Moduli spaces of J-holomorphic disks M(c*;c;,..., ¢, )/R.
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Dimension of moduli spaces

For each Reeb chord c of A, choose a “capping path” in A

connecting the endpoints of c.
~ path of Lagrangian subspaces

in (&, d\) trivial symplectic bundle.
~» Maslov index p(c), if ¢ is nondegenerate,
i.e. TC(O)/\ M Tc(1)/\ in&.

Set |c| = p(c) — 1.

Assume the Maslov class of A vanishes,
i.e. all loops in A have a zero Maslov index.
~+ |c| is independent of all choices.

The dimension of moduli space M(c*;c;,...,c, ) is given by
et = Xy Ieg |-
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Chekanov-Eliashberg algebra

Perturb A by Leg. isotopy ~~ Reeb chords are nondegenerate.

Let .« be the unital, noncommutative graded algebra over Z,
freely generated by Reeb chords of A.

Define differential 0 : &7 — <7 of degree —1 by
0c =3 0 .o #M(cicy,....c)/Rey ..o

-----

Cc

Terms in the boundary of M
cancel in pairs.

All terms correspond to 0 o 9.

~ 000 =0.
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Chekanov-Eliashberg algebra

Perturb A by Leg. isotopy ~~ Reeb chords are nondegenerate.

Let <7 be the unital, noncommutative graded algebra over Z,
freely generated by Reeb chords of A.

Define differential 0 : & — & of degree —1 by
9 =) o o #M(CiCr,... i )/Rey...cp.
Then 000 = 0, so that (<7, 0) is a DGA.

Theorem (Ekholm, Etnyre, Sullivan)

LCH,(N) = H.(<, 0) is well-defined and invariant under
Legendrian isotopy.

.....
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X
Generators a1, ao, by, bo, bz with |g;| = 1 and |b;| = 0.
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0a; =1+ by + bz + bsboby,

0ap =1+ by + bs + bybabs.



Example: right-handed trefoil

Generators a1, ao, by, bo, bz with |g;| = 1 and |b;| = 0.
0by = 0by = Obz = 0.
0a; =1+ by + bz + bsboby,

0ap =1+ by + bs + bybabs.

But it is still very difficult to compute ker @ and then LCH(A)!
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Augmentations

Definition
An augmentation of (<7, 0) is an algebra morphisme : o/ — 7o
of degree 0 such thatc o9 =0 ande(1) = 1.

If £, 2 are augmentations of (<7, 9),

alinear map K : &/ — Zy is an (g1, 2)-derivation if

K(ab) = e1(a)K(b) + K(a)e2(b) for all a,b € .

Definition

Augmentations 1, are DGA-homotopic if there exists an
(e1,e2)-derivation K of degree +1 such thate; —ex = K0 0.

[e] = DGA-homotopy class of ¢.
Theorem
{[e] | € augm. for A} is invariant under Legendrian isotopy.

Example: Legendrian A C (Y, ¢).
Exact lagrangian filling L (R x Y, d(e)\)) ~ augmentation ¢;.
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Linearized LCH

Let C, be the graded vector space generated by Reeb chords.

Define o : C, — C,_1 by
Fe=Y, #M(cicr,...,c;) /R X qelcy)...¢ ...e(c;).

Then e 0 9 = 0 implies 0° 0 0° = 0.
Theorem

LCH:(N) = H.(C, 9°) depends only on [¢] and
{LCH}f](/\) | € augm. for A} is invariant under Leg. isotopy.

LCH:(A) is much easier to compute, but forgets all
noncommutative content.
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Example: right-handed trefoil 2

Generators a1, ap, by, b, bs with |g;/ = 1 and |b;| = 0.

oay
0ao

Augmentations:

b1 by bs
e |1 1 1
g2 1 1 0
3 1 0 0
4 0 1 1
es | 0 0 1

1+ by + bs + bsboby,
1+ b1 + b3 + b1babs.

Linearized differential:
0%1ay = by,
olay, = b2.

Homology classes:
[ar + ag], [b4], [bs].

Poincaré polynomial:
t+2

Get Poincaré polynomial t + 2 for all ¢;.

Are the augmentations ¢; DGA-homotopic or not?
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Bilinearized LCH

Linearized differential:
Fe=3, #Mccr,....c))/R Y qe(cr)...¢...e(c)).

Idea: use 2 augmentations ¢, e instead of one!

Define 9°1°2 : C, — C,_1 by

OFree=3 #M(Ci s, 6 )R Y ige1(y)- - ¢ a(cy)-
Then 9°1:¥2 0 912 = Q.

Theorem (B., Chantraine)

LCH;"2(N\) = H.(C, 0°1*2) depends only on [1], [e2], and
{LCHEME2 () | & augm. for A} is invariant under Leg. isotopy.

LCH:"2(A) is still convenient to compute, but also remembers
some noncommutative content!
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Example: right-handed trefoil 3

Generators a1, ap, by, b, bs with |g;/ = 1 and |b;| = 0.

oay
0ao
Augmentations:
by b, bs
e1 |1 1 A1
o 1 1 0
es| 1 0 O
4 0 1 1
es| 0 0 A1

= 14 by + bz + bzbsby,
= 14 b1+ bs+ bibabs.

Bilinearized differential:
o°1=2ay = by,
o1 ’8232 = b1 .

Homology classes:
[bs]-

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (g, ¢;) with i # j.



Example: right-handed trefoil 3

Generators a1, ap, by, b, bs with |g;/ = 1 and |b;| = 0.

oay
0ao
Augmentations:
by b, bs
e1 |1 1 A1
o 1 1 0
es| 1 0 O
4 0 1 1
es| 0 0 A1

= 14 by + bz + bzbsby,
= 14 b1+ bs+ bibabs.

Bilinearized differential:
o°1=2ay = by,
o1 ’8232 = b1 .

Homology classes:
[bs]-

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (g, ¢;) with i # j.

Since 1 £t + 2, all [¢;] are distinct!
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Theorem (B., Galant)
Given A, bilinearized LCH is a complete invariant for [¢].

Augmentation category for A: (B., Chantraine)
Objects are augmentations for A,
Mor(e1, €2) is the cochain complex for LCH?, ., (A),
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2
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Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given A, bilinearized LCH is a complete invariant for [¢].

Augmentation category for A: (B., Chantraine)
Objects are augmentations for A,
Mor(e1, €2) is the cochain complex for LCH?, ., (A),
+ higher operations,
e.g. ,ué 2,63 - MOI’(81 , 82) & MOI’(SQ, 63) — MOI’(81 , 83)
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€1 Cq ) Co €3
~ Aso-category, analogous to the Fukaya category
in symplectic geometry.
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Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff)

For any closed Legendrian A c (R?"*1,¢,), we have a long
exact sequence

o= Hi (N) TS LCHP*1(A) — LCHE(A) 5 Hi(A) — ...
where the maps . and o are adjoint to each other.

Original motivation: Arnold chord conjecture,
i.e. the number of Reeb chords of A is at least } dim H(A).

Theorem
For any closed Legendrian A c (R?"*1, &), we have a long
exact sequence

o= Hieg (N TS LCHP K1) — LCHE2(A) 25 Hi(A) — ...
+ k
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where the maps t, and oy are adjoint to each other.



Geography of (bi)linearized LCH

Definition
(LCH-admissible polynomial: P(t) = q(t) + p(t) + t"'p(t~1),
where q and p have non-negative integral coefficients,

g is monic of degree n and has zero coeff. in deg < 0.



Geography of (bi)linearized LCH
Definition
(LCH-admissible polynomial: P(t) = q(t) + p(t) + t"'p(t~1),
where q and p have non-negative integral coefficients,
g is monic of degree n and has zero coeff. in deg < 0.

Theorem (B., Sabloff, Traynor)

P is ¢(LCH-admissible iff there exist \ closed, connected
and e with Poincaré polynomial of LCH®(A\) equal to P.



Geography of (bi)linearized LCH
Definition
(LCH-admissible polynomial: P(t) = q(t) + p(t) + t" ' p(t~1),
where q and p have non-negative integral coefficients,
g is monic of degree n and has zero coeff. in deg < 0.
Theorem (B., Sabloff, Traynor)

P is tLCH-admissible iff there exist \ closed, connected
and e with Poincaré polynomial of LCH®(A\) equal to P.

<S5

Model for p(t) = t.




Geography of (bi)linearized LCH

Definition
(LCH-admissible polynomial: P(t) = q(t) + p(t) + t"'p(t~1),
where q and p have non-negative integral coefficients,

g is monic of degree n and has zero coeff. in deg < 0.

Theorem (B., Sabloff, Traynor)

P is ¢(LCH-admissible iff there exist \ closed, connected
and e with Poincaré polynomial of LCH®(A\) equal to P.

Definition

bLCH-admissible polynomial: P(t) = q(t) + p(t),

where q and p have non-negative integral coefficients,
q has degree < n, zero coeff. in deg < 0 and q(0) =1,
p(—1) isevenifnis odd and p(—1) = 0 if n is even.



Geography of (bi)linearized LCH

Definition
(LCH-admissible polynomial: P(t) = q(t) + p(t) + t"'p(t~1),
where q and p have non-negative integral coefficients,

g is monic of degree n and has zero coeff. in deg < 0.
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Definition

bLCH-admissible polynomial: P(t) = q(t) + p(t),

where q and p have non-negative integral coefficients,
q has degree < n, zero coeff. in deg < 0 and q(0) =1,
p(—1) isevenifnis odd and p(—1) = 0 if n is even.

Theorem (B., Galant)

P is bLCH-admissible iff there exist \ closed, connected
and [e1] # [e2] with Poincaré pol. of LCH®"*2(\) equal to P.
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