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Geometric setup from lecture 1
Work in Y = R2n−1 with std contact structure ξ0 = kerλ0,

λ0 = dz −
∑n−1

i=1 yidxi .

Λ ⊂ (Y , ξ0) closed, connected Legendrian submanifold.

Symplectization (R× Y ,d(etλ0)),
equipped with compatible almost complex structure J.

Moduli spaces of J-holomorphic disksM(c+; c−1 , . . . , c
−
` )/R.
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Dimension of moduli spaces

For each Reeb chord c of Λ, choose a “capping path” in Λ
connecting the endpoints of c.
 path of Lagrangian subspaces

in (ξ,dλ) trivial symplectic bundle.
 Maslov index µ(c), if c is nondegenerate,

i.e. Tc(0)Λ t Tc(1)Λ in ξ.

Set |c| = µ(c)− 1.

Assume the Maslov class of Λ vanishes,
i.e. all loops in Λ have a zero Maslov index.
 |c| is independent of all choices.

The dimension of moduli spaceM(c+; c−1 , . . . , c
−
` ) is given by

|c+| −
∑`

j=1 |c
−
` |.
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Chekanov-Eliashberg algebra

Perturb Λ by Leg. isotopy Reeb chords are nondegenerate.

Let A be the unital, noncommutative graded algebra over Z2
freely generated by Reeb chords of Λ.

Define differential ∂ : A → A of degree −1 by
∂c =

∑
c−

1 ,...,c
−
`

#M(c; c−1 , . . . , c
−
` )/R c−1 . . . c−` .

Theorem (Ekholm, Etnyre, Sullivan)
LCH∗(Λ) = H∗(A , ∂) is well-defined and invariant under
Legendrian isotopy.
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Terms in the boundary ofM
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Example: right-handed trefoil

z

x

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.

∂b1 = ∂b2 = ∂b3 = 0.

∂a2 = 1 + b1 + b3 + b1b2b3.

But it is still very difficult to compute ker ∂ and then LCH(Λ)!
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Augmentations
Definition
An augmentation of (A , ∂) is an algebra morphism ε : A → Z2
of degree 0 such that ε ◦ ∂ = 0 and ε(1) = 1.

If ε1, ε2 are augmentations of (A , ∂),
a linear map K : A → Z2 is an (ε1, ε2)-derivation if
K (ab) = ε1(a)K (b) + K (a)ε2(b) for all a,b ∈ A .

Definition
Augmentations ε1, ε2 are DGA-homotopic if there exists an
(ε1, ε2)-derivation K of degree +1 such that ε1 − ε2 = K ◦ ∂.

[ε] = DGA-homotopy class of ε.

Theorem
{[ε] | ε augm. for Λ} is invariant under Legendrian isotopy.

Example: Legendrian Λ ⊂ (Y , ξ).
Exact lagrangian filling L ⊂ (R× Y ,d(etλ)) augmentation εL.
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Linearized LCH

Let C∗ be the graded vector space generated by Reeb chords.

Define ∂ε : C∗ → C∗−1 by
∂εc =

∑
c− #M(c; c−1 , . . . , c

−
` )/R

∑`
j=1 ε(c−1 ) . . . c−j . . . ε(c−` ).

Then ε ◦ ∂ = 0 implies ∂ε ◦ ∂ε = 0.

Theorem
LCHε

∗(Λ) = H∗(C, ∂ε) depends only on [ε] and
{LCH [ε]

∗ (Λ) | ε augm. for Λ} is invariant under Leg. isotopy.

LCHε
∗(Λ) is much easier to compute, but forgets all

noncommutative content.
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Example: right-handed trefoil 2

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3

ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Linearized differential:
∂ε1a1 = b2,
∂ε1a2 = b2.

Homology classes:
[a1 + a2], [b1], [b3].

Poincaré polynomial:
t + 2

Get Poincaré polynomial t + 2 for all εi .

Are the augmentations εi DGA-homotopic or not?
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Bilinearized LCH

Linearized differential:
∂εc =

∑
c− #M(c; c−1 , . . . , c

−
` )/R

∑`
j=1 ε(c−1 ) . . . c−j . . . ε(c−` ).

Idea: use 2 augmentations ε1, ε2 instead of one!

Define ∂ε1,ε2 : C∗ → C∗−1 by
∂ε1,ε2c =

∑
c−#M(c; c−1 , . . . , c

−
` )/R

∑`
j=1ε1(c−1 ). . . c−j . . . ε2(c−` ).

Then ∂ε1,ε2 ◦ ∂ε1,ε2 = 0.

Theorem (B., Chantraine)
LCHε1,ε2

∗ (Λ) = H∗(C, ∂ε1,ε2) depends only on [ε1], [ε2], and
{LCH [ε1],[ε2]

∗ (Λ) | ε augm. for λ} is invariant under Leg. isotopy.

LCHε1,ε2
∗ (Λ) is still convenient to compute, but also remembers

some noncommutative content!
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Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3
Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{

∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 =

∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,

∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Example: right-handed trefoil 3

Generators a1, a2, b1, b2, b3 with |ai | = 1 and |bj | = 0.{
∂a1 = 1 + b1 + b3 + b3b2b1,
∂a2 = 1 + b1 + b3 + b1b2b3.

Augmentations:

b1 b2 b3
ε1 1 1 1
ε2 1 1 0
ε3 1 0 0
ε4 0 1 1
ε5 0 0 1

Bilinearized differential:
∂ε1,ε2a1 = b2,
∂ε1,ε2a2 = b1.

Homology classes:
[b3].

Poincaré polynomial:
1

Get Poincaré polynomial 1 for all (εi , εj) with i 6= j .

Since 1 6= t + 2, all [εi ] are distinct!



Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given Λ, bilinearized LCH is a complete invariant for [ε].

Augmentation category for Λ: (B., Chantraine)
Objects are augmentations for Λ,
Mor(ε1, ε2) is the cochain complex for LCH∗ε1,ε2

(Λ),
+ higher operations,

e.g. µ2
ε1,ε2,ε3

: Mor(ε1, ε2)⊗Mor(ε2, ε3)→ Mor(ε1, ε3)

c1 c2ε1 ε2 ε3

A term in
µ2
ε1,ε2,ε3

(c1, c2).

 A∞-category, analogous to the Fukaya category
in symplectic geometry.



Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given Λ, bilinearized LCH is a complete invariant for [ε].

Augmentation category for Λ: (B., Chantraine)
Objects are augmentations for Λ,

Mor(ε1, ε2) is the cochain complex for LCH∗ε1,ε2
(Λ),

+ higher operations,
e.g. µ2

ε1,ε2,ε3
: Mor(ε1, ε2)⊗Mor(ε2, ε3)→ Mor(ε1, ε3)

c1 c2ε1 ε2 ε3

A term in
µ2
ε1,ε2,ε3

(c1, c2).

 A∞-category, analogous to the Fukaya category
in symplectic geometry.



Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given Λ, bilinearized LCH is a complete invariant for [ε].

Augmentation category for Λ: (B., Chantraine)
Objects are augmentations for Λ,
Mor(ε1, ε2) is the cochain complex for LCH∗ε1,ε2

(Λ),

+ higher operations,
e.g. µ2

ε1,ε2,ε3
: Mor(ε1, ε2)⊗Mor(ε2, ε3)→ Mor(ε1, ε3)

c1 c2ε1 ε2 ε3

A term in
µ2
ε1,ε2,ε3

(c1, c2).

 A∞-category, analogous to the Fukaya category
in symplectic geometry.



Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given Λ, bilinearized LCH is a complete invariant for [ε].

Augmentation category for Λ: (B., Chantraine)
Objects are augmentations for Λ,
Mor(ε1, ε2) is the cochain complex for LCH∗ε1,ε2

(Λ),
+ higher operations,

e.g. µ2
ε1,ε2,ε3

: Mor(ε1, ε2)⊗Mor(ε2, ε3)→ Mor(ε1, ε3)

c1 c2ε1 ε2 ε3

A term in
µ2
ε1,ε2,ε3

(c1, c2).

 A∞-category, analogous to the Fukaya category
in symplectic geometry.



Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given Λ, bilinearized LCH is a complete invariant for [ε].

Augmentation category for Λ: (B., Chantraine)
Objects are augmentations for Λ,
Mor(ε1, ε2) is the cochain complex for LCH∗ε1,ε2

(Λ),
+ higher operations,

e.g. µ2
ε1,ε2,ε3

: Mor(ε1, ε2)⊗Mor(ε2, ε3)→ Mor(ε1, ε3)

c1 c2ε1 ε2 ε3

A term in
µ2
ε1,ε2,ε3

(c1, c2).

 A∞-category, analogous to the Fukaya category
in symplectic geometry.



Invariants of augmentations / augmentation category

Theorem (B., Galant)
Given Λ, bilinearized LCH is a complete invariant for [ε].

Augmentation category for Λ: (B., Chantraine)
Objects are augmentations for Λ,
Mor(ε1, ε2) is the cochain complex for LCH∗ε1,ε2

(Λ),
+ higher operations,

e.g. µ2
ε1,ε2,ε3

: Mor(ε1, ε2)⊗Mor(ε2, ε3)→ Mor(ε1, ε3)

c1 c2ε1 ε2 ε3

A term in
µ2
ε1,ε2,ε3

(c1, c2).

 A∞-category, analogous to the Fukaya category
in symplectic geometry.



Duality exact sequence

Theorem (Ekholm, Etnyre, Sabloff)
For any closed Legendrian Λ ⊂ (R2n+1, ξ0), we have a long
exact sequence

. . .→ Hk+1(Λ)
σn−k−1−→ LCHn−k−1

ε (Λ)→ LCHε
k (Λ)

τk−→ Hk (Λ)→ . . .

where the maps τk and σk are adjoint to each other.

Original motivation: Arnold chord conjecture,
i.e. the number of Reeb chords of Λ is at least 1

2 dim H(Λ).
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Geography of (bi)linearized LCH
Definition
`LCH-admissible polynomial: P(t) = q(t) + p(t) + tn−1p(t−1),
where q and p have non-negative integral coefficients,

q is monic of degree n and has zero coeff. in deg ≤ 0.

Theorem (B., Sabloff, Traynor)
P is `LCH-admissible iff there exist Λ closed, connected
and ε with Poincaré polynomial of LCHε(Λ) equal to P.

Definition
bLCH-admissible polynomial: P(t) = q(t) + p(t),
where q and p have non-negative integral coefficients,

q has degree < n, zero coeff. in deg < 0 and q(0) = 1,
p(−1) is even if n is odd and p(−1) = 0 if n is even.

Theorem (B., Galant)
P is bLCH-admissible iff there exist Λ closed, connected
and [ε1] 6= [ε2] with Poincaré pol. of LCHε1,ε2(Λ) equal to P.
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