Curvature in sub-Riemannian geometry

Lecture 2
42nd Winter School: Geometry and Physics

Erlend Grong, erlend.grong@uib.no
Srní, January 20, 2022
University of Bergen, Norway

Recall from last time, part I

- Sub-Riemannian manifolds considers manifolds with an inner product g is only defined on a subbundle E.
- They are very interesting.
- They do not have a compatible torsion-free connections.

A quick Riemannian introduction to
 Cartan connections

Why torsion-free, anyway?

Let (M, g) be a Riemannian manifold and let ∇ be a compatible connection. Important tensors

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y], \quad R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z .
$$

Recall that if $f(s, t)$ is a parametrized surface with a vector field $Z(s, t)$ along it then

$$
\begin{aligned}
\nabla_{\partial_{s} f} \partial_{t} f-\nabla_{\partial_{t} f} \partial_{s} f & =T\left(\partial_{s} f, \partial_{t} f\right) \\
\nabla_{\partial_{t} f} \nabla_{\partial_{t}} z-\nabla_{\partial_{t} f} \nabla_{\partial_{s}} Z & =R\left(\partial_{s} f, \partial_{t} f\right) Z
\end{aligned}
$$

Orthonormal frame bundle

- (M, g) a Riemannian manifold of dimension n.
- \mathbb{R}^{n} with the euclidean metric has a trivial tangent bundle and a canonical basis e_{1}, \ldots, e_{n}. Let us steal these properties.

Orthonormal frame bundle

- (M, g) a Riemannian manifold of dimension n.
- \mathbb{R}^{n} with the euclidean metric has a trivial tangent bundle and a canonical basis e_{1}, \ldots, e_{n}. Let us steal these properties.
- An orthonormal frame at $x \in M$ is a choice of orthonormal basis $u_{1}, \ldots u_{n}$ for $T_{x} M$. Equivalently, we can consider a frame as a linear isometry $u: \mathbb{R}^{n} \rightarrow T_{x} M$. The correspondence is given by

$$
u_{j}=u\left(e_{j}\right)
$$

We write the set of all such frames as $\mathrm{O}_{\chi}(M)$.

Orthonormal frame bundle

- For frame $u: \mathbb{R}^{n} \rightarrow T_{x} M$ and $a \in O(n)$, we can define a new frame $u \cdot a=u \circ a: \mathbb{R}^{n} \rightarrow T_{x} M$ by precomposition. In other words, if $\tilde{u}=u \cdot a$, then

$$
\tilde{u}_{j}=\sum_{i=1}^{n} a_{i j} u_{j} .
$$

- We use the above action to construct a principal bundle called the frame bundle

$$
O(n) \rightarrow O(M) \xrightarrow{\frac{\pi}{\rightarrow}} M,
$$

with fibers $\mathrm{O}_{x}(M)$.

Structures on the orthonormal frame bundle

(i) The vertical bundle: $\mathcal{V}=\operatorname{ker} \pi_{*}$ of rank n^{2}.
(ii) Canonical vertical vector field: If $A \in \mathfrak{s o}(n)$, we define

$$
\left.\xi_{A}\right|_{u}=\left.\frac{d}{d t} u \cdot e^{A t}\right|_{t=0}
$$

We then have a globally defined vector field ξ_{A}. Furthermore,

$$
\mathcal{V}_{u}=\left\{\left.\xi_{A}\right|_{u}: A \in \mathfrak{s o}(n)\right\}, \quad u \in O(M)
$$

Structures on the orthonormal frame bundle

(i) The vertical bundle: $\mathcal{V}=\operatorname{ker} \pi_{*}$ of rank n^{2}.
(ii) Canonical vertical vector field: If $A \in \mathfrak{s o}(n)$, we define

$$
\left.\xi_{A}\right|_{u}=\left.\frac{d}{d t} u \cdot e^{A t}\right|_{t=0}
$$

We then have a globally defined vector field ξ_{A}. Furthermore,

$$
\mathcal{V}_{u}=\left\{\left.\xi_{A}\right|_{u}: A \in \mathfrak{s o}(n)\right\}, \quad u \in O(M)
$$

Exercise

Show that

$$
\xi_{A} \cdot a=\xi_{\operatorname{Ad}\left(a^{-1}\right) \mathrm{A}}, \quad A \in \mathfrak{s o}(n), a \in \mathrm{O}(n)
$$

Structures on the orthonormal frame bundle

(i) The vertical bundle: $\mathcal{V}=\operatorname{ker} \pi_{*}$ of rank n^{2}.
(ii) Canonical vertical vector field: If $A \in \mathfrak{s o}(n)$, we define

$$
\left.\xi_{A}\right|_{u}=\left.\frac{d}{d t} u \cdot e^{A t}\right|_{t=0}
$$

We then have a globally defined vector field ξ_{A}.
Furthermore,

$$
\mathcal{V}_{u}=\left\{\left.\xi_{A}\right|_{u}: A \in \mathfrak{s o}(n)\right\}, \quad u \in O(M)
$$

(iii) The tautological one-form: We define an \mathbb{R}^{n}-valued one-form $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$. Then

$$
\theta(w)=u^{-1} \pi_{*} w, \quad w \in T_{u} O(M)
$$

Observe that $\operatorname{ker} \theta=\mathcal{V}$.

Connections on frame bundles

An Ehresmann connection \mathcal{H} on $\pi: \mathrm{O}(M) \rightarrow M$ is a choice of complement to \mathcal{V} :

$$
T O(M)=\mathcal{H} \oplus \mathcal{V}
$$

Interpretation: $\left.\pi_{*, u}\right|_{\mathcal{H}_{u}}$ is invertible and we can define an inverse h_{u}, so $h_{u} v$ is the unique element in \mathcal{H}_{u} such that $\pi_{*} h_{u} v=v$.

An Ehresmann connection is called principal if it is invariant under the action $\mathrm{O}(n)$.

$$
\mathcal{H}_{u} \cdot a=\mathcal{H}_{u \cdot a}, \quad u \in \mathrm{O}(n), a \in \mathrm{O}(n)
$$

Equivalently, $h_{u} v \cdot a=h_{u \cdot a}$.

Connections on frame bundles

An Ehresmann connection is called principal if it is invariant under the action $O(n)$.

$$
\mathcal{H}_{u} \cdot a=\mathcal{H}_{u \cdot a}, \quad u \in \mathrm{O}(n), a \in \mathrm{O}(n)
$$

Equivalently, $h_{u} v \cdot a=h_{u \cdot a v}$.

Exercise

Define a one-form $\omega: T O(n) \rightarrow \mathfrak{s o}(n)$ such that

$$
\omega\left(h_{u} v\right)=0, \quad \omega\left(\xi_{A}\right)=A
$$

Show that $\omega(w \cdot a)=\operatorname{Ad}\left(a^{-1}\right) \omega(w), w \in T O(M), a \in O(n) . \omega$ is called the connection form of \mathcal{H}.

From affine to principal connections

Let ∇ be a compatible connection. Let $U(t)$ be a curve in $\mathrm{O}(M)$ such that $\pi(U(t))=\gamma(t)$. Assume that $\dot{\gamma}(0)=v$, that $U(0)=u$ and that each $U_{j}(t)$ is parallel along $\gamma(t)$. We can then define

$$
h_{U} v=\dot{U}(0),
$$

so the derivative of a parallel frame moving the direction of v. We then define

$$
\mathcal{H}_{x}=\left\{h_{u} v: u \in O_{x}(M), v \in T_{x} M\right\} .
$$

Exercise

Show that \mathcal{H} is a principal Ehresmann connection.

A canonical basis

Now something interesting happens since for each point of $O(M)$ is a frame. For any $p \in \mathbb{R}^{n}$, can define vector field H_{p} by

$$
\left.H_{p}\right|_{u}=\sum_{j=1}^{n} p^{j} h_{u} u_{j} .
$$

Canonical basis $H_{p}, \xi_{A}, p \in \mathbb{R}^{n}, A \in \mathfrak{s o}(n)$.

A canonical basis

Now something interesting happens since for each point of $O(M)$ is a frame. For any $p \in \mathbb{R}^{n}$, can define vector field H_{p} by

$$
\left.H_{p}\right|_{u}=\sum_{j=1}^{n} p^{j} h_{u} u_{j} .
$$

Canonical basis $H_{p}, \xi_{A}, p \in \mathbb{R}^{n}, A \in \mathfrak{s o}(n)$.

$$
\begin{aligned}
{\left[H_{p}, H_{q}\right] } & =-\xi_{\bar{R}(u, v)}-H_{\bar{T}(p, q)}, \\
\left.\bar{T}(p, q)\right|_{u} & =u^{-1} T(u(p), u(q)),
\end{aligned} \quad\left[\xi_{A}, H_{q}\right]=H_{A q}, \quad\left[\xi_{A}, \xi_{B}\right]=\xi_{[A, B]} .
$$

A canonical basis

$$
\begin{array}{ll}
{\left[H_{p}, H_{q}\right]=-\xi_{\bar{R}(u, v)}-H_{\bar{T}(p, q)},} & {\left[\xi_{A}, H_{q}\right]=H_{A Q}, \quad\left[\xi_{A}, \xi_{B]}\right]=\xi_{[A, B]}} \\
\left.\bar{T}(p, q)\right|_{u}=u^{-1} T(u(p), u(q)), & \left.\bar{R}(p, q)\right|_{u}=u^{-1} R(u(p), u(q)) u .
\end{array}
$$

Since

$$
\omega\left(H_{p}\right)=0, \quad \omega\left(\xi_{A}\right)=A, \quad \theta\left(H_{p}\right)=p, \quad \theta\left(\xi_{A}\right)=0
$$

A canonical basis

$$
\begin{array}{ll}
{\left[H_{p}, H_{q}\right]} & =-\xi_{\bar{R}(u,)}-H_{\bar{T}(p, q)},
\end{array} \quad\left[\xi_{A}, H_{q}\right]=H_{A Q}, \quad\left[\xi_{A}, \xi_{B]}\right]=\xi_{[A, B]} .
$$

Since

$$
\omega\left(H_{p}\right)=0, \quad \omega\left(\xi_{A}\right)=A, \quad \theta\left(H_{p}\right)=p, \quad \theta\left(\xi_{A}\right)=0
$$

we can rewrite these equations as

$$
\begin{array}{cc}
d \theta+[\omega, \theta]=\Theta, & d \omega+\frac{1}{2}[\omega, \omega]=\Omega \\
\Theta\left(\xi_{A}, \cdot\right)=0 & \Omega\left(\xi_{A}, \cdot\right)=0 \\
\Theta\left(H_{p}, H_{q}\right)=\bar{T}(p, q), & \Omega\left(H_{p}, H_{q}\right)=\bar{R}(p, q) .
\end{array}
$$

Values in $\mathfrak{s e}(n)$

$$
d \theta+[\omega, \theta]=\Theta, \quad d \omega+\frac{1}{2}[\omega, \omega]=\Omega .
$$

We can rewrite the following equation in $\mathfrak{s e}(n)$. Can be considered as the space $\mathfrak{s o}(n) \times \mathbb{R}^{n}$ with brackets,

$$
[(A, p),(B, q)]=([A, B], A q-B p), \quad A, B \in \mathfrak{s o}(n), p, q \in \mathbb{R}^{n} .
$$

We can then consider $\psi=(\omega, \theta)$ with

$$
d \psi+\frac{1}{2}[\psi, \psi]=(\Omega, \Theta) .
$$

A sidestep on integrating Lie-algebra valued forms

Let G be a Lie group with Lie algebra \mathfrak{g}. The left Maurer-Cartan form η is defined as

$$
\eta(v)=a^{-1} \cdot v, \quad v \in T_{a} G,
$$

which is a \mathfrak{g}-valued one-form. We observe that this one-form satisfies

$$
d \eta+\frac{1}{2}[\eta, \eta]=0
$$

A sidestep on integrating Lie-algebra valued forms

We observe that this one-form satisfies

$$
d \eta+\frac{1}{2}[\eta, \eta]=0 .
$$

Let $f: M \rightarrow G$ be any map from a manifold M into G and define $\psi=f^{*} \omega$. Then by properties of the pull-back,

$$
\begin{equation*}
d \psi+\frac{1}{2}[\psi, \psi]=0 \tag{1}
\end{equation*}
$$

The converse is also true locally: Just like a real valued form α is locally integrable if and only if $d \alpha=0$, a \mathfrak{g}-valued one-form can locally be written as $\psi=f^{*} \eta$ if and only if (1) holds.

Values in $\mathfrak{s e}(n)$

$$
d \theta+[\omega, \theta]=\Theta, \quad d \omega+\frac{1}{2}[\omega, \omega]=\Omega .
$$

We can rewrite the following equation in $\mathfrak{s e}(n)$. Can be considered as the space $\mathfrak{s o}(n) \times \mathbb{R}^{n}$ with brackets,

$$
[(A, p),(B, q)]=([A, B], A q-B p), \quad A, B \in \mathfrak{s o}(n), p, q \in \mathbb{R}^{n} .
$$

We can then consider $\psi=(\omega, \theta)$ with

$$
d \psi+\frac{1}{2}[\psi, \psi]=(\Omega, \Theta) .
$$

Torsion and curvature of the connection are the obstructions for integrating ψ to a map into the euclidean group $\mathrm{E}(n)$.

Values in $\mathfrak{s e}(n)$

$$
d \theta+[\omega, \theta]=\Theta, \quad d \omega+\frac{1}{2}[\omega, \omega]=\Omega
$$

We can rewrite the following equation in $\mathfrak{s e}(n)$. Can be considered as the space $\mathfrak{s o}(n) \times \mathbb{R}^{n}$ with brackets,

$$
[(A, p),(B, q)]=([A, B], A q-B p), \quad A, B \in \mathfrak{s o}(n), p, q \in \mathbb{R}^{n}
$$

We can then consider $\psi=(\omega, \theta)$ with

$$
d \psi+\frac{1}{2}[\psi, \psi]=(\Omega, \Theta)
$$

Torsion and curvature of the connection are the obstructions for integrating ψ to a map into the euclidean group $\mathrm{E}(n)$.
Observe that since $\theta(v \cdot a)=a^{-1} \theta(w)$ and
$\omega(w \cdot a)=\operatorname{Ad}\left(a^{-1}\right) \omega(w)$ for $w \in T O(M), a \in O(n)$,

$$
\psi(w \cdot a)=\operatorname{Ad}\left(a^{-1}\right) \psi(w) .
$$

Theorem (Flatness theorem)

A Riemannian manifold (M, g) is locally isometric to the Euclidean space if and only if the curvature of the Levi-Civita connection vanishes.

Theorem (Flatness theorem)

A Riemannian manifold (M, g) is locally isometric to the Euclidean space if and only if the curvature of the Levi-Civita connection vanishes.
\Rightarrow : Curvature is a local invariant. For \Leftarrow :

- If the curvature of the Levi-Civita connection is zero, then ψ is locally $\psi=f^{*} \eta$ for map into $\mathrm{E}(n)$,
- Since $\left.\psi\right|_{u}: T_{u} \mathrm{O}(M) \rightarrow \mathfrak{s e}(n)$ is bijective, f is a local diffeomorphism,
- Since $\psi(w \cdot a)=\operatorname{Ad}\left(a^{-1}\right) \psi(w), f(u \cdot a)=f(u) \cdot a$. This means that f decends to a local map \check{f} from M to \mathbb{R}^{n}.
- Finally, \check{f} is an isometry, since $v \mapsto h_{u} v \mapsto \theta\left(h_{u} v\right)$ is a linear isometry from $T_{x} M$ to \mathbb{R}^{n}.

Theorem (Flatness theorem)

A Riemannian manifold (M, g) is locally isometric to the Euclidean space if and only if the curvature of the Levi-Civita connection vanishes.

Observe that in this proof, we needed two steps

- Normalize the connection to remove of the torsion.
- Then we can set up the condition of the curvature vanishing afterwards.

Cartan connections in general

- Manifold M of dimension n.
- Let \mathfrak{g} be a Lie algebra with subalgebra \mathfrak{h} of codimension n.
- Let H be a Lie group with Lie algebra \mathfrak{h}.
- Ad a representation of H on \mathfrak{g} extending usual adjoint action of H.
- Principal bundle $H \rightarrow P \xrightarrow{\pi} M$.

Cartan connections in general

A Cartan connection ψ on P modeled on $(\mathfrak{g}, \mathfrak{h})$ is a \mathfrak{g}-valued one form $\psi: T P \rightarrow \mathfrak{g}$, such that
(i) For each $p \in P,\left.\psi\right|_{p}$ is a linear isomorphism from $T_{p} P$ to \mathfrak{g}.
(ii) For each $a \in H, v \in T P$,

$$
\psi(v \cdot a)=\operatorname{Ad}\left(a^{-1}\right) \psi(v) .
$$

(iii) For every $D \in \mathfrak{h}, p \in P$, we have $\psi\left(\left.\frac{d}{d t} p \cdot \exp _{H}(t D)\right|_{t=0}\right)=D$.

Cartan connections in general

A Cartan connection ψ on P modeled on $(\mathfrak{g}, \mathfrak{h})$ is a \mathfrak{g}-valued one form $\psi: T P \rightarrow \mathfrak{g}$, such that
(i) For each $p \in P,\left.\psi\right|_{p}$ is a linear isomorphism from $T_{p} P$ to \mathfrak{g}.
(ii) For each $a \in H, v \in T P$,

$$
\psi(v \cdot a)=\operatorname{Ad}\left(a^{-1}\right) \psi(v)
$$

(iii) For every $D \in \mathfrak{h}, p \in P$, we have $\psi\left(\left.\frac{d}{d t} p \cdot \exp _{H}(t D)\right|_{t=0}\right)=D$.

The curvature of a Cartan connection is represented by a smooth function $\kappa: P \rightarrow \wedge^{2}(\mathfrak{g} / \mathfrak{h})^{*} \otimes \mathfrak{g}$,

$$
\kappa(\psi(\cdot), \psi(\cdot))=d \psi+\frac{1}{2}[\psi, \psi] .
$$

Nipotentizations of sub-Riemannian manifolds

Recall from last time, part II

- A Cartan algebra is an algebra with a stratification $\mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{\mathrm{s}}$ such that $\left[\mathfrak{g}_{1}, \mathfrak{g}_{k}\right]=\mathfrak{g}_{k+1}$ and with an inner product on \mathfrak{g}_{1}. Isometries are Lie algebra isomorphisms that preserve the brackets on the first layer. These can vary in dimensions.
- The corresponding simply connected Lie groups G with a sub-Riemannian structure given by left translation of \mathfrak{g}_{1} with its inner product is called a Carnot group.

Nilpotentization of a sub-Riemannian manifold

Let (M, E, g) be a sub-Riemannian manifold. We will assume that E is equiregular. Have a flag of subbundles

$$
E^{0}=0=E^{1}=E \subseteq E^{2} \subseteq \cdots \subseteq E^{S}
$$

Define

$$
\operatorname{symb}_{x}=E_{x} \oplus E_{x}^{2} / E_{x} \oplus \cdots \oplus E^{S} / E^{S-1}
$$

Then we can define a Lie algebra for $X_{x} \in E_{x}^{i}, Y_{x} \in E_{x}^{j}$

$$
\llbracket X_{x} \quad \bmod E_{x}^{i-1}, Y_{x} \quad \bmod E_{x}^{j-1} \rrbracket=\left.[X, Y]\right|_{x} \quad \bmod E_{x}^{i+j-1}
$$

where X and Y are any vector field extending X_{X} and Y_{X}. This makes $\left(\operatorname{symb}_{x}, \llbracket \cdot, \cdot \rrbracket\right)$ into a nilpotent Lie algebra with a stratification $\operatorname{symb}_{x, j}=E_{x}^{j} / E_{x}^{j-1}$ and with an inner product on symb $_{x, 1}$; in other words, a Carnot algebra.

Nilpotentization of a sub-Riemannian manifold

From the Carnot algebra symb ${ }_{x}$, we get a corresponding Carnot groups $\left(\mathrm{Symb}_{x}, \tilde{E}, \tilde{g}\right)$. This Carnot group is what (M, E, g) looks like when we "zoom in". This can be made precise in terms of Gromov-Hausdorff convergence of metric spaces.

We say that (M, E, g) has constant symbol \mathfrak{g} if symb_{x} is isometric to \mathfrak{g} for any $x \in M$.

The Hopf fibration again

We consider again $\operatorname{SU}(2)$ with the sub-Riemannian structure $E=\operatorname{span}\{X, Y\}$,

$$
[X, Y]=Z, \quad[Y, Z]=X, \quad[Z, X]=Y
$$

Then for any point $\operatorname{symb}_{x}=\operatorname{span}\{X, Y\} \oplus \operatorname{span}\{Z \bmod E\}$, with

$$
\llbracket X, Y \rrbracket=Z \quad \bmod E, \quad \llbracket X, Z \quad \bmod E \rrbracket=\llbracket y, Z \quad \bmod E \rrbracket=0 .
$$

We see that symb $_{x}$ is the Heisenberg algebra.

Not constant symbol

Consider \mathbb{R}^{5} with coordinates ($x_{1}, x_{2}, y_{1}, y_{2}, z$) with (E, g) given by an orthonormal basis

$$
\begin{gathered}
A_{1}=\partial_{x_{1}}, \quad B_{1}=\left(1+y_{1}^{2}\right)\left(\partial_{y_{1}}+x_{1} \partial_{x_{1}} .\right. \\
A_{2}=\partial_{x_{2}}, \quad B_{2}=\partial_{y_{2}}+x_{1} \partial_{x_{1}} .
\end{gathered}
$$

Then $\operatorname{symb}_{x_{1}, x_{2}, y_{1}, y_{2}, z}$ is isometric to the 2nd Heisenberg algebra

$$
\left[X_{1}, Y_{1}\right]=\left[X_{2}, Y_{2}\right]=Z
$$

but with an orthonormal basis given by $\sqrt{1+y_{1}^{2}} X_{1}, \sqrt{1+y_{1}^{2}} Y_{2}$, X_{2}, Y_{2}, where y_{1} is now considered as a constant. These are not isometric for different values of y_{1}^{2}.

Example

If there is just one Carnot algebra in the class of growth vectors, then all sub-Riemannian manifolds with that growth vector will have constant symbol.

Consider two 2d Riemannian manifolds Σ and $\tilde{\Sigma}$, whose Gaussian curvature never coinsides. On $\hat{M}=O(\Sigma) \times O(\tilde{\Sigma})$, consider the sub-Riemannian structure (\hat{E}, \hat{g}) with orthogonal vector fields $H_{e_{1}}+\tilde{H}_{e_{1}}$ and $H_{e_{2}}+\tilde{H}_{e_{2}}$. Define $M=\hat{M} / O(n)$ as the quotient the diagonal action and let (E, g) be the induced sub-Riemannian structure on (M, E, g). Then (M, E, g) has growth vector $(2,3,5)$. Since there is only one Cartan group with this growth vector, these have all constant symbol.

Example

Consider two 2d Riemannian manifolds Σ and $\tilde{\Sigma}$, whose Gaussian curvature never coinsides. On $\hat{M}=O(\Sigma) \times O(\tilde{\Sigma})$, consider the sub-Riemannian structure (\hat{E}, \hat{g}) with orthogonal vector fields $H_{e_{1}}+\tilde{H}_{e_{1}}$ and $H_{e_{2}}+\tilde{H}_{e_{2}}$. Define $M=\hat{M} / O(n)$ as the quotient the diagonal action and let (E, g) be the induced sub-Riemannian structure on (M, E, g).

Nonholonomic frame bundle

- Assume (M, E, g) has constant symbol \mathfrak{g}. Define $G_{0}=\operatorname{Isom}(\mathfrak{g})$ with Lie algebra $\mathfrak{g}_{0}=\mathfrak{i s o m}(\mathfrak{g})$.
- \mathfrak{g}_{0} consist of derivations of \mathfrak{g} preserving the stratification and whose restriction to \mathfrak{g}_{1} is skew symmetric.
- Define a new algebra $\hat{\mathfrak{g}}=\mathfrak{g}_{0} \oplus \mathfrak{g}$ such that both \mathfrak{g}_{0} and \mathfrak{g} as subalgebras and with

$$
[D, A]=D A
$$

Exercise

Show that $\hat{\mathfrak{g}}$ is the Lie algebra of isometries of the isometry algebra $\hat{G}=\operatorname{Isom}(G)$.

Nonholonomic frame bundle

- Define a vector bundle of symbols symb $\rightarrow M$ over M. We will call this the non-holonomic tangent bundle.
- We now define a non-holonomic frame as a Carnot isomorphism $u: \mathfrak{g} \rightarrow$ symb $_{x}$. We will write a the set of all such frames as \mathscr{F}_{x}.
- We again have a right action of G_{0} on \mathscr{F}_{x} by precomposition. This gives us a principal bundle

$$
G_{0} \rightarrow \mathscr{F} \rightarrow M .
$$

Cartan connections on the frame bundle

Let ψ be a $\left(\hat{\mathfrak{g}}, \mathfrak{g}_{0}\right)$ Cartan connection with values in $\hat{\mathfrak{g}}$. We can write it as $\psi=(\omega, \theta)$ where ω and θ has values in respectively \mathfrak{g}_{0} and \mathfrak{g}_{-}. Observe.

- ω is a principal connection on the bundle \mathscr{F}. Corresponds to an affine connection ∇ on sym̃m such that parallel transport are Cartan isometries.

Cartan connections on the frame bundle

Let ψ be a ($\hat{\mathfrak{g}}, \mathfrak{g}_{0}$) Cartan connection with values in $\hat{\mathfrak{g}}$. We can write it as $\psi=(\omega, \theta)$ where ω and θ has values in respectively \mathfrak{g}_{0} and \mathfrak{g}_{-}. Observe.

- ω gives $\tilde{\nabla}$ on symb.
- θ correspond to a vector bundle isomorphism
$I: T M \rightarrow$ symb in the following way. For any $v \in T_{x} M$, and $u \in \mathscr{F} x$,

$$
\begin{equation*}
I: v \mapsto h_{u} v \in \mapsto \theta\left(h_{u} v\right) \in \mathfrak{g} \mapsto u^{-1} \theta\left(h_{u} v\right) \in \operatorname{symb}_{x} . \tag{2}
\end{equation*}
$$

We can see this map as a way choosing complements to $E^{k+1}=V^{k+1} \oplus E^{k}$ by $I^{-1}\left(E^{k+1} / E^{k}\right)$.

- From the previous structures, we can define a connection $\nabla=I^{-1} \tilde{\nabla}$ I on $T M$.

In summary, any choice of Cartan connection gives us an identification I:TM \rightarrow symb and connection ∇ on TM. We wil show next time that there is a preferred choice.

Thank you very much!

