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Recall from last time, part I

• Sub-Riemannian manifolds considers manifolds with an
inner product g is only defined on a subbundle E.

• They are very interesting.
• They do not have a compatible torsion-free connections.
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A quick Riemannian introduction to
Cartan connections



Why torsion-free, anyway?

Let (M,g) be a Riemannian manifold and let ∇ be a compatible
connection. Important tensors

T(X, Y) = ∇XY−∇YX− [X, Y], R(X, Y)Z = [∇X,∇Y]Z−∇[X,Y]Z.

Recall that if f(s, t) is a parametrized surface with a vector field
Z(s, t) along it then

∇∂sf∂tf−∇∂tf∂sf = T(∂sf, ∂tf)
∇∂tf∇∂tfZ−∇∂tf∇∂sfZ = R(∂sf, ∂tf)Z
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Orthonormal frame bundle

• (M,g) a Riemannian manifold of dimension n.
• Rn with the euclidean metric has a trivial tangent bundle
and a canonical basis e1, . . . , en. Let us steal these
properties.

• An orthonormal frame at x ∈ M is a choice of orthonormal
basis u1, . . .un for TxM. Equivalently, we can consider a
frame as a linear isometry u : Rn → TxM. The
correspondence is given by

uj = u(ej).

We write the set of all such frames as Ox(M).
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Orthonormal frame bundle

• For frame u : Rn → TxM and a ∈ O(n), we can define a new
frame u · a = u ◦ a : Rn → TxM by precomposition. In other
words, if ũ = u · a, then

ũj =
n∑
i=1

aijui.

• We use the above action to construct a principal bundle
called the frame bundle

O(n) → O(M) π→ M,

with fibers Ox(M).
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Structures on the orthonormal frame bundle

(i) The vertical bundle: V = ker π∗ of rank n2.
(ii) Canonical vertical vector field: If A ∈ so(n), we define

ξA|u =
d
dtu · eAt|t=0.

We then have a globally defined vector field ξA.
Furthermore,

Vu = {ξA|u : A ∈ so(n)} , u ∈ O(M).

Exercise
Show that

ξA · a = ξAd(a−1)A, A ∈ so(n),a ∈ O(n).
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Structures on the orthonormal frame bundle

(i) The vertical bundle: V = ker π∗ of rank n2.
(ii) Canonical vertical vector field: If A ∈ so(n), we define

ξA|u =
d
dtu · eAt|t=0.

We then have a globally defined vector field ξA.
Furthermore,

Vu = {ξA|u : A ∈ so(n)} , u ∈ O(M).

(iii) The tautological one-form: We define an Rn-valued
one-form θ = (θ1, . . . , θn). Then

θ(w) = u−1π∗w, w ∈ TuO(M).

Observe that ker θ = V .
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Connections on frame bundles

An Ehresmann connection H on π : O(M) → M is a choice of
complement to V :

TO(M) = H⊕ V .

Interpretation: π∗,u|Hu is invertible and we can define an
inverse hu, so huv is the unique element in Hu such that
π∗huv = v.

An Ehresmann connection is called principal if it is invariant
under the action O(n).

Hu · a = Hu·a, u ∈ O(n),a ∈ O(n)

Equivalently, huv · a = hu·av.
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Connections on frame bundles

An Ehresmann connection is called principal if it is invariant
under the action O(n).

Hu · a = Hu·a, u ∈ O(n),a ∈ O(n)

Equivalently, huv · a = hu·av.

Exercise
Define a one-form ω : TO(n) → so(n) such that

ω(huv) = 0, ω(ξA) = A.

Show that ω(w · a) = Ad(a−1)ω(w), w ∈ TO(M), a ∈ O(n). ω is
called the connection form of H.
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From affine to principal connections

Let ∇ be a compatible connection. Let U(t) be a curve in O(M)
such that π(U(t)) = γ(t). Assume that γ̇(0) = v, that U(0) = u
and that each Uj(t) is parallel along γ(t). We can then define

huv = U̇(0),

so the derivative of a parallel frame moving the direction of v.
We then define

Hx = {huv : u ∈ Ox(M), v ∈ TxM}.

Exercise
Show that H is a principal Ehresmann connection.
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A canonical basis

Now something interesting happens since for each point of
O(M) is a frame. For any p ∈ Rn, can define vector field Hp by

Hp|u =
n∑
j=1

pjhuuj.

Canonical basis Hp, ξA, p ∈ Rn, A ∈ so(n).

[Hp,Hq] = −ξR̄(u,v)−HT̄(p,q), [ξA,Hq] = HAq, [ξA, ξB] = ξ[A,B].

T̄(p,q)|u = u−1T(u(p),u(q)), R̄(p,q)|u = u−1R(u(p),u(q))u.
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A canonical basis

[Hp,Hq] = −ξR̄(u,v)−HT̄(p,q), [ξA,Hq] = HAq, [ξA, ξB] = ξ[A,B].

T̄(p,q)|u = u−1T(u(p),u(q)), R̄(p,q)|u = u−1R(u(p),u(q))u.

Since

ω(Hp) = 0, ω(ξA) = A, θ(Hp) = p, θ(ξA) = 0.

we can rewrite these equations as

dθ + [ω, θ] = Θ, dω +
1
2 [ω, ω] = Ω.

Θ(ξA, ·) = 0 Ω(ξA, ·) = 0,
Θ(Hp,Hq) = T̄(p,q), Ω(Hp,Hq) = R̄(p,q).
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Values in se(n)

dθ + [ω, θ] = Θ, dω +
1
2 [ω, ω] = Ω.

We can rewrite the following equation in se(n). Can be
considered as the space so(n)× Rn with brackets,

[(A,p), (B,q)] = ([A,B],Aq− Bp), A,B ∈ so(n),p,q ∈ Rn.

We can then consider ψ = (ω, θ) with

dψ +
1
2 [ψ,ψ] = (Ω,Θ).
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A sidestep on integrating Lie-algebra valued forms

Let G be a Lie group with Lie algebra g. The left Maurer-Cartan
form η is defined as

η(v) = a−1 · v, v ∈ TaG,

which is a g-valued one-form. We observe that this one-form
satisfies

dη + 1
2 [η, η] = 0.
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A sidestep on integrating Lie-algebra valued forms

We observe that this one-form satisfies

dη + 1
2 [η, η] = 0.

Let f : M→ G be any map from a manifold M into G and define
ψ = f∗ω. Then by properties of the pull-back,

dψ +
1
2 [ψ,ψ] = 0. (1)

The converse is also true locally: Just like a real valued form α

is locally integrable if and only if dα = 0, a g-valued one-form
can locally be written as ψ = f∗η if and only if (1) holds.
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Values in se(n)

dθ + [ω, θ] = Θ, dω +
1
2 [ω, ω] = Ω.

We can rewrite the following equation in se(n). Can be
considered as the space so(n)× Rn with brackets,

[(A,p), (B,q)] = ([A,B],Aq− Bp), A,B ∈ so(n),p,q ∈ Rn.

We can then consider ψ = (ω, θ) with

dψ +
1
2 [ψ,ψ] = (Ω,Θ).

Torsion and curvature of the connection are the obstructions
for integrating ψ to a map into the euclidean group E(n).

Observe that since θ(v · a) = a−1θ(w) and
ω(w · a) = Ad(a−1)ω(w) for w ∈ TO(M), a ∈ O(n),

ψ(w · a) = Ad(a−1)ψ(w).
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Theorem (Flatness theorem)
A Riemannian manifold (M,g) is locally isometric to the
Euclidean space if and only if the curvature of the Levi-Civita
connection vanishes.

⇒: Curvature is a local invariant. For⇐:

• If the curvature of the Levi-Civita connection is zero, then
ψ is locally ψ = f∗η for map into E(n),

• Since ψ|u : TuO(M) → se(n) is bijective, f is a local
diffeomorphism,

• Since ψ(w · a) = Ad(a−1)ψ(w), f(u · a) = f(u) · a. This
means that f decends to a local map f̌ from M to Rn.

• Finally, f̌ is an isometry, since v 7→ huv 7→ θ(huv) is a linear
isometry from TxM to Rn.
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Theorem (Flatness theorem)
A Riemannian manifold (M,g) is locally isometric to the
Euclidean space if and only if the curvature of the Levi-Civita
connection vanishes.

Observe that in this proof, we needed two steps

• Normalize the connection to remove of the torsion.
• Then we can set up the condition of the curvature
vanishing afterwards.
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Cartan connections in general

• Manifold M of dimension n.
• Let g be a Lie algebra with subalgebra h of codimension n.
• Let H be a Lie group with Lie algebra h.
• Ad a representation of H on g extending usual adjoint
action of H.

• Principal bundle H→ P π→ M.
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Cartan connections in general

A Cartan connection ψ on P modeled on (g, h) is a g-valued
one form ψ : TP→ g, such that

(i) For each p ∈ P, ψ|p is a linear isomorphism from TpP to g.
(ii) For each a ∈ H, v ∈ TP,

ψ(v · a) = Ad(a−1)ψ(v).

(iii) For every D ∈ h, p ∈ P, we have ψ( ddtp · expH(tD)|t=0) = D.

The curvature of a Cartan connection is represented by a
smooth function κ : P→ ∧2(g/h)∗ ⊗ g,

κ(ψ(·), ψ(·)) = dψ +
1
2 [ψ,ψ].

19



Cartan connections in general

A Cartan connection ψ on P modeled on (g, h) is a g-valued
one form ψ : TP→ g, such that

(i) For each p ∈ P, ψ|p is a linear isomorphism from TpP to g.
(ii) For each a ∈ H, v ∈ TP,

ψ(v · a) = Ad(a−1)ψ(v).

(iii) For every D ∈ h, p ∈ P, we have ψ( ddtp · expH(tD)|t=0) = D.

The curvature of a Cartan connection is represented by a
smooth function κ : P→ ∧2(g/h)∗ ⊗ g,

κ(ψ(·), ψ(·)) = dψ +
1
2 [ψ,ψ].

19



Nipotentizations of sub-Riemannian
manifolds



Recall from last time, part II

• A Cartan algebra is an algebra with a stratification
g = g1 ⊕ · · · ⊕ gs such that [g1, gk] = gk+1 and with an inner
product on g1. Isometries are Lie algebra isomorphisms
that preserve the brackets on the first layer. These can
vary in dimensions.

• The corresponding simply connected Lie groups G with a
sub-Riemannian structure given by left translation of g1
with its inner product is called a Carnot group.
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Nilpotentization of a sub-Riemannian manifold

Let (M, E,g) be a sub-Riemannian manifold. We will assume
that E is equiregular. Have a flag of subbundles

E0 = 0 = E1 = E ⊆ E2 ⊆ · · · ⊆ Es.

Define
symbx = Ex ⊕ E2x/Ex ⊕ · · · ⊕ Es/Es−1.

Then we can define a Lie algebra for Xx ∈ Eix, Yx ∈ E
j
x

[[Xx mod Ei−1x , Yx mod Ej−1x ]] = [X, Y]|x mod Ei+j−1x ,

where X and Y are any vector field extending Xx and Yx. This
makes (symbx, [[·, ·]]) into a nilpotent Lie algebra with a
stratification symbx,j = Ejx/Ej−1x and with an inner product on
symbx,1; in other words, a Carnot algebra.
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Nilpotentization of a sub-Riemannian manifold

From the Carnot algebra symbx, we get a corresponding Carnot
groups (Symbx, Ẽ, g̃). This Carnot group is what (M, E,g) looks
like when we “zoom in”. This can be made precise in terms of
Gromov-Hausdorff convergence of metric spaces.

We say that (M, E,g) has constant symbol g if symbx is
isometric to g for any x ∈ M.
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The Hopf fibration again

We consider again SU(2) with the sub-Riemannian structure
E = span{X, Y},

[X, Y] = Z, [Y, Z] = X, [Z, X] = Y.

Then for any point symbx = span{X, Y} ⊕ span{Z mod E}, with

[[X, Y]] = Z mod E, [[X, Z mod E]] = [[y, Z mod E]] = 0.

We see that symbx is the Heisenberg algebra.
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Not constant symbol

Consider R5 with coordinates (x1, x2, y1, y2, z) with (E,g) given
by an orthonormal basis

A1 = ∂x1 , B1 = (1+ y21)(∂y1 + x1∂x1 .

A2 = ∂x2 , B2 = ∂y2 + x1∂x1 .

Then symbx1,x2,y1,y2,z is isometric to the 2nd Heisenberg algebra

[X1, Y1] = [X2, Y2] = Z,

but with an orthonormal basis given by
√
1+ y21X1,

√
1+ y21Y2,

X2, Y2, where y1 is now considered as a constant. These are not
isometric for different values of y21 .
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Example
If there is just one Carnot algebra in the class of growth vectors, then all

sub-Riemannian manifolds with that growth vector will have constant symbol.

Consider two 2d Riemannian manifolds Σ and Σ̃, whose
Gaussian curvature never coinsides. On M̂ = O(Σ)× O(Σ̃),
consider the sub-Riemannian structure (Ê, ĝ) with orthogonal
vector fields He1 + H̃e1 and He2 + H̃e2 . Define M = M̂/O(n) as the
quotient the diagonal action and let (E,g) be the induced
sub-Riemannian structure on (M, E,g). Then (M, E,g) has
growth vector (2, 3, 5). Since there is only one Cartan group
with this growth vector, these have all constant symbol.
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Nonholonomic frame bundle

• Assume (M, E,g) has constant symbol g. Define
G0 = Isom(g) with Lie algebra g0 = isom(g).

• g0 consist of derivations of g preserving the stratification
and whose restriction to g1 is skew symmetric.

• Define a new algebra ĝ = g0 ⊕ g such that both g0 and g as
subalgebras and with

[D,A] = DA.

Exercise
Show that ĝ is the Lie algebra of isometries of the isometry
algebra Ĝ = Isom(G).
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Nonholonomic frame bundle

• Define a vector bundle of symbols symb→ M over M. We
will call this the non-holonomic tangent bundle.

• We now define a non-holonomic frame as a Carnot
isomorphism u : g → symbx. We will write a the set of all
such frames as Fx.

• We again have a right action of G0 on Fx by
precomposition. This gives us a principal bundle

G0 → F → M.
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Cartan connections on the frame bundle

Let ψ be a (ĝ, g0) Cartan connection with values in ĝ. We can
write it as ψ = (ω, θ) where ω and θ has values in respectively
g0 and g−. Observe.

• ω is a principal connection on the bundle F . Corresponds
to an affine connection ∇ on ˜symb such that parallel
transport are Cartan isometries.
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Cartan connections on the frame bundle

Let ψ be a (ĝ, g0) Cartan connection with values in ĝ. We can
write it as ψ = (ω, θ) where ω and θ has values in respectively
g0 and g−. Observe.

• ω gives ∇̃ on symb.
• θ correspond to a vector bundle isomorphism
I : TM→ symb in the following way. For any v ∈ TxM, and
u ∈ Fx,

I : v 7→ huv ∈7→ θ(huv) ∈ g 7→ u−1θ(huv) ∈ symbx . (2)

We can see this map as a way choosing complements to
Ek+1 = Vk+1 ⊕ Ek by I−1(Ek+1/Ek).

• From the previous structures, we can define a connection
∇ = I−1∇̃I on TM.
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In summary, any choice of Cartan connection gives us an
identification I : TM→ symb and connection ∇ on TM. We wil
show next time that there is a preferred choice.
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Thank you very much!
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