DG-Algebraic Aspects of Contact Invariants
 42th Winter School in Geometry and Physics, Srní

Georgios Dimitroglou Rizell

Uppsala University
15 Jan - 22 Jan 2022

Plan

Lecture I:

- DGAs and DG-modules
- Derived category \& RHom
- Bar resolution, short resolution

Lecture II

- Koszul resolution (commutative case)
- Functoriality and invariance of RHom.
- A_{∞}-category of bounding cochains dual to the DGA Lecture III:
- A_{∞}-category of bounding cochains dual to the DGA
- Equivalence with DG-category of modules
- Augmentation variety

Recap

Last lecture we saw:

- How to define a "DG category" denoted by $\mathcal{C}_{d g}(\mathcal{A})$ associated to any DGA, whose objects are DG-modules, endomorphisms are themselves DGAs denoted by $\mathcal{A}_{d g}^{*}(M, M)$, and morphisms are DG-modules $\mathcal{A}_{d g}^{*}(M, N)$ over the latter DGAs.
- The right-derived Hom complex can then be constructed as follows:
- Replace M and N with semi-free modules S_{M} and S_{N}; then
- $\operatorname{RHom}_{\mathcal{A}}^{*}(M, N)=\mathcal{A}_{d g}^{*}\left(S_{M}, S_{N}\right)$.

Lecture II

(1) Plan and Recap
(2) The Koszul resolution (\mathcal{A} commutative $)$
(3) Invariance Properties
4. A_{∞}-category of bounding cochains
(5) References

Section 2

The Koszul resolution (\mathcal{A} commutative)

The Koszul resolution

When \mathcal{A} is commutative algebra, e.g. with trivial differential. When \mathcal{A} is the regular function ring of a smooth n-dimensional affine algebraic variety, then the Koszul resolution is a well-behaved resolution of \mathcal{A} as an \mathcal{A}-bimodule. It is given by:

$$
S_{\mathcal{A}}^{\text {Koszul }}:=\left\{\Lambda^{n}(E) \xrightarrow{\partial_{E}^{(n)}} \ldots \rightarrow \Lambda^{2}(E) \xrightarrow{\partial_{E}^{(2)}} \Lambda^{1}(E) \xrightarrow{\partial_{E}^{(1)}} \mathcal{A} \otimes_{\boldsymbol{k}} \mathcal{A}\right\} .
$$

- $E=\mathcal{A} \otimes_{k} \Omega^{1}(\mathcal{A})$ is a free \mathcal{A}-bimodule,
- $\Omega^{k}(\mathcal{A})$ is the Kähler differential k-forms,
- $\Lambda^{k}(E)=\mathcal{A} \otimes_{\mathbf{k}} \Omega^{k}(\mathcal{A})$.

The differentials are given by

$$
\partial_{E}^{(1)}(a \otimes b d x)=a x \otimes b-a \otimes x b .
$$

The Koszul resolution

The higher differentials are given by

$$
\begin{aligned}
& \partial_{E}^{(k)}\left(a \otimes b d x_{1} \wedge \ldots \wedge d x_{k}\right)= \\
& =\sum_{i=1}^{k}(-1)^{i+1}\left(a x_{i} \otimes b d x_{1} \wedge \ldots d x_{i-1} \wedge d x_{i+1} \wedge \ldots \wedge d x_{k}+\right. \\
& \left.\quad-a \otimes b x_{i} d x_{1} \wedge \ldots d x_{i-1} \wedge d x_{i+1} \wedge \ldots \wedge d x_{k}\right)
\end{aligned}
$$

- The canonical bimodule morphism $m: \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \rightarrow \mathcal{A}$ trivially extends to a quasi isomorphism of \mathcal{A}-bimodules

$$
S_{\mathcal{A}}^{\text {Koszul }} \xrightarrow{\text { q.is }} \mathcal{A} .
$$

- For a left \mathcal{A}-module M_{*} we then obtain a semi-free resolution by the tensor product

$$
S_{M}=S_{\mathcal{A}}^{\text {Koszul }} \otimes_{\mathcal{A}} M_{*} \xrightarrow{\text { q.is }} M_{*} .
$$

Augmentations

We recall the following basic but important definition from last time
Definition 2.1
An augmentation is a degree zero DGA-morphism $\varepsilon: \mathcal{A} \rightarrow \mathbf{k}$.

- An augmentation is equivalent to the choice of structure of \mathcal{A}-module on the one-dimensional vector space \mathbf{k}, we write \mathbf{k}_{ε} for the corresponding module.
- When \mathcal{A} is an affine \mathbb{C}-algebra, augmentations are in bijection with maximal ideals $\operatorname{ker} \epsilon \subset \mathcal{A}$.
- Maximal ideals, in turn, correspond to points on the variety $\mathbf{S p}(\mathcal{A})$ by Hilbert's Nullstellensatz.

Computation of RHom

Exercise 2.2
Consider the commutative polynomial ring

$$
\mathcal{A}=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]
$$

supported in degree zero with trivial differential (or Laurent polynomial ring).
Compute

$$
H\left(\mathbf{R H o m}_{\mathcal{A}}\left(\mathbf{k}_{\varepsilon_{0}}, \mathbf{k}_{\varepsilon_{1}}\right)\right)=0
$$

whenever $\varepsilon_{0} \neq \varepsilon_{1}$, while

$$
H\left(\operatorname{RHom}_{\mathcal{A}}\left(\mathbf{k}_{\varepsilon}, \mathbf{k}_{\varepsilon}\right)\right)=H^{*}\left(\mathbb{T}^{n}, \mathbf{k}\right)
$$

(This holds on the level of algebras!)

Section 3

Invariance Properties

Functorial properties

- A unital DG-morphism $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ between DGAs induces a natural functor

$$
\begin{gathered}
\mathcal{C}_{d g}(\mathcal{B}) \rightarrow \mathcal{C}_{d g}(\mathcal{A}) \\
\left(M_{*}, I\right) \rightarrow\left(M_{*}, I \circ\left(\Phi \otimes \operatorname{Id}_{\mathcal{M}}\right)\right)
\end{gathered}
$$

where $I: \mathcal{B} \otimes_{\mathbf{k}} M \rightarrow M$ denotes \mathcal{B}-module multiplication.

- Since this identification also sends \mathcal{B}-module morphisms to \mathcal{A}-module morphisms, we indeed have an chain map $\mathcal{B}_{d g}^{*}(M, N) \hookrightarrow \mathcal{A}_{d g}^{*}(M, N)$ on the level of morphisms.

Functorial properties

- To obtain well-behaved functorial properties with respect to the derived morphisms $\mathbf{R H o m}_{\mathcal{A}}$ one needs to systematically choose which semi-free resolution to work with.
- The bar resolution is functorial: there is a natural morphism

$$
\begin{gathered}
S_{\mathcal{A}}^{\text {bar }}=\left\{\ldots \xrightarrow{\partial_{E}^{(4)}} \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \xrightarrow{\partial_{E}^{(3)}} \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A}\right\} \\
\downarrow \\
S_{\mathcal{B}}^{\text {bar }}=\left\{\ldots \xrightarrow{\partial_{E}^{(4)}} \mathcal{B} \otimes_{\mathbf{k}} \mathcal{B} \otimes_{\mathbf{k}} \mathcal{B} \xrightarrow{\partial_{E}^{(3)}} \mathcal{B} \otimes_{\mathbf{k}} \mathcal{B}\right\}
\end{gathered}
$$

Functorial properties

- To obtain well-behaved functorial properties with respect to the derived morphisms $\mathbf{R H o m}_{\mathcal{A}}$ one needs to systematically choose which semi-free resolution to work with.
- The bar resolution is functorial: there is a natural morphism

$$
\begin{gathered}
S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} M=\left\{\ldots \stackrel{\partial_{E}^{(4)}}{\mathcal{A}} \otimes_{\mathbf{k}} \mathcal{A} \otimes_{\mathbf{k}} M \xrightarrow{\partial_{E}^{(3)}} \mathcal{A} \otimes_{\mathbf{k}} M\right\} \\
\downarrow \\
S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} M=\left\{\ldots \xrightarrow{\partial_{E}^{(4)}} \mathcal{B} \otimes_{\mathbf{k}} \mathcal{B} \otimes_{\mathbf{k}} M \xrightarrow{\partial_{E}^{(3)}} \mathcal{B} \otimes_{\mathbf{k}} M\right\}
\end{gathered}
$$

Functorial properties

- To obtain well-behaved functorial properties with respect to the derived morphisms RHom $_{\mathcal{A}}$ one needs to systematically choose which semi-free resolution to work with.
- The bar resolution is functorial: there is a natural morphism

$$
\begin{aligned}
\operatorname{RHom}_{\mathcal{A}}(M, N)= & \mathcal{A}_{d g}^{*}\left(S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} M, S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} N\right) \\
& \uparrow \\
\mathbf{R H o m}_{\mathcal{B}}(M, N)= & \mathcal{A}_{d g}^{*}\left(S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} M, S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} N\right)
\end{aligned}
$$

Functorial properties

Theorem 3.1
A quasi-isomorphism $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ of $D G A s$ induces a quasi-isomorphism of right-derived homomorphism complexes

$$
\Phi^{*}: \mathbf{R H o m}_{\mathcal{B}}(M, N) \rightarrow \mathbf{R H o m}_{\mathcal{A}}(M, N) .
$$

Remark 3.2

This functor might not be surjective on modules, but one can show that it is surjective on quasi-isomorphism classes of modules; the reason is that every \mathcal{A}-module has a semi-free resolution S, and $S \otimes_{\mathcal{A}} \mathcal{B}$ is a semi-free \mathcal{B}-module.

Functorial properties

(1/2).

- First, the semi-free modules $S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} N$ and $S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} N$ are quasi-isomorphic as complexes, where the quasi-isomorphism is induced by \mathcal{B}.
- It then follows that there are quasi-isomorphisms

$$
\begin{aligned}
& \mathcal{B}_{d g}^{*}\left(\mathcal{B}, S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} N\right) \cong_{\text {q.i.s }} S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} N \\
& \cong_{\text {q.i.s }} S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} N \cong_{\text {q.i.s }} \mathcal{A}_{d g}^{*}\left(\mathcal{A}, S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} N\right) .
\end{aligned}
$$

(First and last follow since the domain is free, middle q.is. follows from the previous point.)

Functorial properties

(2/2).

- The sought quasi-isomorphism

$$
\mathcal{B}_{d g}^{*}\left(S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} M, S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} N\right) \rightarrow \mathcal{A}_{d g}^{*}\left(S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} M, S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} N\right)
$$

can ultimately be seen to follow from the fact that both complexes are iterated cones built from direct sums of the quasi-isomorphic complexes $S_{\mathcal{B}}^{\text {bar }} \otimes_{\mathcal{B}} N \cong S_{\mathcal{A}}^{\text {bar }} \otimes_{\mathcal{A}} N$.

Section 4

A_{∞}-category of bounding cochains

Augmentations

We begin by recalling the connections between one-dimensional representations and augmentations:

Definition 4.1

An augmentation is a degree zero DGA-morphism $\varepsilon: \mathcal{A} \rightarrow \mathbf{k}$
We let \mathbf{k}_{ε} denote the one-dimensional DG-module with module multiplication defined by $I(a \otimes m)=\varepsilon(a) \cdot m$.

Consequences:

- $\varepsilon \circ \partial_{\mathcal{A}}=0$ (the chain map property, together with the fact that \mathbf{k} has a trivial differential)
- $\varepsilon(a)=0$ for any $|a| \neq 0$
- $\varepsilon(1)=1$ and $\varepsilon\left(a_{1} \cdot a_{2}\right)=\varepsilon\left(a_{1}\right) \cdot \varepsilon\left(a_{2}\right)$.

A_{∞}-algebras from DGAs

- Since Chekanov first introduced the Legendrian invariant in form of the DGA now called the Chekanov-Eliashberg algebra $\mathcal{A}(\Lambda)$ in [Che02], it was clear that studying the linearized complex induced by an augmentation was an important tool for distinguishing Legendrians.
- Civan-Koprowki-Etnyre-Sabloff [Civ+11] it was shown that an augmentation induces an invariant in the form of an A_{∞}-algebra.
- In [BC14] Bourgeois and Chantraine finally upgraded this invariant to the augmentation category denoted by Aug_(Λ).

A_{∞}-algebras from DGAs

The point with this section is to

- Recall the construction of the A_{∞}-category $\operatorname{Aug}_{-}(\mathcal{A})$;
- Show its equivalence to the DG-algebra category (as observed by Ekholm-Lekili [EL17]);
- Combining these perspectives and Theorem 3.1 we learn something that is not completely obvious from the original construction:

A quasi-isomorphism $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ of DGAs induces a quasi-isomorphic embedding of the augmentation category $\operatorname{Aug}_{-}(\mathcal{B})$ into $\operatorname{Aug}_{-}(\mathcal{A})$.

A_{∞}-algebras from DGAs

We start with a noncommutative finitely generated semi-free $D G A$

$$
\mathcal{A}=\mathbf{k}\left\langle a_{1}, \ldots, a_{k}\right\rangle
$$

i.e. a noncommutative polynomial ring in graded variables a_{i} where:

- The differential is determined by a sum

$$
\partial a_{i}=\sum_{b_{1} \ldots b_{d}} c_{b_{1} \ldots b_{d}}^{a_{i}} \cdot b_{1} \cdot \ldots \cdot b_{d}, \quad c_{b_{1} \ldots b_{d}}^{a_{i}} \in \mathbf{k}
$$

over words of length $d=0,1,2,3, \ldots$ in the letters
$b_{i} \in\left\{a_{1}, \ldots, a_{k}\right\}$.

- There is an action filtration, and $\ell\left(b_{i}\right)<\ell\left(a_{i}\right)$ (this is why it called semi-free); In particular: the above sum is finite!
- Recall the graded Leibniz rule

$$
\partial(\mathbf{a} \cdot \mathbf{b})=\partial(\mathbf{a}) \cdot \mathbf{b}+(-1)^{|\mathbf{a}|} \mathbf{a} \cdot \partial(\mathbf{b})
$$

which determines the differential on general elements.

An induced CoDGA

The algebra \mathcal{A} can be written as the tensor algebra

$$
\mathcal{A}=\mathcal{T}(A)=\mathbf{k} \oplus A \oplus A^{\otimes 2} \oplus A^{\otimes 3} \oplus \ldots
$$

for a finite-dimensional graded \mathbf{k}-vector space

$$
A=\mathbf{k} \cdot a_{1} \oplus \ldots \oplus \mathbf{k} \cdot a_{k}
$$

We then pass to its component-wise dual

$$
\mathcal{A}^{\#}=\mathbf{k} \oplus A^{*} \oplus\left(A^{*}\right)^{\otimes 2} \oplus\left(A^{*}\right)^{\otimes 3} \oplus \ldots
$$

$\mathcal{A}^{\#}$ is a CoDGA with differential $\partial^{\#}$ given as the adjoint of ∂.
Remark 4.2
This makes sense since $\partial\left(A^{\otimes k}\right) \subset A^{\otimes(k-1)} \oplus A^{\otimes k} \oplus A^{\otimes(k+1)} \oplus \ldots$

An induced CoDGA

- Leibniz rule implies that $\partial^{\#}$ is determined by operations $\mu^{\prime}:\left(A^{*}\right)^{\otimes l} \rightarrow A^{*}$ as follows
$\partial^{\#}\left(b_{1} \otimes \ldots \otimes b_{m}\right)=\sum_{i, l}(-1)^{\star} b_{1} \otimes \ldots \otimes \mu^{\prime}\left(b_{1+i} \otimes \ldots \otimes b_{1+1}\right) \otimes \ldots \otimes b_{m}$
- These operations are easily determined from the structure constants of ∂ :

$$
\mu^{d}\left(b_{1}, \ldots, b_{d}\right)=\sum_{i} c_{b_{1} \ldots b_{d}}^{a_{i}} \cdot a_{i} .
$$

- In the following we will consider μ^{d} as operations on the suspension $\left(\Sigma A^{*}\right)^{\otimes d}$.

An induced CoDGA

- $\partial^{2}=0 \Rightarrow\left(\partial^{\#}\right)^{2}=0$
- $\left(\partial^{\#}\right)^{2}=0$ implies that $\left\{\mu^{d}\right\}_{d=0,1,2 \ldots, D}$ satisfy the curved A_{∞}-relations:

For each $d=1,2,3, \ldots$:

$$
\begin{gathered}
\sum_{m, n}(-1)^{\mathbf{w}_{n}} \mu^{d-m+1}\left(b_{1}, \ldots, b_{n}, \mu^{m}\left(b_{n+1}, \ldots, b_{n+m}\right), b_{n+m+1}, \ldots, b_{d}\right) \\
=0
\end{gathered}
$$

where $\mathbf{\Psi}_{n}=\left|b_{1}\right|+\ldots+\left|b_{n}\right|-n$

- When $\mu^{d}=0$ i.e. ∂ has no constant term $c_{\emptyset}^{a_{j}}=0$, the above give the strict A_{∞}-relations.

A_{∞}-relations

Examples of curved A_{∞}-relations

- $d=1$: ("chain complex")

$$
0=\mu^{1} \circ \mu^{1}(a)+\mu^{2}\left(\mu^{1}(a), \mu^{0}\right)-\mu^{2}\left(\mu^{0}, \mu^{1}(a)\right)
$$

(μ^{1} is a differential when μ^{0} vanishes)

- $d=2$: ("graded Leibniz rule")

$$
0=\mu^{1} \circ \mu^{2}(a, b)+\mu^{2}\left(\mu^{1}(a), b\right)+(-1)^{|a|-1} \mu^{2}\left(a, \mu^{1}(b)\right)+\ldots
$$

(+ additional terms involving μ^{0})

- $d=3$: ("graded associativity")

$$
0=\mu^{1} \circ \mu^{3}(a, b, c)+\mu^{2}\left(\mu^{2}(a, b), c\right)+(-1)^{|a|-1} \mu^{2}\left(a, \mu^{2}(b, c)\right)+\ldots
$$

(+ additional terms involving μ^{0} and μ^{1}).

A_{∞}-relations and sign convention

Remark 4.3
We follow the conventions of [Sei08] by which a strict A_{∞}-algebra with vanishing μ^{d} for $d \geq 3$ becomes a DGA with differential " ∂ " and multiplication "." after introducing the sign changes $\partial(a):=(-1)^{|a|} \mu^{1}(a)$ and $a_{1} \cdot a_{2}:=(-1)^{\left|a_{1}\right|} \mu^{2}\left(a_{1}, a_{2}\right)$.

Maurer-Cartan equation

The strictly unital A_{∞}-category constructed by Bourgeois-Chantraine in [BC14], [Cha19] can now be recovered as follows:

- Add a "strict unit" in degree zero denoted by e, i.e. extend μ^{d} to the vector space

$$
B_{\mathcal{A}}:=\mathbf{k} \cdot e \oplus \Sigma A^{*}
$$

subject to

- $\mu^{2}(e, a)=a=(-1)^{|a|} \mu^{2}(a, e)$,
- $\mu^{1}(e)=0$ and $\mu^{d}(\ldots, e, \ldots)=0$ for $d \geq 3$.
- The objects of this category are solutions $b \in \mathcal{M C}\left(B_{\mathcal{A}}\right)$ to the generalised Maurer-Cartan equation

$$
0=\sum_{d \geq 0} \mu^{d}(\underbrace{b, \ldots, b}_{d})=\mu^{0}+\mu^{1}(b)+\mu^{2}(b, b)+\ldots
$$

where $b \in \Sigma A^{*}$ is an element of degree one.

Maurer-Cartan equation

Next time we will continue the construction of this A_{∞}-category. We end this lecture with the following exercise:

Exercise 4.4
Show that solutions b of the Maurer-Cartan equation are in natural bijective correspondence with augmentations $\varepsilon_{b}: \mathcal{A} \rightarrow \mathbf{k}$.

UPPSALA
UNIVERSITET
[BC14]
Frédéric Bourgeois and B. Chantraine. "Bilinearized Legendrian contact homology and the augmentation category". In: J. Symplectic Geom. 12.3 (2014), pp. 553-583. ISSN: 1527-5256. URL:
http://projecteuclid.org/euclid.jsg/1409319460.
[Cha19] B. Chantraine. "Augmentations des sous-variétés legendriennes: invariants associés et applications". Habilitation à diriger des recherches. Université de Nantes - Faculté des Sciences et Techniques, Dec. 2019. Url: https://hal.archives-ouvertes.fr/tel-02415052.
[Che02] Y. Chekanov. "Differential algebra of Legendrian links". In: Invent. Math. 150.3 (2002), pp. 441-483. ISSN: 0020-9910. DOI: $10.1007 / \mathrm{s} 002220200212$. URL: http://dx.doi.org/10.1007/s002220200212.
[Civ+11] Gokhan Civan et al. "Product structures for Legendrian contact homology". In: Math. Proc. Cambridge Philos. Soc. 150.2 (2011), pp. 291-311. ISSN: 0305-0041. DOI: 10.1017/S0305004110000460. URL: http://dx.doi.org/10.1017/S0305004110000460.
[EL17] T. Ekholm and Y. Lekili. "Duality between Lagrangian and Legendrian invariants". Preprint, https://arxiv.org/abs/1701.01284 [math.SG]. 2017. eprint: 1701.01284.

References ||

[Sei08] P. Seidel. Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008, pp. viii+326. ISBN: 978-3-03719-063-0. DOI: 10.4171/063. URL: https://doi.org/10.4171/063.

