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Generalizing the setup from lectures 1 and 2

Instead of R2n−1 with std contact structure ξ0 = kerλ0,
let us work with a closed contact manifold (Y , ξ = kerλ).

For a general (Y , ξ), there is no front projection σ
and we need to generalize ∂

∂z to define Reeb chords.

Definition
If ξ = kerλ, the Reeb vector field Rλ associated to λ satisfies

ı(Rλ)dλ = 0 and λ(Rλ) = 1.

Note that Rλ strongly depends on λ!

Definition
If Λ ⊂ (Y , ξ = kerλ) is Legendrian, a Reeb chord of Λ is an
integral curve of Rλ with endpoints on Λ.
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Examples of closed contact manifolds

Example 1: Y = S2n−1 ⊂ Cn with coordinates zj = xj + iyj ,
ξstd = ker

∑n
j=1(xjdyj − yjdxj) standard contact structure.

 Reeb field
∑n

j=1(xj
∂
∂yj
− yj

∂
∂xj

) generates Hopf fibration.

Example 2: Y = ST ∗T n unit cotangent bundle of torus,
ξcan = ker

∑n
j=1 yjdxj canonical contact structure.

 Reeb field
∑n

j=1 yj
∂
∂xj

has no contractible period orbit.

Example 3: more generally (ST ∗M, ξcan),

 Reeb flow is the geodesic flow for (M,g).
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Graph trick in symplectic geometry

Let ϕ : (X , ω)→ (X , ω) be a symplectomorphism,
i.e. ϕ is a diffeomorphism of X such that ϕ∗ω = ω.

Idea: (X × X , ω ⊕ (−ω)) is a symplectic manifold.
Γϕ = {(x , ϕ(x)) | x ∈ X} ⊂ (X × X , ω ⊕ (−ω)) is Lagrangian
iff ϕ is a symplectomorphism.

Arnold Conjecture: If ϕ is a generic Hamiltonian diffeo,
then ϕ has at least dim H(X ) fixed points.

This conjecture is then equivalent to #(Γid t Γϕ) ≥ dim H(X ).

Let us adapt this trick to contact geometry.

Definition
A contactomorphism ψ of (Y , ξ = kerλ) is a diffeomorphism of
Y such that ψ∗λ = egλ for some function g on Y .
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Notion of contact product

If (Y1, ξ1) and (Y2, ξ2) are contact manifolds,
then Y1 × Y2 cannot carry a contact structure,
because dim Y1 × Y2 is even.

Definition
The contact product of (Y1, ξ1) and (Y2, ξ2) is
(Ŷ = Y1 × Y2 × R, ξ̂ = ker λ̂) with λ̂ = etλ1 − λ2.

If ψ is a contactomorphism of (Y , ξ = kerλ), its graph
Γψ ⊂ Y × Y has no special geometric property.

Definition
The lifted graph of ψ, defined by

Γ̂ψ = {(x , ψ(x),g(x)) | x ∈ Y , ψ∗λ = egλ}
is a Legendrian submanifold of (Ŷ , ξ̂).
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Contactomorphisms and translated points

The Reeb flow is a contactomorphism but it has no fixed point
for small positive time.

Definition (Sandon)
p ∈ Y is a translated point of ψ if p and ψ(p) are on the same
Reeb trajectory and if (ψ∗λ)p = λp.

Example: Every point is a translated point for the Reeb flow.

Conjecture (Sandon)
If Y is closed and ψ is contact isotopic to id,
then ψ has at least dim H(Y ) translated points.

Results:
• True if (Y , ξ) = (S2n−1, ξstd ) or (RP2n−1, ξstd ) (Sandon).
• True if (Y , ξ) is hypertight, i.e. there exists λ such that

Rλ has no contractible periodic orbit (Albers, Fuchs, Merry).
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Legendrian approach to translated points

Observation: p ∈ Y is a translated point of ψ
iff there is a Reeb chord from Γ̂id to Γ̂ψ starting at (p,p,0).

Proof: Γ̂id = ∆× {0} and Rλ̂ = 0⊕−Rλ ⊕ 0,
so the Reeb chord can only go from (p,p,0) to (p,q,0),
with q ∈ Y on the same Reeb trajectory as p.
But (p,q,0) ∈ Γ̂ψ iff q = ψ(p) and g(p) = 0.

Theorem (Zénaïdi)
For suitable geometric structures, holomorphic disks with
boundary on closed Λ remain in a compact region of Ŷ .

 LCH-type theories can be used to prove this conjecture.
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 LCH-type theories can be used to prove this conjecture.



Legendrian approach to translated points (2)
Outline:
C∗ = graded vector space gen. by Reeb chords from Γ̂id to Γ̂ψ.

Any Reeb chord of Λ = Γ̂id or Γ̂ψ is a periodic Rλ-orbit γ.

If (Y , ξ) is hypertight, γ is not homotopic to a loop in Λ.

Compactification ofM(c+; c−)/R:
c+

c−

@

Γ̂id
Γ̂ψ

Define ∂ : C∗ → C∗−1 by ∂c =
∑

c− #M(c+; c−)/R c−,
so that ∂ ◦ ∂ = 0.
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Legendrian approach to translated points (3)
LCHstrip(Γ̂id → Γ̂ψ) = H∗(C∗, ∂) is invariant under Leg. isotopy.

 can be computed for ψ = perturbation of the Reeb flow
for small positive time.

 obtain LCHstrip(Γ̂id → Γ̂ψ) ' H(Λ) ' H(Y ).

This computation gives the desired lower bound.

This can be generalized to the case
where Γ̂id and Γ̂ψ have augmentations εid , εψ,
using LCHεid ,εψ(Γ̂id → Γ̂ψ) : c+

c−εid εψ

Γ̂id Γ̂ψ

εid and εψ can be induced from an augmentation of (Y , ξ).
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Künneth formula for linearized LCH

Λi ⊂ (Yi , ξi = kerλi) closed, Legendrian for i = 1,2.
 Λ̂ = Λ1×Λ2×R ⊂ (Y1×Y2×R, ξ̂ = ker(etλ1 + e−tλ2))

is Legendrian.

Rλ̂ = 1
2(e−tRλ1 + etRλ2).

 Chords of Λ̂
1:1←→ (chords of Λ1) × (chords of Λ2).

 Â = A1 ⊗A2.

Theorem (Zénaïdi)
If (Yi , ξi) are contactizations of exact sympl. mfds with c1 = 0,
if H1(Λi) = 0 and εi are augmentations for Λi , i = 1,2,
then there exists ε̂ augmentation for Λ̂ such that

LCHε1(Λ1)⊗ LCHε2(Λ2) ' LCH ε̂(Λ̂).

This is a step towards an axiomatic definition of LCHε.
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Complexity of Reeb flows

Topological entropy htop(φ) measures complexity of a flow φ.

If htop(φ) > 0 on a closed oriented 3-manifold,
then there exists a Smale horseshoe as a subsystem of φ.

 apply this to the Reeb flow φRλ of any λ on some (Y , ξ).

Theorem (Alves)
Legendrian Λ,Λ′ ⊂ (Y 3, ξ) with λ0 hypertight, adapted to Λ,Λ′.
If LCHstrip(Λ→ Λ′) has exp. homotopical growth rate a > 0 (*),
then for all λ = fλ0, we have htop(φRλ) ≥ a

max f .

(*) means:
the number of homotopy classes ρ of paths from Λ to Λ′

containing only Reeb chords of length < C
and such that LCHstrip,ρ(Λ→ Λ′) 6= 0
grows faster than eaC+b for a > 0.
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Complexity of Reeb flows (2)

Corollary (Alves)
We have htop > 0 for all Reeb flows on:
• (ST ∗Σg , ξcan) for g ≥ 2 (Schlenk, Macarini),
• a class of toroidal contact 3-manifolds constructed by Colin,
• a contact mfd constructed via Foulon-Hasselblatt surgery.

And using similar techniques based on LCHstrip:

Theorem (Alves, Colin, Honda)
We have htop > 0 for all Reeb flows on (Y 3, ξ)
having a supporting open book decomposition
with connected binding and pseudo-Anosov monodromy
with fractional Dehn twist coefficient k

n such that k ≥ 5.
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Thank you for your attention!
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