Homological invariants of Legendrian submanifolds Lecture 2

Frédéric Bourgeois

Laboratoire de Mathématiques d'Orsay

FACULTÉ DES SCIENCES D'ORSAY

42nd Winter school Geometry and Physics Srni, 15–22 January 2022

Work in $Y = \mathbb{R}^{2n-1}$ with std contact structure $\xi_0 = \ker \lambda_0$, $\lambda_0 = dz - \sum_{i=1}^{n-1} y_i dx_i$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Work in $Y = \mathbb{R}^{2n-1}$ with std contact structure $\xi_0 = \ker \lambda_0$, $\lambda_0 = dz - \sum_{i=1}^{n-1} y_i dx_i$.

 $\Lambda \subset (Y, \xi_0)$ closed, connected Legendrian submanifold.

Work in $Y = \mathbb{R}^{2n-1}$ with std contact structure $\xi_0 = \ker \lambda_0$, $\lambda_0 = dz - \sum_{i=1}^{n-1} y_i dx_i$.

 $\Lambda \subset (Y, \xi_0)$ closed, connected Legendrian submanifold.

Symplectization ($\mathbb{R} \times Y$, $d(e^t \lambda_0)$), equipped with compatible almost complex structure J.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Work in $Y = \mathbb{R}^{2n-1}$ with std contact structure $\xi_0 = \ker \lambda_0$, $\lambda_0 = dz - \sum_{i=1}^{n-1} y_i dx_i$.

 $\Lambda \subset (Y, \xi_0)$ closed, connected Legendrian submanifold.

Symplectization ($\mathbb{R} \times Y$, $d(e^t \lambda_0)$), equipped with compatible almost complex structure J.

Moduli spaces of *J*-holomorphic disks $\mathcal{M}(c^+; c_1^-, \dots, c_\ell^-)/\mathbb{R}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

For each Reeb chord *c* of Λ , choose a "capping path" in Λ connecting the endpoints of *c*. \rightarrow path of Lagrangian subspaces in (ξ , $d\lambda$) trivial symplectic bundle. \rightarrow Maslov index $\mu(c)$, if *c* is nondegenerate, i.e. $T_{c(0)}\Lambda \pitchfork T_{c(1)}\Lambda$ in ξ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For each Reeb chord c of Λ , choose a "capping path" in Λ connecting the endpoints of c. Approximation provide the second strain subspaces in $(\xi, d\lambda)$ trivial symplectic bundle. \rightsquigarrow Maslov index $\mu(c)$, if c is nondegenerate, i.e. $T_{c(0)} \wedge \oplus T_{c(1)} \wedge \inf \xi$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Set $|c| = \mu(c) - 1$.

For each Reeb chord *c* of Λ , choose a "capping path" in Λ connecting the endpoints of *c*. \rightsquigarrow path of Lagrangian subspaces in $(\xi, d\lambda)$ trivial symplectic bundle. \rightsquigarrow Maslov index $\mu(c)$, if *c* is nondegenerate, i.e. $T_{c(0)}\Lambda \pitchfork T_{c(1)}\Lambda$ in ξ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Set $|c| = \mu(c) - 1$.

Assume the Maslov class of Λ vanishes, i.e. all loops in Λ have a zero Maslov index.

 $\rightsquigarrow |c|$ is independent of all choices.

For each Reeb chord *c* of Λ , choose a "capping path" in Λ connecting the endpoints of *c*. \rightsquigarrow path of Lagrangian subspaces in $(\xi, d\lambda)$ trivial symplectic bundle. \rightsquigarrow Maslov index $\mu(c)$, if *c* is nondegenerate, i.e. $T_{c(0)}\Lambda \pitchfork T_{c(1)}\Lambda$ in ξ .

Set $|c| = \mu(c) - 1$.

Assume the Maslov class of Λ vanishes, i.e. all loops in Λ have a zero Maslov index. $\rightarrow |c|$ is independent of all choices.

The dimension of moduli space $\mathcal{M}(c^+; c_1^-, \dots, c_\ell^-)$ is given by $|c^+| - \sum_{j=1}^{\ell} |c_\ell^-|.$

(日) (日) (日) (日) (日) (日) (日)

Perturb Λ by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Perturb Λ by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_2 freely generated by Reeb chords of Λ .

(ロ) (同) (三) (三) (三) (○) (○)

Perturb Λ by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_2 freely generated by Reeb chords of Λ .

A D F A 同 F A E F A E F A Q A

Define differential $\partial : \mathscr{A} \to \mathscr{A}$ of degree -1 by $\partial c = \sum_{c_1^-, \dots, c_{\ell}^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} c_1^- \dots c_{\ell}^-.$

Perturb Λ by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_2 freely generated by Reeb chords of Λ .

Define differential $\partial : \mathscr{A} \to \mathscr{A}$ of degree -1 by $\partial c = \sum_{c_1^-, \dots, c_{\ell}^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} c_1^- \dots c_{\ell}^-.$

Terms in the boundary of \mathcal{M} cancel in pairs.

All terms correspond to $\partial \circ \partial$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\rightsquigarrow \partial \circ \partial = \mathbf{0}.$

Perturb Λ by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_2 freely generated by Reeb chords of Λ .

A D F A 同 F A E F A E F A Q A

Define differential $\partial : \mathscr{A} \to \mathscr{A}$ of degree -1 by $\partial c = \sum_{c_1^-, \dots, c_{\ell}^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} c_1^- \dots c_{\ell}^-.$

Then $\partial \circ \partial = 0$, so that (\mathscr{A}, ∂) is a DGA.

Perturb Λ by Leg. isotopy \rightsquigarrow Reeb chords are nondegenerate.

Let \mathscr{A} be the unital, noncommutative graded algebra over \mathbb{Z}_2 freely generated by Reeb chords of Λ .

Define differential $\partial : \mathscr{A} \to \mathscr{A}$ of degree -1 by $\partial c = \sum_{c_1^-, \dots, c_{\ell}^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} c_1^- \dots c_{\ell}^-.$

Then $\partial \circ \partial = 0$, so that (\mathscr{A}, ∂) is a DGA.

Theorem (Ekholm, Etnyre, Sullivan) $LCH_*(\Lambda) = H_*(\mathscr{A}, \partial)$ is well-defined and invariant under Legendrian isotopy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Generators a1, a2

Generators *a*₁, *a*₂, *b*₁, *b*₂, *b*₃

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

ヘロト 人間 とく ヨン 人 ヨン

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\partial a_1 =$$

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

ヘロト 人間 とく ヨン 人 ヨン

$$\partial a_1 = 1 +$$

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

ヘロト 人間 とく ヨン 人 ヨン

$$\partial a_1 = 1 + b_1 + b_1$$

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

$$\partial a_1 = 1 + b_1 + b_3 + b_3$$

ヘロト 人間 とく ヨン 人 ヨン

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

$$\partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1,$$

ヘロト 人間 とく ヨン 人 ヨン

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

 $\partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1,$
 $\partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3.$

ヘロト 人間 とく ヨン 人 ヨン

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\partial b_1 = \partial b_2 = \partial b_3 = 0.$$

 $\partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1,$
 $\partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3.$

But it is still very difficult to compute ker ∂ and then $LCH(\Lambda)$!

・ロト ・個ト ・ヨト ・ヨト ・ヨー

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon : \mathscr{A} \to \mathbb{Z}_2$ of degree 0 such that $\varepsilon \circ \partial = 0$ and $\varepsilon(1) = 1$.

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon : \mathscr{A} \to \mathbb{Z}_2$ of degree 0 such that $\varepsilon \circ \partial = 0$ and $\varepsilon(1) = 1$.

(日) (日) (日) (日) (日) (日) (日)

If $\varepsilon_1, \varepsilon_2$ are augmentations of (\mathscr{A}, ∂) , a linear map $K : \mathscr{A} \to \mathbb{Z}_2$ is an $(\varepsilon_1, \varepsilon_2)$ -derivation if $K(ab) = \varepsilon_1(a)K(b) + K(a)\varepsilon_2(b)$ for all $a, b \in \mathscr{A}$.

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon : \mathscr{A} \to \mathbb{Z}_2$ of degree 0 such that $\varepsilon \circ \partial = 0$ and $\varepsilon(1) = 1$.

If
$$\varepsilon_1, \varepsilon_2$$
 are augmentations of (\mathscr{A}, ∂) ,
a linear map $K : \mathscr{A} \to \mathbb{Z}_2$ is an $(\varepsilon_1, \varepsilon_2)$ -derivation if
 $K(ab) = \varepsilon_1(a)K(b) + K(a)\varepsilon_2(b)$ for all $a, b \in \mathscr{A}$.

Definition

Augmentations $\varepsilon_1, \varepsilon_2$ are DGA-homotopic if there exists an $(\varepsilon_1, \varepsilon_2)$ -derivation K of degree +1 such that $\varepsilon_1 - \varepsilon_2 = K \circ \partial$.

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon : \mathscr{A} \to \mathbb{Z}_2$ of degree 0 such that $\varepsilon \circ \partial = 0$ and $\varepsilon(1) = 1$.

If
$$\varepsilon_1, \varepsilon_2$$
 are augmentations of (\mathscr{A}, ∂) ,
a linear map $K : \mathscr{A} \to \mathbb{Z}_2$ is an $(\varepsilon_1, \varepsilon_2)$ -derivation if
 $K(ab) = \varepsilon_1(a)K(b) + K(a)\varepsilon_2(b)$ for all $a, b \in \mathscr{A}$.

Definition

Augmentations $\varepsilon_1, \varepsilon_2$ are DGA-homotopic if there exists an $(\varepsilon_1, \varepsilon_2)$ -derivation K of degree +1 such that $\varepsilon_1 - \varepsilon_2 = K \circ \partial$.

 $[\varepsilon] = DGA$ -homotopy class of ε .

Theorem

 $\{[\varepsilon] \mid \varepsilon \text{ augm. for } \Lambda\}$ is invariant under Legendrian isotopy.

Definition

An augmentation of (\mathscr{A}, ∂) is an algebra morphism $\varepsilon : \mathscr{A} \to \mathbb{Z}_2$ of degree 0 such that $\varepsilon \circ \partial = 0$ and $\varepsilon(1) = 1$.

If
$$\varepsilon_1, \varepsilon_2$$
 are augmentations of (\mathscr{A}, ∂) ,
a linear map $K : \mathscr{A} \to \mathbb{Z}_2$ is an $(\varepsilon_1, \varepsilon_2)$ -derivation if
 $K(ab) = \varepsilon_1(a)K(b) + K(a)\varepsilon_2(b)$ for all $a, b \in \mathscr{A}$.

Definition

Augmentations $\varepsilon_1, \varepsilon_2$ are DGA-homotopic if there exists an $(\varepsilon_1, \varepsilon_2)$ -derivation K of degree +1 such that $\varepsilon_1 - \varepsilon_2 = K \circ \partial$.

 $[\varepsilon] = DGA$ -homotopy class of ε .

Theorem

 $\{[\varepsilon] \mid \varepsilon \text{ augm. for } \Lambda\}$ is invariant under Legendrian isotopy.

Example: Legendrian $\Lambda \subset (Y, \xi)$. Exact lagrangian filling $L \subset (\mathbb{R} \times Y, d(e^t \lambda)) \rightsquigarrow$ augmentation ε_L .

Linearized LCH

Let C_* be the graded vector space generated by Reeb chords.

Linearized LCH

Let C_* be the graded vector space generated by Reeb chords.

Define
$$\partial^{\varepsilon} : C_* \to C_{*-1}$$
 by
 $\partial^{\varepsilon} c = \sum_{c^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(c_1^-) \dots c_j^- \dots \varepsilon(c_{\ell}^-).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Linearized LCH

Let C_* be the graded vector space generated by Reeb chords.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Linearized LCH

Let C_* be the graded vector space generated by Reeb chords.

Define
$$\partial^{\varepsilon} : C_* \to C_{*-1}$$
 by
 $\partial^{\varepsilon} c = \sum_{c^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(c_1^-) \dots c_j^- \dots \varepsilon(c_{\ell}^-).$

Then $\varepsilon \circ \partial = 0$ implies $\partial^{\varepsilon} \circ \partial^{\varepsilon} = 0$.

Theorem $LCH_*^{\varepsilon}(\Lambda) = H_*(C, \partial^{\varepsilon})$ depends only on $[\varepsilon]$ and $\{LCH_*^{[\varepsilon]}(\Lambda) \mid \varepsilon \text{ augm. for } \Lambda\}$ is invariant under Leg. isotopy.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linearized LCH

Let C_* be the graded vector space generated by Reeb chords.

Define
$$\partial^{\varepsilon} : C_* \to C_{*-1}$$
 by
 $\partial^{\varepsilon} c = \sum_{c^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(c_1^-) \dots c_j^- \dots \varepsilon(c_{\ell}^-).$

Then $\varepsilon \circ \partial = 0$ implies $\partial^{\varepsilon} \circ \partial^{\varepsilon} = 0$.

Theorem $LCH_*^{\varepsilon}(\Lambda) = H_*(C, \partial^{\varepsilon})$ depends only on $[\varepsilon]$ and $\{LCH_*^{[\varepsilon]}(\Lambda) \mid \varepsilon \text{ augm. for } \Lambda\}$ is invariant under Leg. isotopy.

 $LCH_*^{\varepsilon}(\Lambda)$ is much easier to compute, but forgets all noncommutative content.

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\left\{ \begin{array}{rrrr} \partial a_1 &=& 1+b_1+b_3+b_3b_2b_1, \\ \partial a_2 &=& 1+b_1+b_3+b_1b_2b_3. \end{array} \right.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$b_1 \ b_2 \ b_3$$

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	b_1	b ₂	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

	b_1	b ₂	b ₃
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	b_1	b ₂	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0		

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	b_1	b ₂	b ₃
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

	b_1	b ₂	b ₃
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	b_1	b ₂	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{4}	0	0	

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

	b_1	b ₂	b_3
ε_1	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Linearized differential:
$\partial^{\varepsilon_1} a_1 =$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	b_1	b ₂	b_3
ε_1	1	1	1
ε_{2}	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_5	0	0	1

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

	b_1	b_2	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_5	0	0	1

Linearized differential: $\partial^{\varepsilon_1} a_1 = b_2$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

	b_1	b ₂	b ₃
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$\partial^{\varepsilon_1} a_1 = b_2,$$

 $\partial^{\varepsilon_1} a_2 = b_2.$

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

	b_1	b ₂	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_{5}	0	0	1

Linearized differential: $\partial^{\varepsilon_1} a_1 = b_2,$ $\partial^{\varepsilon_1} a_2 = b_2.$

Homology classes: $[a_1 + a_2], [b_1], [b_3].$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

	b_1	b ₂	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_5	0	0	1

Linearized differential: $\partial^{\varepsilon_1} a_1 = b_2,$ $\partial^{\varepsilon_1} a_2 = b_2.$

Homology classes: $[a_1 + a_2], [b_1], [b_3].$

Poincaré polynomial: t + 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

	b_1	b_2	b_3
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_5	0	0	1

Linearized differential: $\partial^{\varepsilon_1} a_1 = b_2,$ $\partial^{\varepsilon_1} a_2 = b_2.$

Homology classes: $[a_1 + a_2], [b_1], [b_3].$

Poincaré polynomial: t + 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Get Poincaré polynomial t + 2 for all ε_i .

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

	b_1	b_2	b ₃
ε_1	1	1	1
ε_2	1	1	0
ε_{3}	1	0	0
ε_{4}	0	1	1
ε_5	0	0	1

Linearized differential: $\partial^{\varepsilon_1} a_1 = b_2,$ $\partial^{\varepsilon_1} a_2 = b_2.$

Homology classes: $[a_1 + a_2], [b_1], [b_3].$

Poincaré polynomial: t + 2

Get Poincaré polynomial t + 2 for all ε_i .

Are the augmentations ε_i DGA-homotopic or not?

Linearized differential: $\partial^{\varepsilon} c = \sum_{c^{-}} \# \mathcal{M}(c; c_{1}^{-}, \dots, c_{\ell}^{-}) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(c_{1}^{-}) \dots c_{j}^{-} \dots \varepsilon(c_{\ell}^{-}).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linearized differential:

$$\partial^{\varepsilon} \boldsymbol{c} = \sum_{\boldsymbol{c}^{-}} \# \mathcal{M}(\boldsymbol{c}; \boldsymbol{c}_{1}^{-}, \dots, \boldsymbol{c}_{\ell}^{-}) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(\boldsymbol{c}_{1}^{-}) \dots \boldsymbol{c}_{j}^{-} \dots \varepsilon(\boldsymbol{c}_{\ell}^{-}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Idea: use 2 augmentations $\varepsilon_1, \varepsilon_2$ instead of one!

Linearized differential:

$$\partial^{\varepsilon} \boldsymbol{c} = \sum_{\boldsymbol{c}^{-}} \# \mathcal{M}(\boldsymbol{c}; \boldsymbol{c}_{1}^{-}, \dots, \boldsymbol{c}_{\ell}^{-}) / \mathbb{R} \ \sum_{j=1}^{\ell} \varepsilon(\boldsymbol{c}_{1}^{-}) \dots \boldsymbol{c}_{j}^{-} \dots \varepsilon(\boldsymbol{c}_{\ell}^{-}).$$

Idea: use 2 augmentations $\varepsilon_1, \varepsilon_2$ instead of one!

Define $\partial^{\varepsilon_1,\varepsilon_2} : C_* \to C_{*-1}$ by $\partial^{\varepsilon_1,\varepsilon_2} c = \sum_{c^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon_1(c_1^-) \dots c_j^- \dots \varepsilon_2(c_{\ell}^-).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linearized differential:

$$\partial^{\varepsilon} \boldsymbol{c} = \sum_{\boldsymbol{c}^{-}} \# \mathcal{M}(\boldsymbol{c}; \boldsymbol{c}_{1}^{-}, \dots, \boldsymbol{c}_{\ell}^{-}) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(\boldsymbol{c}_{1}^{-}) \dots \boldsymbol{c}_{j}^{-} \dots \varepsilon(\boldsymbol{c}_{\ell}^{-}).$$

Idea: use 2 augmentations $\varepsilon_1, \varepsilon_2$ instead of one!

Define $\partial^{\varepsilon_1,\varepsilon_2} : C_* \to C_{*-1}$ by $\partial^{\varepsilon_1,\varepsilon_2} c = \sum_{c^-} \# \mathcal{M}(c; c_1^-, \dots, c_{\ell}^-) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon_1(c_1^-) \dots c_j^- \dots \varepsilon_2(c_{\ell}^-).$

(日) (日) (日) (日) (日) (日) (日)

Then $\partial^{\varepsilon_1,\varepsilon_2} \circ \partial^{\varepsilon_1,\varepsilon_2} = 0$.

Linearized differential:

$$\partial^{\varepsilon} \boldsymbol{c} = \sum_{\boldsymbol{c}^{-}} \# \mathcal{M}(\boldsymbol{c}; \boldsymbol{c}_{1}^{-}, \dots, \boldsymbol{c}_{\ell}^{-}) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(\boldsymbol{c}_{1}^{-}) \dots \boldsymbol{c}_{j}^{-} \dots \varepsilon(\boldsymbol{c}_{\ell}^{-}).$$

Idea: use 2 augmentations $\varepsilon_1, \varepsilon_2$ instead of one!

 $\begin{array}{l} \text{Define } \partial^{\varepsilon_1,\varepsilon_2} : \textit{C}_* \to \textit{C}_{*-1} \text{ by} \\ \partial^{\varepsilon_1,\varepsilon_2}\textit{c} \!=\! \sum_{\textit{c}^-} \! \# \mathcal{M}(\textit{c};\textit{c}_1^-,\ldots,\textit{c}_\ell^-) / \mathbb{R} \ \sum_{j=1}^{\ell} \varepsilon_1(\textit{c}_1^-)\ldots \textit{c}_j^-\ldots \varepsilon_2(\textit{c}_\ell^-). \end{array}$

Then $\partial^{\varepsilon_1,\varepsilon_2} \circ \partial^{\varepsilon_1,\varepsilon_2} = 0$.

Theorem (B., Chantraine) $LCH_*^{\varepsilon_1,\varepsilon_2}(\Lambda) = H_*(C, \partial^{\varepsilon_1,\varepsilon_2})$ depends only on $[\varepsilon_1], [\varepsilon_2]$, and $\{LCH_*^{[\varepsilon_1],[\varepsilon_2]}(\Lambda) \mid \varepsilon \text{ augm. for } \lambda\}$ is invariant under Leg. isotopy.

Linearized differential:

$$\partial^{\varepsilon} \boldsymbol{c} = \sum_{\boldsymbol{c}^{-}} \# \mathcal{M}(\boldsymbol{c}; \boldsymbol{c}_{1}^{-}, \dots, \boldsymbol{c}_{\ell}^{-}) / \mathbb{R} \sum_{j=1}^{\ell} \varepsilon(\boldsymbol{c}_{1}^{-}) \dots \boldsymbol{c}_{j}^{-} \dots \varepsilon(\boldsymbol{c}_{\ell}^{-}).$$

Idea: use 2 augmentations $\varepsilon_1, \varepsilon_2$ instead of one!

 $\begin{array}{l} \text{Define } \partial^{\varepsilon_1,\varepsilon_2} : \textit{C}_* \to \textit{C}_{*-1} \text{ by} \\ \partial^{\varepsilon_1,\varepsilon_2}\textit{c} \!=\! \sum_{\textit{c}^-} \! \# \! \mathcal{M}(\textit{c};\textit{c}_1^-,\ldots,\textit{c}_\ell^-) / \mathbb{R} \ \sum_{j=1}^{\ell} \varepsilon_1(\textit{c}_1^-) \ldots \textit{c}_j^- \ldots \varepsilon_2(\textit{c}_\ell^-). \end{array}$

Then $\partial^{\varepsilon_1,\varepsilon_2} \circ \partial^{\varepsilon_1,\varepsilon_2} = \mathbf{0}$.

Theorem (B., Chantraine) $LCH_*^{\varepsilon_1,\varepsilon_2}(\Lambda) = H_*(C, \partial^{\varepsilon_1,\varepsilon_2})$ depends only on $[\varepsilon_1], [\varepsilon_2]$, and $\{LCH_*^{[\varepsilon_1],[\varepsilon_2]}(\Lambda) \mid \varepsilon \text{ augm. for } \lambda\}$ is invariant under Leg. isotopy.

 $LCH_*^{\varepsilon_1,\varepsilon_2}(\Lambda)$ is still convenient to compute, but also remembers some noncommutative content!

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2}a_1 =$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2}a_1 = b_2$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2}a_1 = b_2,$ $\partial^{\varepsilon_1,\varepsilon_2}a_2 = b_1.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2} a_1 = b_2,$ $\partial^{\varepsilon_1,\varepsilon_2} a_2 = b_1.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Homology classes: [*b*₃].

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2} a_1 = b_2,$ $\partial^{\varepsilon_1,\varepsilon_2} a_2 = b_1.$

Homology classes: [*b*₃].

Poincaré polynomial:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2} a_1 = b_2,$ $\partial^{\varepsilon_1,\varepsilon_2} a_2 = b_1.$

Homology classes: [*b*₃].

Poincaré polynomial: 1

Get Poincaré polynomial 1 for all $(\varepsilon_i, \varepsilon_j)$ with $i \neq j$.

・ロト・西ト・西ト・日・ 白・ シック
Example: right-handed trefoil 3

Generators a_1 , a_2 , b_1 , b_2 , b_3 with $|a_i| = 1$ and $|b_j| = 0$.

$$\begin{cases} \partial a_1 = 1 + b_1 + b_3 + b_3 b_2 b_1, \\ \partial a_2 = 1 + b_1 + b_3 + b_1 b_2 b_3. \end{cases}$$

Augmentations:

Bilinearized differential: $\partial^{\varepsilon_1,\varepsilon_2} a_1 = b_2,$ $\partial^{\varepsilon_1,\varepsilon_2} a_2 = b_1.$

Homology classes: [*b*₃].

Poincaré polynomial: 1

Get Poincaré polynomial 1 for all $(\varepsilon_i, \varepsilon_j)$ with $i \neq j$.

Since $1 \neq t + 2$, all $[\varepsilon_i]$ are distinct!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (B., Galant)

Given Λ , bilinearized LCH is a complete invariant for $[\varepsilon]$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (B., Galant)

Given Λ , bilinearized LCH is a complete invariant for $[\varepsilon]$.

Augmentation category for Λ : (B., Chantraine) Objects are augmentations for Λ ,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (B., Galant)

Given Λ , bilinearized LCH is a complete invariant for $[\varepsilon]$.

Augmentation category for Λ : (B., Chantraine) Objects are augmentations for Λ , Mor($\varepsilon_1, \varepsilon_2$) is the cochain complex for $LCH^*_{\varepsilon_1, \varepsilon_2}(\Lambda)$,

Theorem (B., Galant)

Given Λ , bilinearized LCH is a complete invariant for $[\varepsilon]$.

Augmentation category for Λ : (B., Chantraine) Objects are augmentations for Λ , $Mor(\varepsilon_1, \varepsilon_2)$ is the cochain complex for $LCH^*_{\varepsilon_1, \varepsilon_2}(\Lambda)$, + higher operations,

e.g. $\mu^2_{\varepsilon_1,\varepsilon_2,\varepsilon_3}$: $Mor(\varepsilon_1,\varepsilon_2) \otimes Mor(\varepsilon_2,\varepsilon_3) \rightarrow Mor(\varepsilon_1,\varepsilon_3)$

(日) (日) (日) (日) (日) (日) (日)

Theorem (B., Galant)

Given Λ , bilinearized LCH is a complete invariant for $[\varepsilon]$.

Augmentation category for Λ : (B., Chantraine) Objects are augmentations for Λ , Mor($\varepsilon_1, \varepsilon_2$) is the cochain complex for $LCH^*_{\varepsilon_1, \varepsilon_2}(\Lambda)$, + higher operations,

e.g. $\mu_{\varepsilon_1,\varepsilon_2,\varepsilon_3}^2$: $Mor(\varepsilon_1,\varepsilon_2) \otimes Mor(\varepsilon_2,\varepsilon_3) \rightarrow Mor(\varepsilon_1,\varepsilon_3)$

A term in $\mu^2_{\varepsilon_1,\varepsilon_2,\varepsilon_3}(c_1,c_2).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (B., Galant)

Given Λ , bilinearized LCH is a complete invariant for $[\varepsilon]$.

Augmentation category for Λ : (B., Chantraine) Objects are augmentations for Λ , Mor($\varepsilon_1, \varepsilon_2$) is the cochain complex for $LCH^*_{\varepsilon_1, \varepsilon_2}(\Lambda)$, + higher operations,

e.g. $\mu_{\varepsilon_1,\varepsilon_2,\varepsilon_3}^2$: $Mor(\varepsilon_1,\varepsilon_2) \otimes Mor(\varepsilon_2,\varepsilon_3) \rightarrow Mor(\varepsilon_1,\varepsilon_3)$

A term in $\mu^2_{\varepsilon_1,\varepsilon_2,\varepsilon_3}(c_1,c_2).$

 $\sim A_{\infty}$ -category, analogous to the Fukaya category in symplectic geometry.

Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff) For any closed Legendrian $\Lambda \subset (\mathbb{R}^{2n+1}, \xi_0)$, we have a long exact sequence

 $\ldots \to H_{k+1}(\Lambda) \stackrel{\sigma_{n-k-1}}{\longrightarrow} LCH_{\varepsilon}^{n-k-1}(\Lambda) \to LCH_{k}^{\varepsilon}(\Lambda) \stackrel{\tau_{k}}{\longrightarrow} H_{k}(\Lambda) \to \ldots$

(ロ) (同) (三) (三) (三) (○) (○)

where the maps τ_k and σ_k are adjoint to each other.

Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff) For any closed Legendrian $\Lambda \subset (\mathbb{R}^{2n+1}, \xi_0)$, we have a long exact sequence

 $\ldots \to H_{k+1}(\Lambda) \stackrel{\sigma_{n-k-1}}{\longrightarrow} LCH_{\varepsilon}^{n-k-1}(\Lambda) \to LCH_{k}^{\varepsilon}(\Lambda) \stackrel{\tau_{k}}{\longrightarrow} H_{k}(\Lambda) \to \ldots$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where the maps τ_k and σ_k are adjoint to each other.

Original motivation: Arnold chord conjecture, i.e. the number of Reeb chords of Λ is at least $\frac{1}{2} \dim H(\Lambda)$.

Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff) For any closed Legendrian $\Lambda \subset (\mathbb{R}^{2n+1}, \xi_0)$, we have a long exact sequence

 $\ldots \to H_{k+1}(\Lambda) \stackrel{\sigma_{n-k-1}}{\longrightarrow} LCH_{\varepsilon}^{n-k-1}(\Lambda) \to LCH_{k}^{\varepsilon}(\Lambda) \stackrel{\tau_{k}}{\longrightarrow} H_{k}(\Lambda) \to \ldots$

where the maps τ_k and σ_k are adjoint to each other.

Original motivation: Arnold chord conjecture, i.e. the number of Reeb chords of Λ is at least $\frac{1}{2} \dim H(\Lambda)$.

Theorem

For any closed Legendrian $\Lambda \subset (\mathbb{R}^{2n+1},\xi_0),$ we have a long exact sequence

$$\ldots \to H_{k+1}(\Lambda) \stackrel{\sigma_{n-k-1}}{\longrightarrow} LCH^{n-k-1}_{\varepsilon_2,\varepsilon_1}(\Lambda) \to LCH^{\varepsilon_1,\varepsilon_2}_k(\Lambda) \stackrel{\tau_k}{\longrightarrow} H_k(\Lambda) \to \ldots$$

where the maps τ_k and σ_k are adjoint to each other.

Definition

 ℓ LCH-admissible polynomial: $P(t) = q(t) + p(t) + t^{n-1}p(t^{-1})$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

 ℓ LCH-admissible polynomial: $P(t) = q(t) + p(t) + t^{n-1}p(t^{-1})$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (B., Sabloff, Traynor)

P is ℓ LCH-admissible iff there exist Λ closed, connected and ε with Poincaré polynomial of LCH^{ε}(Λ) equal to *P*.

Definition

 ℓ LCH-admissible polynomial: $P(t) = q(t) + p(t) + t^{n-1}p(t^{-1})$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0 .

Theorem (B., Sabloff, Traynor)

P is ℓ LCH-admissible iff there exist Λ closed, connected and ε with Poincaré polynomial of LCH^{ε}(Λ) equal to *P*.

Model for p(t) = t.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

 ℓ LCH-admissible polynomial: $P(t) = q(t) + p(t) + t^{n-1}p(t^{-1})$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0 .

Theorem (B., Sabloff, Traynor)

P is ℓ LCH-admissible iff there exist Λ closed, connected and ε with Poincaré polynomial of LCH^{ε}(Λ) equal to *P*.

Definition

bLCH-admissible polynomial: P(t) = q(t) + p(t), where q and p have non-negative integral coefficients, q has degree < n, zero coeff. in deg < 0 and q(0) = 1, p(-1) is even if n is odd and p(-1) = 0 if n is even.

Definition

 ℓ LCH-admissible polynomial: $P(t) = q(t) + p(t) + t^{n-1}p(t^{-1})$, where q and p have non-negative integral coefficients, q is monic of degree n and has zero coeff. in deg ≤ 0 .

Theorem (B., Sabloff, Traynor)

P is ℓ LCH-admissible iff there exist Λ closed, connected and ε with Poincaré polynomial of LCH^{ε}(Λ) equal to *P*.

Definition

bLCH-admissible polynomial: P(t) = q(t) + p(t), where q and p have non-negative integral coefficients, q has degree < n, zero coeff. in deg < 0 and q(0) = 1, p(-1) is even if n is odd and p(-1) = 0 if n is even.

Theorem (B., Galant)

P is bLCH-admissible iff there exist Λ closed, connected and $[\varepsilon_1] \neq [\varepsilon_2]$ with Poincaré pol. of $LCH^{\varepsilon_1,\varepsilon_2}(\Lambda)$ equal to *P*.