# Homological invariants of Legendrian submanifolds Lecture 3

Frédéric Bourgeois

Laboratoire de Mathématiques d'Orsay





FACULTÉ DES SCIENCES D'ORSAY

(ロ) (同) (三) (三) (三) (○) (○)

42nd Winter school Geometry and Physics Srni, 15–22 January 2022

Instead of  $\mathbb{R}^{2n-1}$  with std contact structure  $\xi_0 = \ker \lambda_0$ , let us work with a closed contact manifold ( $Y, \xi = \ker \lambda$ ).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Instead of  $\mathbb{R}^{2n-1}$  with std contact structure  $\xi_0 = \ker \lambda_0$ , let us work with a closed contact manifold  $(Y, \xi = \ker \lambda)$ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

For a general  $(Y, \xi)$ , there is no front projection  $\sigma$ and we need to generalize  $\frac{\partial}{\partial z}$  to define Reeb chords.

Instead of  $\mathbb{R}^{2n-1}$  with std contact structure  $\xi_0 = \ker \lambda_0$ , let us work with a closed contact manifold ( $Y, \xi = \ker \lambda$ ).

For a general  $(Y, \xi)$ , there is no front projection  $\sigma$ and we need to generalize  $\frac{\partial}{\partial z}$  to define Reeb chords.

#### Definition

If  $\xi = \ker \lambda$ , the Reeb vector field  $R_{\lambda}$  associated to  $\lambda$  satisfies  $i(R_{\lambda})d\lambda = 0$  and  $\lambda(R_{\lambda}) = 1$ .

Instead of  $\mathbb{R}^{2n-1}$  with std contact structure  $\xi_0 = \ker \lambda_0$ , let us work with a closed contact manifold ( $Y, \xi = \ker \lambda$ ).

For a general  $(Y, \xi)$ , there is no front projection  $\sigma$ and we need to generalize  $\frac{\partial}{\partial z}$  to define Reeb chords.

#### Definition

If  $\xi = \ker \lambda$ , the Reeb vector field  $R_{\lambda}$  associated to  $\lambda$  satisfies  $i(R_{\lambda})d\lambda = 0$  and  $\lambda(R_{\lambda}) = 1$ .

(日) (日) (日) (日) (日) (日) (日)

Note that  $R_{\lambda}$  strongly depends on  $\lambda$ !

Instead of  $\mathbb{R}^{2n-1}$  with std contact structure  $\xi_0 = \ker \lambda_0$ , let us work with a closed contact manifold ( $Y, \xi = \ker \lambda$ ).

For a general  $(Y, \xi)$ , there is no front projection  $\sigma$ and we need to generalize  $\frac{\partial}{\partial z}$  to define Reeb chords.

#### Definition

If  $\xi = \ker \lambda$ , the Reeb vector field  $R_{\lambda}$  associated to  $\lambda$  satisfies  $i(R_{\lambda})d\lambda = 0$  and  $\lambda(R_{\lambda}) = 1$ .

Note that  $R_{\lambda}$  strongly depends on  $\lambda$ !

#### Definition

If  $\Lambda \subset (Y, \xi = \ker \lambda)$  is Legendrian, a Reeb chord of  $\Lambda$  is an integral curve of  $R_{\lambda}$  with endpoints on  $\Lambda$ .

Example 1:  $Y = S^{2n-1} \subset \mathbb{C}^n$  with coordinates  $z_j = x_j + iy_j$ ,  $\xi_{std} = \ker \sum_{j=1}^n (x_j dy_j - y_j dx_j)$  standard contact structure.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example 1:  $Y = S^{2n-1} \subset \mathbb{C}^n$  with coordinates  $z_j = x_j + iy_j$ ,  $\xi_{std} = \ker \sum_{j=1}^n (x_j dy_j - y_j dx_j)$  standard contact structure.

 $\rightsquigarrow$  Reeb field  $\sum_{j=1}^{n} (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_i})$  generates Hopf fibration.

・ロト・日本・日本・日本・日本

Example 1:  $Y = S^{2n-1} \subset \mathbb{C}^n$  with coordinates  $z_j = x_j + iy_j$ ,  $\xi_{std} = \ker \sum_{j=1}^n (x_j dy_j - y_j dx_j)$  standard contact structure.

 $\rightsquigarrow$  Reeb field  $\sum_{j=1}^{n} (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_i})$  generates Hopf fibration.

Example 2:  $Y = ST^*T^n$  unit cotangent bundle of torus,  $\xi_{can} = \ker \sum_{i=1}^{n} y_i dx_i$  canonical contact structure.

Example 1:  $Y = S^{2n-1} \subset \mathbb{C}^n$  with coordinates  $z_j = x_j + iy_j$ ,  $\xi_{std} = \ker \sum_{j=1}^n (x_j dy_j - y_j dx_j)$  standard contact structure.

 $\rightsquigarrow$  Reeb field  $\sum_{j=1}^{n} (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j})$  generates Hopf fibration.

Example 2:  $Y = ST^*T^n$  unit cotangent bundle of torus,  $\xi_{can} = \ker \sum_{i=1}^{n} y_i dx_i$  canonical contact structure.

→ Reeb field  $\sum_{j=1}^{n} y_j \frac{\partial}{\partial x_j}$  has no contractible period orbit.

Example 1:  $Y = S^{2n-1} \subset \mathbb{C}^n$  with coordinates  $z_j = x_j + iy_j$ ,  $\xi_{std} = \ker \sum_{j=1}^n (x_j dy_j - y_j dx_j)$  standard contact structure.

→ Reeb field  $\sum_{j=1}^{n} (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j})$  generates Hopf fibration.

**Example 2:**  $Y = ST^*T^n$  unit cotangent bundle of torus,  $\xi_{can} = \ker \sum_{i=1}^{n} y_i dx_i$  canonical contact structure.

→ Reeb field  $\sum_{j=1}^{n} y_j \frac{\partial}{\partial x_j}$  has no contractible period orbit.

Example 3: more generally  $(ST^*M, \xi_{can})$ ,

Example 1:  $Y = S^{2n-1} \subset \mathbb{C}^n$  with coordinates  $z_j = x_j + iy_j$ ,  $\xi_{std} = \ker \sum_{j=1}^n (x_j dy_j - y_j dx_j)$  standard contact structure.

→ Reeb field  $\sum_{j=1}^{n} (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j})$  generates Hopf fibration.

**Example 2:**  $Y = ST^*T^n$  unit cotangent bundle of torus,  $\xi_{can} = \ker \sum_{i=1}^{n} y_i dx_i$  canonical contact structure.

→ Reeb field  $\sum_{j=1}^{n} y_j \frac{\partial}{\partial x_j}$  has no contractible period orbit.

Example 3: more generally  $(ST^*M, \xi_{can})$ ,

 $\rightsquigarrow$  Reeb flow is the geodesic flow for (M, g).

Let  $\varphi : (X, \omega) \to (X, \omega)$  be a symplectomorphism, i.e.  $\varphi$  is a diffeomorphism of X such that  $\varphi^* \omega = \omega$ .

Let  $\varphi : (X, \omega) \to (X, \omega)$  be a symplectomorphism, i.e.  $\varphi$  is a diffeomorphism of X such that  $\varphi^* \omega = \omega$ .

Idea:  $(X \times X, \omega \oplus (-\omega))$  is a symplectic manifold.  $\Gamma_{\varphi} = \{(x, \varphi(x)) \mid x \in X\} \subset (X \times X, \omega \oplus (-\omega))$  is Lagrangian iff  $\varphi$  is a symplectomorphism.

Let  $\varphi : (X, \omega) \to (X, \omega)$  be a symplectomorphism, i.e.  $\varphi$  is a diffeomorphism of X such that  $\varphi^* \omega = \omega$ .

Idea:  $(X \times X, \omega \oplus (-\omega))$  is a symplectic manifold.  $\Gamma_{\varphi} = \{(x, \varphi(x)) \mid x \in X\} \subset (X \times X, \omega \oplus (-\omega))$  is Lagrangian iff  $\varphi$  is a symplectomorphism.

Arnold Conjecture: If  $\varphi$  is a generic Hamiltonian diffeo, then  $\varphi$  has at least dim H(X) fixed points.

Let  $\varphi : (X, \omega) \to (X, \omega)$  be a symplectomorphism, i.e.  $\varphi$  is a diffeomorphism of X such that  $\varphi^* \omega = \omega$ .

Idea:  $(X \times X, \omega \oplus (-\omega))$  is a symplectic manifold.  $\Gamma_{\varphi} = \{(x, \varphi(x)) \mid x \in X\} \subset (X \times X, \omega \oplus (-\omega))$  is Lagrangian iff  $\varphi$  is a symplectomorphism.

Arnold Conjecture: If  $\varphi$  is a generic Hamiltonian diffeo, then  $\varphi$  has at least dim H(X) fixed points.

This conjecture is then equivalent to  $\#(\Gamma_{id} \pitchfork \Gamma_{\varphi}) \ge \dim H(X)$ .

Let  $\varphi : (X, \omega) \to (X, \omega)$  be a symplectomorphism, i.e.  $\varphi$  is a diffeomorphism of X such that  $\varphi^* \omega = \omega$ .

Idea:  $(X \times X, \omega \oplus (-\omega))$  is a symplectic manifold.  $\Gamma_{\varphi} = \{(x, \varphi(x)) \mid x \in X\} \subset (X \times X, \omega \oplus (-\omega))$  is Lagrangian iff  $\varphi$  is a symplectomorphism.

Arnold Conjecture: If  $\varphi$  is a generic Hamiltonian diffeo, then  $\varphi$  has at least dim H(X) fixed points.

This conjecture is then equivalent to  $\#(\Gamma_{id} \pitchfork \Gamma_{\varphi}) \ge \dim H(X)$ .

Let us adapt this trick to contact geometry.

Let  $\varphi : (X, \omega) \to (X, \omega)$  be a symplectomorphism, i.e.  $\varphi$  is a diffeomorphism of X such that  $\varphi^* \omega = \omega$ .

Idea:  $(X \times X, \omega \oplus (-\omega))$  is a symplectic manifold.  $\Gamma_{\varphi} = \{(x, \varphi(x)) \mid x \in X\} \subset (X \times X, \omega \oplus (-\omega))$  is Lagrangian iff  $\varphi$  is a symplectomorphism.

Arnold Conjecture: If  $\varphi$  is a generic Hamiltonian diffeo, then  $\varphi$  has at least dim H(X) fixed points.

This conjecture is then equivalent to  $\#(\Gamma_{id} \pitchfork \Gamma_{\varphi}) \ge \dim H(X)$ .

Let us adapt this trick to contact geometry.

#### Definition

A contactomorphism  $\psi$  of  $(Y, \xi = \ker \lambda)$  is a diffeomorphism of Y such that  $\psi^* \lambda = e^g \lambda$  for some function g on Y.

If  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  are contact manifolds, then  $Y_1 \times Y_2$  cannot carry a contact structure, because dim  $Y_1 \times Y_2$  is even.

(ロ) (同) (三) (三) (三) (○) (○)

If  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  are contact manifolds, then  $Y_1 \times Y_2$  cannot carry a contact structure, because dim  $Y_1 \times Y_2$  is even.

#### Definition

The contact product of  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  is  $(\hat{Y} = Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker \hat{\lambda})$  with  $\hat{\lambda} = e^t \lambda_1 - \lambda_2$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

If  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  are contact manifolds, then  $Y_1 \times Y_2$  cannot carry a contact structure, because dim  $Y_1 \times Y_2$  is even.

#### Definition

The contact product of  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  is  $(\hat{Y} = Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker \hat{\lambda})$  with  $\hat{\lambda} = e^t \lambda_1 - \lambda_2$ .

If  $\psi$  is a contactomorphism of ( $Y, \xi = \ker \lambda$ ), its graph  $\Gamma_{\psi} \subset Y \times Y$  has no special geometric property.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  are contact manifolds, then  $Y_1 \times Y_2$  cannot carry a contact structure, because dim  $Y_1 \times Y_2$  is even.

#### Definition

The contact product of  $(Y_1, \xi_1)$  and  $(Y_2, \xi_2)$  is  $(\hat{Y} = Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker \hat{\lambda})$  with  $\hat{\lambda} = e^t \lambda_1 - \lambda_2$ .

If  $\psi$  is a contactomorphism of ( $Y, \xi = \ker \lambda$ ), its graph  $\Gamma_{\psi} \subset Y \times Y$  has no special geometric property.

#### Definition

The lifted graph of  $\psi$ , defined by

 $\hat{\Gamma}_{\psi} = \{ (x, \psi(x), g(x)) \mid x \in Y, \psi^* \lambda = e^g \lambda \}$ is a Legendrian submanifold of  $(\hat{Y}, \hat{\xi})$ .

The Reeb flow is a contactomorphism but it has no fixed point for small positive time.

The Reeb flow is a contactomorphism but it has no fixed point for small positive time.

#### Definition (Sandon)

 $p \in Y$  is a translated point of  $\psi$  if p and  $\psi(p)$  are on the same Reeb trajectory and if  $(\psi^* \lambda)_p = \lambda_p$ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Reeb flow is a contactomorphism but it has no fixed point for small positive time.

#### Definition (Sandon)

 $p \in Y$  is a translated point of  $\psi$  if p and  $\psi(p)$  are on the same Reeb trajectory and if  $(\psi^* \lambda)_p = \lambda_p$ .

Example: Every point is a translated point for the Reeb flow.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Reeb flow is a contactomorphism but it has no fixed point for small positive time.

#### Definition (Sandon)

 $p \in Y$  is a translated point of  $\psi$  if p and  $\psi(p)$  are on the same Reeb trajectory and if  $(\psi^* \lambda)_p = \lambda_p$ .

Example: Every point is a translated point for the Reeb flow.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### Conjecture (Sandon)

If Y is closed and  $\psi$  is contact isotopic to id, then  $\psi$  has at least dim H(Y) translated points.

The Reeb flow is a contactomorphism but it has no fixed point for small positive time.

#### Definition (Sandon)

 $p \in Y$  is a translated point of  $\psi$  if p and  $\psi(p)$  are on the same Reeb trajectory and if  $(\psi^* \lambda)_p = \lambda_p$ .

Example: Every point is a translated point for the Reeb flow.

#### Conjecture (Sandon)

If Y is closed and  $\psi$  is contact isotopic to id, then  $\psi$  has at least dim H(Y) translated points.

#### **Results:**

• True if  $(Y, \xi) = (S^{2n-1}, \xi_{std})$  or  $(\mathbb{R}P^{2n-1}, \xi_{std})$  (Sandon).

The Reeb flow is a contactomorphism but it has no fixed point for small positive time.

#### Definition (Sandon)

 $p \in Y$  is a translated point of  $\psi$  if p and  $\psi(p)$  are on the same Reeb trajectory and if  $(\psi^* \lambda)_p = \lambda_p$ .

Example: Every point is a translated point for the Reeb flow.

#### Conjecture (Sandon)

If Y is closed and  $\psi$  is contact isotopic to id, then  $\psi$  has at least dim H(Y) translated points.

#### **Results:**

- True if  $(Y, \xi) = (S^{2n-1}, \xi_{std})$  or  $(\mathbb{R}P^{2n-1}, \xi_{std})$  (Sandon).
- True if  $(Y, \xi)$  is hypertight, i.e. there exists  $\lambda$  such that  $R_{\lambda}$  has no contractible periodic orbit (Albers, Fuchs, Merry).

Observation:  $p \in Y$  is a translated point of  $\psi$  iff there is a Reeb chord from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$  starting at (p, p, 0).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Observation:  $p \in Y$  is a translated point of  $\psi$  iff there is a Reeb chord from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$  starting at (p, p, 0).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof:  $\hat{\Gamma}_{id} = \Delta \times \{0\}$  and  $R_{\hat{\lambda}} = 0 \oplus -R_{\lambda} \oplus 0$ ,

Observation:  $p \in Y$  is a translated point of  $\psi$  iff there is a Reeb chord from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$  starting at (p, p, 0).

Proof:  $\hat{\Gamma}_{id} = \Delta \times \{0\}$  and  $R_{\hat{\lambda}} = 0 \oplus -R_{\lambda} \oplus 0$ , so the Reeb chord can only go from (p, p, 0) to (p, q, 0), with  $q \in Y$  on the same Reeb trajectory as p.

(日) (日) (日) (日) (日) (日) (日)

Observation:  $p \in Y$  is a translated point of  $\psi$  iff there is a Reeb chord from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$  starting at (p, p, 0).

Proof:  $\hat{\Gamma}_{id} = \Delta \times \{0\}$  and  $R_{\hat{\lambda}} = 0 \oplus -R_{\lambda} \oplus 0$ , so the Reeb chord can only go from (p, p, 0) to (p, q, 0), with  $q \in Y$  on the same Reeb trajectory as p. But  $(p, q, 0) \in \hat{\Gamma}_{\psi}$  iff  $q = \psi(p)$  and g(p) = 0.

Observation:  $p \in Y$  is a translated point of  $\psi$  iff there is a Reeb chord from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$  starting at (p, p, 0).

Proof:  $\hat{\Gamma}_{id} = \Delta \times \{0\}$  and  $R_{\hat{\lambda}} = 0 \oplus -R_{\lambda} \oplus 0$ , so the Reeb chord can only go from (p, p, 0) to (p, q, 0), with  $q \in Y$  on the same Reeb trajectory as p. But  $(p, q, 0) \in \hat{\Gamma}_{\psi}$  iff  $q = \psi(p)$  and g(p) = 0.

#### Theorem (Zénaïdi)

For suitable geometric structures, holomorphic disks with boundary on closed  $\Lambda$  remain in a compact region of  $\hat{Y}$ .

Observation:  $p \in Y$  is a translated point of  $\psi$  iff there is a Reeb chord from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$  starting at (p, p, 0).

Proof:  $\hat{\Gamma}_{id} = \Delta \times \{0\}$  and  $R_{\hat{\lambda}} = 0 \oplus -R_{\lambda} \oplus 0$ , so the Reeb chord can only go from (p, p, 0) to (p, q, 0), with  $q \in Y$  on the same Reeb trajectory as p. But  $(p, q, 0) \in \hat{\Gamma}_{\psi}$  iff  $q = \psi(p)$  and g(p) = 0.

#### Theorem (Zénaïdi)

For suitable geometric structures, holomorphic disks with boundary on closed  $\Lambda$  remain in a compact region of  $\hat{Y}$ .

~ LCH-type theories can be used to prove this conjecture.

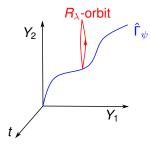
Outline:

 $C_*$  = graded vector space gen. by Reeb chords from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$ .

#### Legendrian approach to translated points (2) Outline:

 $C_*$  = graded vector space gen. by Reeb chords from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$ .

Any Reeb chord of  $\Lambda = \hat{\Gamma}_{id}$  or  $\hat{\Gamma}_{\psi}$  is a periodic  $R_{\lambda}$ -orbit  $\gamma$ .



#### Outline:

 $C_*$  = graded vector space gen. by Reeb chords from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$ .

(ロ) (同) (三) (三) (三) (○) (○)

Any Reeb chord of  $\Lambda = \hat{\Gamma}_{id}$  or  $\hat{\Gamma}_{\psi}$  is a periodic  $R_{\lambda}$ -orbit  $\gamma$ .

If  $(Y, \xi)$  is hypertight,  $\gamma$  is not homotopic to a loop in  $\Lambda$ .

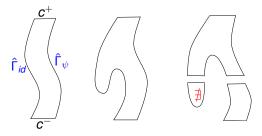
#### Outline:

 $C_*$  = graded vector space gen. by Reeb chords from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$ .

Any Reeb chord of  $\Lambda = \hat{\Gamma}_{id}$  or  $\hat{\Gamma}_{\psi}$  is a periodic  $R_{\lambda}$ -orbit  $\gamma$ .

If  $(Y, \xi)$  is hypertight,  $\gamma$  is not homotopic to a loop in  $\Lambda$ .

Compactification of  $\mathcal{M}(c^+; c^-)/\mathbb{R}$ :



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

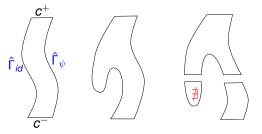
#### Outline:

 $C_*$  = graded vector space gen. by Reeb chords from  $\hat{\Gamma}_{id}$  to  $\hat{\Gamma}_{\psi}$ .

Any Reeb chord of  $\Lambda = \hat{\Gamma}_{id}$  or  $\hat{\Gamma}_{\psi}$  is a periodic  $R_{\lambda}$ -orbit  $\gamma$ .

If  $(Y, \xi)$  is hypertight,  $\gamma$  is not homotopic to a loop in  $\Lambda$ .

Compactification of  $\mathcal{M}(c^+; c^-)/\mathbb{R}$ :



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Define  $\partial : C_* \to C_{*-1}$  by  $\partial c = \sum_{c^-} \# \mathcal{M}(c^+; c^-) / \mathbb{R} c^-$ , so that  $\partial \circ \partial = 0$ .

## Legendrian approach to translated points (3) $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) = H_*(C_*, \partial)$ is invariant under Leg. isotopy.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

 $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) = H_*(C_*, \partial)$  is invariant under Leg. isotopy.

 $\rightsquigarrow$  can be computed for  $\psi = \text{perturbation of the Reeb flow}$  for small positive time.

 $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) = H_*(C_*, \partial)$  is invariant under Leg. isotopy.

 $\rightsquigarrow$  can be computed for  $\psi = \text{perturbation of the Reeb flow}$  for small positive time.

 $\rightsquigarrow$  obtain  $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) \simeq H(\Lambda) \simeq H(Y).$ 

### Legendrian approach to translated points (3) $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{ib}) = H_*(C_*, \partial)$ is invariant under Leg. isotopy.

 $\rightsquigarrow$  can be computed for  $\psi = \text{perturbation of the Reeb flow}$  for small positive time.

 $\rightsquigarrow$  obtain  $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) \simeq H(\Lambda) \simeq H(Y).$ 

This computation gives the desired lower bound.

 $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) = H_*(C_*, \partial)$  is invariant under Leg. isotopy.

(日) (日) (日) (日) (日) (日) (日)

 $\leadsto$  can be computed for  $\psi = \mbox{perturbation}$  of the Reeb flow for small positive time.

$$\rightsquigarrow$$
 obtain  $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) \simeq H(\Lambda) \simeq H(Y).$ 

This computation gives the desired lower bound.

This can be generalized to the case where  $\hat{\Gamma}_{id}$  and  $\hat{\Gamma}_{\psi}$  have augmentations  $\varepsilon_{id}$ ,  $\varepsilon_{\psi}$ , using  $LCH^{\varepsilon_{id},\varepsilon_{\psi}}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi})$ :

 $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) = H_*(C_*, \partial)$  is invariant under Leg. isotopy.

(日) (日) (日) (日) (日) (日) (日)

 $\leadsto$  can be computed for  $\psi = \mbox{perturbation}$  of the Reeb flow for small positive time.

$$\rightsquigarrow$$
 obtain  $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) \simeq H(\Lambda) \simeq H(Y).$ 

This computation gives the desired lower bound.

This can be generalized to the case where  $\hat{\Gamma}_{id}$  and  $\hat{\Gamma}_{\psi}$  have augmentations  $\varepsilon_{id}$ ,  $\varepsilon_{\psi}$ , using  $LCH^{\varepsilon_{id},\varepsilon_{\psi}}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi})$ :  $c^{+}$  $\hat{\Gamma}_{id}$ 

 $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) = H_*(C_*, \partial)$  is invariant under Leg. isotopy.

 $\leadsto$  can be computed for  $\psi = \mbox{perturbation}$  of the Reeb flow for small positive time.

$$\rightsquigarrow$$
 obtain  $LCH^{strip}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi}) \simeq H(\Lambda) \simeq H(Y).$ 

This computation gives the desired lower bound.

This can be generalized to the case where  $\hat{\Gamma}_{id}$  and  $\hat{\Gamma}_{\psi}$  have augmentations  $\varepsilon_{id}$ ,  $\varepsilon_{\psi}$ , using  $LCH^{\varepsilon_{id},\varepsilon_{\psi}}(\hat{\Gamma}_{id} \rightarrow \hat{\Gamma}_{\psi})$ :  $c^{+}$  $\hat{\Gamma}_{id}$  $\hat{\Gamma}_{\psi}$ 

 $\varepsilon_{id}$  and  $\varepsilon_{\psi}$  can be induced from an augmentation of  $(Y, \xi)$ .

$$\begin{array}{l} \Lambda_i \subset (Y_i, \xi_i = \ker \lambda_i) \text{ closed, Legendrian for } i = 1, 2. \\ \rightsquigarrow \hat{\Lambda} = \Lambda_1 \times \Lambda_2 \times \mathbb{R} \subset (Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker(e^t \lambda_1 + e^{-t} \lambda_2)) \\ \text{ is Legendrian.} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\begin{array}{l} \Lambda_i \subset (Y_i, \xi_i = \ker \lambda_i) \text{ closed, Legendrian for } i = 1, 2. \\ \rightsquigarrow \hat{\Lambda} = \Lambda_1 \times \Lambda_2 \times \mathbb{R} \subset (Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker(e^t \lambda_1 + e^{-t} \lambda_2)) \\ \text{ is Legendrian.} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$R_{\hat{\lambda}} = \frac{1}{2} (e^{-t} R_{\lambda_1} + e^t R_{\lambda_2}).$$

$$\begin{array}{l} \Lambda_i \subset (Y_i, \xi_i = \ker \lambda_i) \text{ closed, Legendrian for } i = 1, 2. \\ \rightsquigarrow \hat{\Lambda} = \Lambda_1 \times \Lambda_2 \times \mathbb{R} \subset (Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker(e^t \lambda_1 + e^{-t} \lambda_2)) \\ \text{ is Legendrian.} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\begin{split} & R_{\hat{\lambda}} = \frac{1}{2} (e^{-t} R_{\lambda_1} + e^t R_{\lambda_2}). \\ & \rightsquigarrow \text{ Chords of } \hat{\Lambda} \stackrel{1:1}{\longleftrightarrow} \text{ (chords of } \Lambda_1) \times \text{ (chords of } \Lambda_2). \end{split}$$

$$\begin{array}{l} \Lambda_i \subset (Y_i, \xi_i = \ker \lambda_i) \text{ closed, Legendrian for } i = 1, 2. \\ \rightsquigarrow \hat{\Lambda} = \Lambda_1 \times \Lambda_2 \times \mathbb{R} \subset (Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker(e^t \lambda_1 + e^{-t} \lambda_2)) \\ \text{ is Legendrian.} \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

$$\begin{split} & R_{\hat{\lambda}} = \frac{1}{2} (e^{-t} R_{\lambda_1} + e^t R_{\lambda_2}). \\ & \rightsquigarrow \text{ Chords of } \hat{\Lambda} \xleftarrow{1:1} (\text{chords of } \Lambda_1) \times (\text{chords of } \Lambda_2). \\ & \rightsquigarrow \hat{\mathscr{A}} = \mathscr{A}_1 \otimes \mathscr{A}_2. \end{split}$$

$$\begin{array}{l} \Lambda_i \subset (Y_i, \xi_i = \ker \lambda_i) \text{ closed, Legendrian for } i = 1, 2. \\ \rightsquigarrow \hat{\Lambda} = \Lambda_1 \times \Lambda_2 \times \mathbb{R} \subset (Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker(e^t \lambda_1 + e^{-t} \lambda_2)) \\ \text{ is Legendrian.} \end{array}$$

$$\begin{split} & R_{\hat{\lambda}} = \frac{1}{2} (e^{-t} R_{\lambda_1} + e^t R_{\lambda_2}). \\ & \rightsquigarrow \text{ Chords of } \hat{\Lambda} \xleftarrow{1:1} (\text{chords of } \Lambda_1) \times (\text{chords of } \Lambda_2). \\ & \rightsquigarrow \hat{\mathscr{A}} = \mathscr{A}_1 \otimes \mathscr{A}_2. \end{split}$$

#### Theorem (Zénaïdi)

If  $(Y_i, \xi_i)$  are contactizations of exact sympl. mfds with  $c_1 = 0$ , if  $H_1(\Lambda_i) = 0$  and  $\varepsilon_i$  are augmentations for  $\Lambda_i$ , i = 1, 2, then there exists  $\hat{\varepsilon}$  augmentation for  $\hat{\Lambda}$  such that  $LCH^{\varepsilon_1}(\Lambda_1) \otimes LCH^{\varepsilon_2}(\Lambda_2) \simeq LCH^{\hat{\varepsilon}}(\hat{\Lambda}).$ 

$$\begin{array}{l} \Lambda_i \subset (Y_i, \xi_i = \ker \lambda_i) \text{ closed, Legendrian for } i = 1, 2. \\ \rightsquigarrow \hat{\Lambda} = \Lambda_1 \times \Lambda_2 \times \mathbb{R} \subset (Y_1 \times Y_2 \times \mathbb{R}, \hat{\xi} = \ker(e^t \lambda_1 + e^{-t} \lambda_2)) \\ \text{ is Legendrian.} \end{array}$$

$$\begin{split} & R_{\hat{\lambda}} = \frac{1}{2} (e^{-t} R_{\lambda_1} + e^t R_{\lambda_2}). \\ & \rightsquigarrow \text{ Chords of } \hat{\Lambda} \xleftarrow{1:1} (\text{chords of } \Lambda_1) \times (\text{chords of } \Lambda_2). \\ & \rightsquigarrow \hat{\mathscr{A}} = \mathscr{A}_1 \otimes \mathscr{A}_2. \end{split}$$

#### Theorem (Zénaïdi)

If  $(Y_i, \xi_i)$  are contactizations of exact sympl. mfds with  $c_1 = 0$ , if  $H_1(\Lambda_i) = 0$  and  $\varepsilon_i$  are augmentations for  $\Lambda_i$ , i = 1, 2, then there exists  $\hat{\varepsilon}$  augmentation for  $\hat{\Lambda}$  such that  $LCH^{\varepsilon_1}(\Lambda_1) \otimes LCH^{\varepsilon_2}(\Lambda_2) \simeq LCH^{\hat{\varepsilon}}(\hat{\Lambda}).$ 

This is a step towards an axiomatic definition of  $LCH^{\varepsilon}$ .

Topological entropy  $h_{top}(\phi)$  measures complexity of a flow  $\phi$ .

Topological entropy  $h_{top}(\phi)$  measures complexity of a flow  $\phi$ . If  $h_{top}(\phi) > 0$  on a closed oriented 3-manifold, then there exists a Smale horseshoe as a subsystem of  $\phi$ .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Topological entropy  $h_{top}(\phi)$  measures complexity of a flow  $\phi$ . If  $h_{top}(\phi) > 0$  on a closed oriented 3-manifold, then there exists a Smale horseshoe as a subsystem of  $\phi$ .

 $\rightsquigarrow$  apply this to the Reeb flow  $\phi^{R_{\lambda}}$  of any  $\lambda$  on some  $(Y, \xi)$ .

Topological entropy  $h_{top}(\phi)$  measures complexity of a flow  $\phi$ . If  $h_{top}(\phi) > 0$  on a closed oriented 3-manifold, then there exists a Smale horseshoe as a subsystem of  $\phi$ .

 $\rightsquigarrow$  apply this to the Reeb flow  $\phi^{R_{\lambda}}$  of any  $\lambda$  on some  $(Y, \xi)$ .

#### Theorem (Alves)

Legendrian  $\Lambda, \Lambda' \subset (Y^3, \xi)$  with  $\lambda_0$  hypertight, adapted to  $\Lambda, \Lambda'$ . If LCH<sup>strip</sup>( $\Lambda \to \Lambda'$ ) has exp. homotopical growth rate a > 0 (\*), then for all  $\lambda = f\lambda_0$ , we have  $h_{top}(\phi^{R_\lambda}) \ge \frac{a}{\max f}$ .

Topological entropy  $h_{top}(\phi)$  measures complexity of a flow  $\phi$ . If  $h_{top}(\phi) > 0$  on a closed oriented 3-manifold, then there exists a Smale horseshoe as a subsystem of  $\phi$ .

 $\rightsquigarrow$  apply this to the Reeb flow  $\phi^{R_{\lambda}}$  of any  $\lambda$  on some  $(Y, \xi)$ .

#### Theorem (Alves)

Legendrian  $\Lambda, \Lambda' \subset (Y^3, \xi)$  with  $\lambda_0$  hypertight, adapted to  $\Lambda, \Lambda'$ . If LCH<sup>strip</sup>( $\Lambda \to \Lambda'$ ) has exp. homotopical growth rate a > 0 (\*), then for all  $\lambda = f\lambda_0$ , we have  $h_{top}(\phi^{R_\lambda}) \ge \frac{a}{\max f}$ .

#### (\*) means:

the number of homotopy classes  $\rho$  of paths from  $\Lambda$  to  $\Lambda'$  containing only Reeb chords of length < C and such that  $LCH^{strip,\rho}(\Lambda \rightarrow \Lambda') \neq 0$  grows faster than  $e^{aC+b}$  for a > 0.

#### Corollary (Alves)

We have  $h_{top} > 0$  for all Reeb flows on:

- $(ST^*\Sigma_g, \xi_{can})$  for  $g \ge 2$  (Schlenk, Macarini),
- a class of toroidal contact 3-manifolds constructed by Colin,

(日) (日) (日) (日) (日) (日) (日)

• a contact mfd constructed via Foulon-Hasselblatt surgery.

#### Corollary (Alves)

We have  $h_{top} > 0$  for all Reeb flows on:

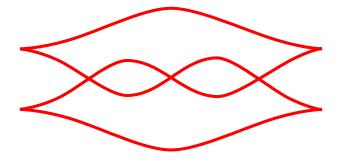
- $(ST^*\Sigma_g, \xi_{can})$  for  $g \ge 2$  (Schlenk, Macarini),
- a class of toroidal contact 3-manifolds constructed by Colin,
- a contact mfd constructed via Foulon-Hasselblatt surgery.

And using similar techniques based on *LCH<sup>strip</sup>*:

#### Theorem (Alves, Colin, Honda)

We have  $h_{top} > 0$  for all Reeb flows on  $(Y^3, \xi)$ having a supporting open book decomposition with connected binding and pseudo-Anosov monodromy with fractional Dehn twist coefficient  $\frac{k}{n}$  such that  $k \ge 5$ .

## Thank you for your attention!



・ロット (雪) (日) (日)