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Introduction



What is differential geometry?

From differential topology to differential geometry of
manifolds. From “clay shapes” to “paper shapes”:

6∼=

∼= .

Two objects considered equivalent if you can transform one to
the other by a map that preserves all lengths (an isometry).
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What is differential geometry?

Bernhard Riemann
1826 - 1866

Riemannian manifold M: We have a smoothly varying inner
product g = 〈·, ·〉g to measure length and angles of vectors
tangent to M.
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What is differential geometry?

Riemannian manifold M: We have a smoothly varying inner
product g = 〈·, ·〉g to measure length and angles of vectors
tangent to M.

Gives us a way to measure the length L(γ) of a curve γ in M.
This gives us a distance on M

dg(x, y) = inf{L(γ) : γ is a curve in M from x to y}.
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What is differential geometry?

Riemannian manifolds: Is it really necessary to deal with all
of this abstract manifold terminology?
Can’t you just consider these spaces as subsets of RN instead,
just like the sphere Sn?

John Forbes Nash
1928 - 2015

Nash: Yes, all such spaces can be viewed as subspaces of RN

with the euclidean structure for some N > 0.
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What is differential geometry?

Nash: Yes, all such spaces can be viewed as subspaces of RN

with the euclidean structure for some N > 0.
However, viewing a Riemannian manifold M like this is often
unhelpful.

(a) You will often have do deal with a very complicated
isometric immersion of M into RN where N is very large.
Ex: The hyperbolic plane H2 is topologically just R2 . It cannot be isometrically

immersed into R3 , but it is possible for R5 . It is still an open question if it is

possible in R4 .

(b) Usually, we are looking for properties of the geometry that
are intrinsic, where this embedding should not matter.
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When then are two shapes different?

Consider R2 with coordinates (x, y) with corresponding vector
field ∂x, ∂y. The eulidean metric gEucl this is given by

〈∂x, ∂x〉gEucl = 1, 〈∂y, ∂y〉gEucl = 1, 〈∂x, ∂y〉gEucl = 0.

This can be written as either

gEucl =
(
1 0
0 1

)
or gEucl = dx2 + dy2.

A Riemannian metric g = 〈·, ·〉g varies from point to point.

g =

(
g11 g12
g12 g22

)
or g = g11dx2 + 2g21dxdy+ g22dy2,

where gij are functions.
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When then are two shapes different?
Example

M =
{
(x, y, y2) : (x, y) ∈ R2

}
.

We can then view this as R2 with the inner product

g = dx2 + (1+ 4y2)dy2.
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When are two shapes different?
Example

M =
{
(x, y, xy) : (x, y) ∈ R2

}
.

We can then view this as R2 with the inner product

g = (1+ y2)dx2 + (1+ x2)dy2 + 2xydxdy.
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When are two shapes different?
Example

M = S2 \ {(0, 0, 1)}.

Stereographic projection: Let (p0,p1,p2) be the coordinates of
R3. Define x = p1

1−p0 , y =
p2
1−p0 .

g =
4

(1+ x2 + y2)2 (dx
2 + dy2).
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When are two shapes different?

g = dx2 + (1+ 4y2)dy2.

g = (1+ y2)dx2 + (1+ x2)dy2 + 2xydxdy.

g = 4
(1+x2+y2)2 (dx

2 + dy2).

Are any of these shapes just the same as the Euclidean space?
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When are two shapes different?

Look at the following example:

g = (1+ x2)dx2 + 2x
1+ y2dxdy+

1+ x2 + x2y2
(1+ y2)2 .

It is very difficult explicitely show that this is a change of
variable from the standard Euclidean space (which is it). On
the other hand, it is even more difficult to show that such a
change is impossible.

Solution: Gaussian curvature.
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Geometry of curves: Calculus I

What shape does this graph have?

f(x) = (x− 1) sin(1+ x) + x

−4 −3 −2 −1 0 1 2 3 4
f′ + + − − + + + − +

f′′ − − − + + − − + +
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Geometry of curves: Calculus I

f(x) = (x− 1) sin(1+ x) + x

• The derivative says nothing about the shape.
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Geometry of curves: Calculus I
g(x) = rotation of f(x) by 30◦ clockwise Same shape

• Local maximum and minimum not preserved.
• Inflection points and concavity/convexity preserved.
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Geometry of curves: Calculus I

g(x) = rotation of f(x) by 30◦ clockwise

Curvature of the oriented curve

κ(x) = f′′(x)
(1+ f′(x))3/2

.

Preserved under rotations and translation.
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Geometry of curves: Calculus I
κ(x) = f′′(x)

(1+f′(x))3/2 .

However, if we consider M = {(x, f(x)) : x ∈ R} as a
Riemannian manifold, we have no way of discovering κ from its
internal geometry. This is an extrinsic property, i.e. is says
something about how we have embedded M as a submanifold
of R2.
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Geometry of surfaces: Calculus II

∇f does not tell you anything about the shape, but the Hessian

Hess(f) =
(

∂2x f ∂x∂yf
∂x∂yf ∂2y f

)

does. Sign of detHess(f) invariant under rotation.
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Geometry of surfaces: Calculus II

More precisely, the Gaussian curtvature

κ =
detHess(f)

(1+ ∂xf+ ∂yf)2

is invariant.
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Geometry of surfaces: Calculus II

κ =
detHess(f)

(1+ ∂xf+ ∂yf)2
.

Carl Friedrich
Gauss

1777–1854

Theorema Egregium (1828)
κ is an invariant of the Riemannian
geometry of

M = {(x, y, f(x, y)) : (x, y) ∈ R2},

This is an intrinsic property, i.e any
isometric imbedding of M in euclidean
space will give the same answer.
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Geometry of surfaces: Calculus II

Theorema Egregium (1828)
This is an intrinsic property, i.e any
isometric imbedding of M in euclidean
space will give the same answer.

Theorem
A 2-d Riemannian manifold is locally isometric to the Euclidean
space if and only if the Gaussian curvature vanishes.

Click here later if you want to see an application to eating pizza.
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Gaussian curvature
Two different points of view of curvature. A 2-dimensional math student will
not be able to see the curvature of the extremal directions, but will be able to

measure angles.

Used to measure the shape of our universe in the BOOMERanG
experiment. 23
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This lecture series will take these ideas to other types
of spaces ...

The Heisenberg group: Consider a curve (x(t), y(t)) in R2 with
the usual Euclidean metric. Let z(t) be, up to a constant, half
the oriented area formed by x(t) and y(t), that is

z(t) = z0 +
1
2

∫ t

0
(x(s)dy(s)− y(s)dx(s)).

Define the length of (x(t), y(t), z(t)) as the length of (x(t), y(t))
and define a distance dcc(x, y) on R3 as the infimum of all such
curves connecting x and y.
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The Heisenberg group

z(t) = z0 +
1
2

∫ t

0
(x(s)dy(s)− y(s)dx(s)).

Unit ball Geodesics

Relative to this distance, for the coordinate functions, we have

x, y ∈ O(dcc(0, ·)), z ∈ O(dcc(0, ·)2).

We have that dcc(0, (x, y, x)) is comparable with
√
x2 + y2 + |z|.

Such spaces are called sub-Riemannian spaces. Can we see
the difference between these spaces? 25



The Heisenberg group

The Heisenberg group can be described having this
orthonormal basis

X1 = ∂x −
1
2y∂z, X2 = ∂x +

1
2x∂z.

How can we see that the orthonormal basis

Y1 = (
π

2 + tan−1 z)∂x,

Y2 =
x2

2(1+ z2)(π2 + tan−1 z)∂x +
π
2 + tan−1 z

x ∂y +
1
2

x
π
2 + tan−1 z∂z

gives an isometric space?
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Outline for these lectures

• Lecture 1: Introduction + What is a sub-Riemannian
manifold and why should you care about them?

• Lecture 2: “Cartan geometry light” on Riemannian
manifolds. Carnot groups and symbols.

• Lecture 3: The sub-Riemannian frame bundle and a
canonical connection. The sub-Riemannian equivalence
problem: Determining when sub-Riemannian spaces are
isometric.
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Definition: Sub-Riemannian
manifolds



What is a sub-Riemannian manifold?
Definition
A sub-Riemannian manifold is a triple (M, E,g) where

1. M is a connected manifold with (dimension at least 3).
2. E is a subbundle of the tangent bundle TM.
3. g = 〈·, ·〉g is a smoothly varying inner product only defined
on E.
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The metric on such manifold

A sub-Riemannian manifold is a triple (M, E,g).

1. An absolutely continuous curve γ(t) in M is called
horizontal if γ̇(t) ∈ Eγ(t) for almost every t.

2. We can define the length of a horizontal curve
γ : [a,b] → M by

L(γ) =
∫ b

a
〈γ̇(t), γ̇(t)〉1/2g dt.

3. We define the sub-Riemannian distance or the
Carnot-Carathéodory distance dg(x, y) as the infiumum of
the lengths of all of the horizontal curves connecting x
and y.

.. This looks like it can go wrong. And indeed it can go wrong.
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.. so let us talk about subbundles

• Define E1 = Γ(E), the sections of E and let

Ek+1 = Ek + [E1, Ek].

• Write Ekx = Ek|x.
• E is called bracket-generating if for any x, there is a
(minimal) s(x) such that Es(x) = TxM. s(x) is called the step
at x.

• G(x) = (rank E1, rank E2, . . . , Es(x)) is called the growth
vector at x.
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.. so let us talk about subbundles

• E is called bracket-generating if for any x, there is a
(minimal) s(x) such that Es(x) = TxM. s(x) is called the step
at x.

The Chow-Rashevskiï theorem ++
If E is bracket-generating, then every pair of points (x, y) in M
can be connected by a horizontal curve. It follows that dg is a
well-defined metric on M. Furthermore, it induces the same
topology as the manifold topology.

So as long as the vector fields with values in E and their
iterated Lie brackets span all of TM, we are good. We will
always assume this from now on.
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W.L. Chow.,
Über Systeme von linearen partiellen
Differentialgleichungen erster Ordnung.
Math. Ann., 117:98–105, 1939.
P. K. Rashevskiĭ.
On the connectability of two arbitrary points of a totally
nonholonomic space by an admissible curve..
Uchen. Zap. Mosk. Ped. Inst. Ser. Fiz.Mat. Nauk, 3(2):83–94,
1938.,
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A second look at the Heisenberg group

Let M = R3 and define

X = ∂x −
1
2y∂z, Y = ∂y +

1
2x∂z.

Write E = span{X, Y} and 〈X, X〉g = 〈Y, Y〉g = 1, 〈X, Y〉g = 0.

[X, Y] = ∂z, so E2 = TM.

The growth vector is G = (2, 3).
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A second look at the Heisenberg group

Examples of local length minimizers from 0 to (0, 0, 1).

and so on. The curve with only one rotation is the shortest.
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The Hopf fibration

We can consider the Hopf fibration as the surjective map from
S3 ⊆ C2 to the corresponding complex line in CP1 ∼= S2, given
by

π : (z,w) 7→ [z,w] (equivalence class).

Let S3 have its usual metric and define E = (ker π∗)
⊥ with g the

restriction of this metric to E. We then have a sub-Riemannian
manifold (S3, E,g)
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The Hopf fibration

π : (z,w) 7→ [z,w] (equivalence class).

Identify S3 with the Lie group SU(2) whose Lie algebra su(2) is
spanned by three elements X, Y, Z, having cyclic bracket
relations

[X, Y] = Z, [Y, Z] = X, [Z, X] = Y.

Define K = exp(RZ). Then we can see π as the map
SU(2) 7→ SU(2)/K, E = span{X, Y} and 〈X, X〉g = 〈Y, Y〉g = 1 and
〈X, Y〉g = 0.
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The Martinet distribution

Let M = R3 and define

X = ∂x, Y = ∂y +
1
2x

2∂z.

Write E = span{X, Y} and 〈X, X〉g = 〈Y, Y〉g = 1, 〈X, Y〉g = 0.

[X, Y] = x∂z, [X, [X, Y]] = ∂z.

E2x,y,z =
{
Tx,y,z x 6= 0
span{∂x, ∂y} x = 0

E3 = TM.

G(x, y, z) =
{

(2, 3) x 6= 0
(2, 2, 3) x = 0

If the growth vector is constant, E is called equiregular.
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Why we cannot have nice things

The key tool for getting invariants on Riemannian geometry:
The Levi-Civita connection.

We try to define the same thing in sub-Riemannian geometry.
We want a connection that takes orthonormal basis of E to an
orthonormal basis of E under parallel transport. This is
equivalent to say that for any x ∈ M, Y, Y2 ∈ Γ(E) and X ∈ Γ(TM),
we have

∇XY|x ∈ Γ(E), X〈Y, Y2〉g = 〈∇XY, Y2〉+ 〈Y,∇XY2〉.

Exercise
Prove this is equivalent to taking orthonormal basese of E
through orthonormal bases of E though parallel transport.
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Why we cannot have nice things

∇XY|x ∈ Γ(E), X〈Y, Y2〉g = 〈∇XY, Y2〉g + 〈Y,∇XY2〉g.

Proposition
If E is bracket-generating and properly contained in TM, then
there are no compatible connections of (E,g) that are
torsion-free.

Proof from contradiction: If X, Y ∈ Γ(E) and ∇ is compatible
and torsion-free then

[X, Y] = ∇XY−∇YX, is also in E,

contradicting that E was bracket-generating.
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Why we cannot have nice things

Proposition
If E is bracket-generating and properly contained in TM, then
there are no compatible connections of (E,g) that are
torsion-free.

We therefore need a different point of view to look at a good
choice of connection.

40



Why care about sub-Riemannian
geometry?



Where does sub-Riemannian geometry appear?

• Control theory, when we have fewer number of controls
than compared to our full space.

• Theory of metric spaces.
• Limits of Riemannian metrics, as the metric outside a
certain subbundle go to infinity. Can be applied to
fibrations, foliations, etc.

• Gauge theory (Montgomery, 1984).
• Image processing (ask Ugo Boscain).
• Rough paths.
• Statistics on Riemannian manifolds. (Stefan Sommer)
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Second order hypoelliptic operators

If we have a second order elliptic operator
L =

∑
aij∂i∂j +

∑
bk∂k, where (aij) positive definite, then there

is a corresponding Riemannian metric g such that

1
2(L(f1f2)− f1Lf2 − f2Lf1) = 〈∇f1,∇f2〉g.

Curvature of g control properties of L and Pt = etL.

If (aij) is only positive semidefinite, we have a sub-Riemannian
metric (E,g) such that

1
2(L(f1f2)− f1Lf2 − f2Lf1) = 〈∇Ef1,∇Ef2〉g.

Curvature-like quantities of g gives control properties of L and
Pt = etL.
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F. Baudoin and N. Garofalo.
Curvaturedimension inequalities and Ricci lower bounds
for sub-Riemannian manifolds with transverse
symmetries.
J. Eur. Math. Soc. (JEMS), 19(1):151–219, 2017.
E. Grong and A. Thalmaier.
Curvature dimension inequalities on sub-Riemannian
manifolds obtained from Riemannian foliations: part I
and II
Math. Z., 282(12), 2012.
E. Grong and A. Thalmaier.
Stochastic completeness and gradient representations for
sub-Riemannian manifolds.
Potential Anal., 51(2):219–254, 2019.
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Geodesics and topology

For a Riemannian manifolds, positive curvature makes
geodesics move slower appart, negative curvature faster. Some
results: Postively curved manifolds are compact with finite
fundamental groups, non-positively curved manifolds are
diffeomorphic to Rn.

There are similar relations appearing in sub-Riemannian
geometry by considering variations of geodesics.
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Geodesics and topology

There are similar relations appearing in sub-Riemannian
geometry by considering variations of geodesics.

I. Zelenko and C. Li.
Differential geometry of curves in Lagrange
Grassmannians with given Young diagram.
Differential Geom. Appl., 27(6):723–742, 2009.,

D. Barilari and L. Rizzi.
Comparison theorems for conjugate points in
sub-Riemannian geometry.
ESAIM Control Optim. Calc. Var., 22(2):439–472, 2016.
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Carnot groups: The flat
sub-Riemannain spaces



The flat spaces: Carnot groups

Let g be a nilpotent Lie algebra. A stratification of a nilpotent
Lie algebra is a decomposition

g = g1 ⊕ g2 ⊕ · · · ⊕ gs,

such that
[g1, gk] = gk+1, [g1, gs] = 0.

A Carnot algebra is a Lie algebra g with a stratification and an
inner product 〈·, ·〉 on g1.
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The flat spaces: Carnot groups

g = g1 ⊕ g2 ⊕ · · · ⊕ gs,

[g1, gk] = gk+1, [g1, gs] = 0.

Let G be the corresponding simply connected Lie group. We
can then define a subbundle E by left translation of g1. In other
words, Ea = a · g1. We can define a sub-Riemannian metric g
on E by

〈v,w〉g = 〈a−1 · v,a−1 · v〉.
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Example: The n-th Heisenberg group

Consider the Lie algebra g = g1 ⊕ g2, where

g1 = span{X1, . . . , Xn, Y1, . . . , Yn}, g2 = span{Z}.

[Xi, Xj] = 0, [Yi, Yj] = 0, [Xi, Yj] = δijZ.

X1, . . . , Xn, Y1, . . . , Yn form an orthonormal basis.

Corresponding group G = {(x, y, z) ∈ Rn × Rn × R, with

(x, y, z) · (x̃, ỹ, z̃) =
(
x+ x̃, y+ ỹ, z+ z̃+ 1

2(〈x, ỹ〉 − 〈y, x̃〉
)
.

We have that the corresponding left invariant vector fields are
given by

Xj = ∂xi −
1
2y

j∂z, Yj = ∂yi +
1
2x

j∂z, Z = ∂z.
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Example: Free nilpotent group of step 2

Consider the Lie algebra g = g1 ⊕ g2, where

g1 = Rn, g2 = ∧2Rn.

[p,q] = p ∧ q, [A,q] = [A,B] = 0, p,q ∈ g1,A,B ∈ g2.

Rn has the standard metric. Corresponding group
G = Rn × ∧2Rn, with

(p,A) · (q,B) =
(
p+ q,A+ B+

1
2p ∧ q

)
.

We see that we can always find the group operation using the
Baker-Campbell-Hausdorff formula.
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The flat spaces: Carnot groups

A special thing for Carnot group is that they have dilations. If g
is a Carnot algebra, for any r > 0, we define a linear map
dilr : g → g by

dilr(A) = rkA for any A ∈ gk.

Exercise

(a) Show that for a stratified Lie algebra, [gi, gj] ⊆ gi+j, where
we interpret gi+j = 0 if i+ j > s.

(b) Explain why dilr is a Lie algebra isomorphism.

Since G is simply connected, there is a Lie group isomorphism
Dilr : G→ G such that

Dilr(exp(A)) = exp(dilr A).
50



The flat spaces: Carnot groups

Since G is simply connected, there is a Lie group isomorphism
Dilr : G→ G such that

Dilr(exp(A)) = exp(dilr A).

Exercise

(a) Show that if γ is a horizontal curve in G, then
L(Dilr γ) = rL(γ).

(b) Explain why dg(Dilr(x),Dilr(y)) = rdg(x, y).
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The significance of the dilations of Carnot groups

• Rn with the Euclidean metric and Carnot groups, look the
same when we “zoom in”.

• Riemannian manifolds all look like the Euclidean space
when we “zoom in”.

• Sub-Riemannian manifolds (M, E,g) with E equiregular will
all look like Carnot groups when we “zoom in”. But not
necessarily the same at every point.

• This zooming in can be made formal using
Gromov-Haussdorff convergence of pointed metric spaces.
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The significance of the dilations of Carnot groups

A. Bellaïche.
The tangent space in sub-Riemannian geometry.
In Sub-Riemannian geometry, volume 144 of Progr. Math.,
pages 1–78. Birkhäuser, Basel, 1996.

M. Gromov.
Carnot-Carathéodory spaces seen from within.
In Sub-Riemannian geometry, volume 144 of Progr. Math.,
pages 79–323. Birkhäuser, Basel, 1996.
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Isometries of Carnot groups

• Let la : G→ G be the left translation la(b) = a · b, a,b ∈ G.
Since the sub-Riemannian structure is left invariant, each
such map will be an isometry.

• Consider a Lie group isomorphism Φ : G→ G with induced
φ = Φ∗,1 : g → g. Then Φ is an isometry, if and only if φ
maps g1 to itself isometrically. We will call this an Carnot
algebra isometry.
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Isometries of Carnot groups

Theorem
Assume that Φ : G→ G is an isometry of a Carnot group with
Φ(1) = a. Then Φ ◦ la−1 is both an isometry and a Lie algebra
isomorphism. In other words, any isometry of a Carnot group is
the composition of a left translation and a Lie group
isomorphism.

E. Le Donne and A. Ottazzi.
Isometries of Carnot groups and sub-Finsler
homogeneous manifolds.
J. Geom. Anal., 26(1):330–345, 2016,
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Example: Free nilpotent group of step 2

Consider the Lie algebra g = g1 ⊕ g2, where

g1 = Rn, g2 = ∧2Rn.

[p,q] = p ∧ q, [A,q] = [A,B] = 0, p,q ∈ g1,A,B ∈ g2.

Rn has the standard metric.

Isom(g) ∼= O(n).
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Example: The n-th Heisenberg group

Consider the Lie algebra g = g1 ⊕ g2, where

g1 = span{X1, . . . , Xn, Y1, . . . , Yn}, g2 = span{Z}.

[Xi, Xj] = 0, [Yi, Yj] = 0, [Xi, Yj] = δijZ.

X1, . . . , Xn, Y1, . . . , Yn form an orthonormal basis.

We need then a Carnot algebra isometry to be an isometry of
g1 and preserve the symplectic structure

∑n
j=1 X∗j ∧ Y

∗
j :

Isom(g) ∼= U(n).
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Example: Engel algebra

Consider the Lie algebra

g = g1 ⊕ g2 ⊕ g3 = span{X, Y} ⊕ span{Z} ⊕ span{W},

with orthonormal basis X, Y and with only non-zero brackets

[X, Y] = Z, [X, Z] = W.

Then
Isom(g) ∼= Z/2Z
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Summary

• The size of the symmetry group can vary much.
• These are the first order approximation of a
sub-Riemannian space. The size of the isometry group of a
Carnot group will affect the geometry of all spaces who
has this as an infinitesimal approximation.
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Thank you very much!
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