Curvature in sub-Riemannian geometry

Lecture 3
42nd Winter School: Geometry and Physics

Erlend Grong, erlend.grong@uib.no
Srní, January 21, 2022
University of Bergen, Norway

Recall from last time

Let (M, E, g) be a sub-Riemannian manifold. We will assume that E is equiregular. Have a flag of subbundles

$$
E^{0}=0=E^{1}=E \subseteq E^{2} \subseteq \cdots \subseteq E^{S} .
$$

Define

$$
\operatorname{symb}_{x}=E_{x} \oplus E_{x}^{2} / E_{x} \oplus \cdots \oplus E^{S} / E^{s-1} .
$$

Then we can define a Lie algebra for $X_{x} \in E_{x}^{i}, Y_{x} \in E_{x}^{j}$

$$
\llbracket X_{x} \bmod E_{x}^{i-1}, Y_{x} \bmod E_{x}^{j-1} \rrbracket=\left.[X, Y]\right|_{x} \quad \bmod E_{x}^{i+j-1},
$$

where X and Y are any vector field extending X_{X} and Y_{x}. This makes $\left(\right.$ symb $\left._{x}, \mathbb{I}, \cdot \mathbb{\rrbracket}\right)$ into a nilpotent Lie algebra with a stratification $\operatorname{symb}_{x, j}=E_{x}^{j} / E_{x}^{j-1}$ and with an inner product on symb $_{x, 1}$; in other words, a Carnot algebra.

Recall from last time

From the Carnot algebra symb ${ }_{x}$, we get a corresponding Carnot groups $\left(\mathrm{Symb}_{x}, \tilde{E}, \tilde{g}\right)$. This Carnot group is what (M, E, g) looks like when we "zoom in". This can be made precise in terms of Gromov-Hausdorff convergence of metric spaces.

We say that (M, E, g) has constant symbol \mathfrak{g} if symb_{x} is isometric to \mathfrak{g} for any $x \in M$.

Erlend Grong,
Canonical connections on sub-riemannian manifolds with constant symbol.
arXiv:2010.05366, 2020.

Sub-Riemannian frame bundles

Nonholonomic frame bundle

- Assume (M, E, g) has constant symbol \mathfrak{g}. Define $G_{0}=\operatorname{Isom}(\mathfrak{g})$ with Lie algebra $\mathfrak{g}_{0}=\mathfrak{i s o m}(\mathfrak{g})$.
- \mathfrak{g}_{0} consist of derivations of \mathfrak{g} preserving the stratification and whose restriction to \mathfrak{g}_{1} is skew symmetric.
- Define a new algebra $\hat{\mathfrak{g}}=\mathfrak{g}_{0} \oplus \mathfrak{g}$ such that both \mathfrak{g}_{0} and \mathfrak{g} as subalgebras and with

$$
[D, A]=D A
$$

Exercise

Show that $\hat{\mathfrak{g}}$ is the Lie algebra of isometries of the isometry algebra $\hat{G}=\operatorname{Isom}(G)$.

Nonholonomic frame bundle

- Define a vector bundle of symbols symb $\rightarrow M$ over M. We will call this the nonholonomic tangent bundle.
- We now define a nonholonomic frame as a Carnot isomorphism $u: \mathfrak{g} \rightarrow \operatorname{symb}_{x}$. We will write a the set of all such frames as \mathscr{F}_{x}.
- We again have a right action of G_{0} on \mathscr{F}_{x} by precomposition. This gives us a principal bundle

$$
G_{0} \rightarrow \mathscr{F} \rightarrow M .
$$

Cartan connections on the frame bundle

Let ψ be a $\left(\hat{\mathfrak{g}}, \mathfrak{g}_{0}\right)$ Cartan connection with values in $\hat{\mathfrak{g}}$. We can write it as $\psi=(\omega, \theta)$ where ω and θ has values in respectively \mathfrak{g}_{0} and \mathfrak{g}. Observe.

- ω is a principal connection on the bundle \mathscr{F}. Corresponds to an affine connection $\tilde{\nabla}$ on symb such that parallel transport are Cartan isometries.

Cartan connections on the frame bundle

Let ψ be a $\left(\hat{\mathfrak{g}}, \mathfrak{g}_{0}\right)$ Cartan connection with values in $\hat{\mathfrak{g}}$. We can write it as $\psi=(\omega, \theta)$ where ω and θ has values in respectively \mathfrak{g}_{0} and \mathfrak{g}_{-}. Observe.

- ω gives $\tilde{\nabla}$ on symb.
- θ correspond to a vector bundle isomorphism
$I: T M \rightarrow$ symb. For any $v \in T_{x} M$, and $u \in \mathscr{F}_{x}$,

$$
\begin{equation*}
I: v \mapsto h_{u} v \in \mapsto \theta\left(h_{u} v\right) \in \mathfrak{g} \mapsto u^{-1} \theta\left(h_{u} v\right) \in \operatorname{symb}_{x} . \tag{1}
\end{equation*}
$$

We can see this map as a way choosing complements to $E^{k+1}=V^{k+1} \oplus E^{k}$ by $I^{-1}\left(E^{k+1} / E^{k}\right)$.

- We can define a connection $\nabla=I^{-1} \tilde{\nabla} I$ on $T M$.

Summary: any choice of Cartan connection gives us an identification I: TM \rightarrow symb and connection ∇ on TM. Properties

- $I\left(E^{k}\right)=\operatorname{symb}_{1} \oplus \cdots \oplus$ symb $_{k}$. Recall that this gives a decomposition $T M=V_{1} \oplus \cdots \oplus V_{S}$ such that $E^{k+1}=E^{k} \oplus V^{k+1}$.

Summary: any choice of Cartan connection gives us an identification I: TM \rightarrow symb and connection ∇ on TM. Properties

- $I\left(E^{k}\right)=\operatorname{symb}_{1} \oplus \cdots \oplus$ symb $_{k}$. Recall that this gives a decomposition $T M=V_{1} \oplus \cdots \oplus V_{S}$ such that $E^{k+1}=E^{k} \oplus V^{k+1}$.
- The connection ∇ is compatible with sub-Riemannian metric (E, g),
- Each vector bundle V^{k} is parallel,
- Define a tensor \mathbb{T} such that

$$
\mathbb{T}(v, w)=-I^{-1} \llbracket / v, \mid w \rrbracket .
$$

Then $\nabla \mathbb{T}=0$.

Summary: any choice of Cartan connection gives us an identification I: TM \rightarrow symb and connection ∇ on $T M$. Properties

- $I\left(E^{k}\right)=\operatorname{symb}_{1} \oplus \cdots \oplus$ symb $_{k}$. Recall that this gives a decomposition $T M=V_{1} \oplus \cdots \oplus V_{S}$ such that $E^{k+1}=E^{k} \oplus V^{k+1}$.
- The connection ∇ is compatible with sub-Riemannian metric (E, g),
- Each vector bundle V^{k} is parallel,
- Define a tensor \mathbb{T} such that

$$
\mathbb{T}(v, w)=-I^{-1} \llbracket / v, \mid w \rrbracket .
$$

Then $\nabla \mathbb{T}=0$.
We say that such an I is an E-grading. We will call (E, g, I) a graded sub-Riemannian and say that a connection satisfying the above is strongly compatible with (E, g, I).

Theorem (Partial flatness theorem)

Let (M, E, g, I) is a graded sub-Riemannian manifold. If ∇ is strongly compatible with (E, g, I), and if

$$
R=0, \quad T=\mathbb{T}
$$

then (M, E, g) is locally isometric to a Carnot group.
To get the converse, we need a canonical way to choose I and ∇.

囯 Tohru Morimoto.
Geometric structures on filtered manifolds.
Hokkaido Math. J., 22(3):263-347, 1993.,
E Tohru Morimoto.
Cartan connection associated with a subriemannian structure.
Differential Geom. Appl., 26(1):75-78, 2008.

Canonical structures

- We can introduce an inner product on \mathfrak{g} : We can see $\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{s}$ as a surjection from the truncated tensor algebra $T^{S}\left(\mathfrak{g}_{1}\right)$, and induce the inner product from there. We now have that \mathfrak{g}_{0} consist of skew-symmetric mappings on an inner product space, which have their own induced inner product.
- On the set of linear k-forms on \mathfrak{g} with values in $\hat{\mathfrak{g}}$, we define the Spencer differential or the Lie algebra cohomology differential by $\partial: \wedge^{k} \mathfrak{g}^{*} \otimes \hat{\mathfrak{g}} \rightarrow \wedge^{k+1} \mathfrak{g}^{*} \otimes \hat{\mathfrak{g}}$,

$$
\begin{aligned}
& (\partial \alpha)\left(A_{0}, \ldots, A_{k}\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left[A_{i}, \alpha\left(A_{0}, \ldots, \hat{A}_{i}, \ldots, A_{k}\right)\right] \\
& \quad+\sum_{i<j}(-1)^{i+j} \alpha\left(\left[A_{i}, A_{j}\right], A_{0}, \ldots, \hat{A}_{i}, \ldots, \hat{A}_{j}, \ldots, A_{k}\right),
\end{aligned}
$$

- We can write ∂^{*} for the dual of ∂.
- On the set of linear k-forms on \mathfrak{g} with values in $\hat{\mathfrak{g}}$, we define the Spencer differential or the Lie algebra cohomology differential by $\partial: \wedge^{k} \mathfrak{g}^{*} \otimes \hat{\mathfrak{g}} \rightarrow \wedge^{k+1} \mathfrak{g}^{*} \otimes \hat{\mathfrak{g}}$,

$$
\begin{aligned}
& (\partial \alpha)\left(A_{0}, \ldots, A_{k}\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left[A_{i}, \alpha\left(A_{0}, \ldots, \hat{A}_{i}, \ldots, A_{k}\right)\right] \\
& \quad+\sum_{i<j}(-1)^{i+j} \alpha\left(\left[A_{i}, A_{j}\right], A_{0}, \ldots, \hat{A}_{i}, \ldots, \hat{A}_{j}, \ldots, A_{k}\right),
\end{aligned}
$$

- We can write ∂^{*} for the dual of ∂.

Theorem

There is a unique ($\left(\hat{\mathfrak{g}}, \mathfrak{g}_{0}\right)$-Cartan connection $\psi:$ T $\mathscr{F} \rightarrow \mathfrak{g}$ with $\kappa: \mathscr{F} \rightarrow \wedge^{2} \mathfrak{g}^{*} \otimes \hat{\mathfrak{g}}$ satisfying $\partial^{*} \kappa=0$.

How to make the canonical choice of a grading I and connection ∇.

- By I we can get an Carnot algebra structure on each $T_{x} M$. From this structure, we can extend the metric g to a Riemannian metric g_{l}.
- Define a subbundle \mathfrak{s} of End TM consisting of isometry algebras $\mathfrak{s}_{x}=\mathfrak{i s o m}\left(T_{x} M\right)$ on each fiber.
- $\mathfrak{s}_{x}=\mathfrak{i s o m}\left(T_{x} M\right)$.
- Finally define $\chi: T M \rightarrow \wedge^{2} T M$ by

$$
\left\langle\chi(v), w_{1} \wedge w_{2}\right\rangle_{g_{1}}=-\left\langle v, \mathbb{T}\left(w_{1}, w_{2}\right)\right\rangle_{g_{1}} .
$$

Theorem

There is a unique grading and strongly compatible connection such that the torsion T and curvature R satisfies for any $D \in \mathfrak{s}$ and any $v \in E^{i}, w \in E^{j}$ with $0 \leq j<i \leq s$,

$$
\begin{align*}
& \langle R(\chi(v)), D\rangle_{g_{1}}=\langle T(v, \cdot), D\rangle_{g_{1}} \tag{2}\\
& \langle T(\chi(v)), w\rangle_{g_{i}}=-\langle T(v, \cdot), \mathbb{T}(w, \cdot)\rangle_{g_{1}} \tag{3}
\end{align*}
$$

We can ue this to see the difference between sub-Riemannian manifolds.

Contact manifolds

The n-th Heisenberg algebra $\mathfrak{h}_{n}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ where

$$
\mathfrak{g}_{2}=\operatorname{span}\{Z\}, \quad \mathfrak{g}_{1}=\operatorname{span}\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}
$$

Only non-zero brackets

$$
\left[X_{j}, Y_{j}\right]=Z, \quad j=1,2 \ldots, n
$$

For any vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ such that $1=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, we define

$$
\left\langle X_{j}, X_{j}\right\rangle_{\mathfrak{g}_{1}}=\left\langle Y_{j}, Y_{j}\right\rangle_{\mathfrak{g}_{1}}=\lambda_{j}^{2} .
$$

We write this Carnot algebra $\mathfrak{h}_{n}(\lambda)$. All Carnot algebra structures on the Heisenberg groups are of this form.

Only non-zero brackets

$$
\left[X_{j}, Y_{j}\right]=Z, \quad j=1,2 \ldots, n
$$

For any vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ such that $1=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, we define

$$
\left\langle X_{j}, X_{j}\right\rangle_{\mathfrak{g}_{1}}=\left\langle Y_{j}, Y_{j}\right\rangle_{\mathfrak{g}_{1}}=\lambda_{j}^{2} .
$$

The isometry algebra $\mathfrak{g}_{0}=\mathfrak{i s o m}\left(\mathfrak{h}_{n}(\lambda)\right)$ is given by

$$
\begin{array}{rlrl}
\mathfrak{g}_{0}=\operatorname{span}\left\{D_{i j}: i<j, \lambda_{i}=\right. & \left.\lambda_{j}\right\} \cup\left\{Q_{i j}: i \leq j, \lambda_{i}=\lambda_{j}\right\} . \\
D_{i j}\left(X_{k}\right) & =\delta_{k i} X_{j}-\delta_{k j} X_{i}, & Q_{i j}\left(X_{k}\right) & =\frac{1}{2} \delta_{k i} Y_{j}+\frac{1}{2} \delta_{k j} Y_{i}, \\
D_{i j}\left(Y_{k}\right) & =\delta_{k i} Y_{j}-\delta_{k j} Y_{i}, & Q_{i j}\left(Y_{k}\right) & =-\frac{1}{2} \delta_{k i} X_{j}-\frac{1}{2} \delta_{k j} X_{i}, \\
D_{i j} Z & =0, & Q_{i j} Z & =0 .
\end{array}
$$

Contact manifolds

Let (M, E, g) be a sub-Riemannian manifold of dimension $2 n+1$ assume that E has rank $2 n$. We assume that E is a contact distribution, that is $X \wedge Y \mapsto \llbracket X, Y \rrbracket=[X, Y] \bmod E$ is non-degenerate.

Working locally, we can assume that $E=\operatorname{ker} \theta$ for a one-form θ. We normalize θ by requiring that the maximal imaginary part of the eigenvalues of $\left.d \theta\right|_{E}$ is one.

Contact manifolds

We can then write

$$
d \theta(v, w)=\left\langle v, \Lambda^{-1} J w\right\rangle_{g}, \quad v, w \in E, J^{2}=-\mathrm{id}_{E}
$$

where Λ_{x} is symmetric on E and has eigenvalues
$1=\lambda_{1, x} \leq \cdots \leq \lambda_{n}$, each appearing twice. The symbol at each point $\mathfrak{h}_{n}\left(\lambda_{x}\right)$. Hence (M, E, g) only has constant symbol if $\lambda_{x}=\lambda$ is constant.

Contact manifolds

$$
\begin{aligned}
& d \theta(v, w)=\left\langle v, \Lambda^{-1} J W\right\rangle_{g}, \quad v, w \in E, J^{2}=-\mathrm{id}_{E} . \\
& 1=\lambda_{1} \leq \cdots \leq \lambda_{n}, \operatorname{symb}_{x} \cong \mathfrak{h}_{n}(\lambda) .
\end{aligned}
$$

Contact manifolds

$$
d \theta(v, w)=\left\langle v, \Lambda^{-1} J w\right\rangle_{g}, \quad v, w \in E, J^{2}=-\mathrm{id}_{E}
$$

$$
1=\lambda_{1} \leq \cdots \leq \lambda_{n}, \operatorname{symb}_{x} \cong \mathfrak{h}_{n}(\lambda)
$$

- Let $1=\lambda[1]<\lambda[2]<\cdots<\lambda[k]$ be the eigenvalues without repetition, with corresponding decomposition $E=E[1] \oplus \cdots \oplus E[k]$. Let $\mathrm{pr}[1], \ldots, \mathrm{pr}[k]$ be the corresponding projections.
- Reeb vector field Z:

$$
\theta(Z)=1, \quad d \theta(Z, \cdot)=0
$$

Define I such that $V^{1} \oplus V^{2}=E \oplus \operatorname{span}\{Z\}$ with g, defined such that Z is a unit vector field.

$$
\begin{aligned}
\left\langle\tau_{X} Y_{1}, Y_{2}\right\rangle & =\frac{1}{2} \sum_{j=1}^{k}\left(\mathcal{L}_{X-\operatorname{pr}[j] \times} g_{1}\right)\left(\operatorname{pr}[j] Y_{1}, \operatorname{pr}[j] Y_{2}\right), \\
\nabla Z & =\nabla^{\prime} Z=0 \\
\nabla_{X} Y & =\sum_{j=1}^{k} \operatorname{pr}[j] \nabla_{\operatorname{pr}}^{g_{1}}\left[j X \operatorname{pr}[j] Y+\sum_{j=1}^{k} \operatorname{pr}[j][X-\operatorname{pr}[j] X, \operatorname{pr}[j] Y]+\tau_{X} Y\right. \\
\nabla_{X}^{\prime} Y & =\nabla_{X} Y+\frac{1}{2}\left(\nabla_{X} J\right) / Y
\end{aligned}
$$

Theorem

A contact manifold with constant symbol is a Carnot group if and only if ∇^{\prime} has curvature $R^{\prime}=0$ and torsion $T^{\prime}=\mathbb{T}$.

Note that ∇^{\prime} is not the connection that can be deduced from the previous theorem, but a simplification of that one.

For $(2,3,5)$ manifolds

Flatness theorem for (2, 3, 5)-manifolds

Assume (M, E, g) that E has growth vector $(2,3,5)$. Let X_{1}, X_{2} be any local orthonormal basis of E and define $X_{3}=\left[X_{1}, X_{2}\right]$, $X_{4}=\left[X_{1}, X_{3}\right]$ and $X_{5}=\left[X_{2}, X_{3}\right]$ with $\left[X_{i}, X_{j}\right]=\sum_{k=1}^{5} c_{i j}^{k} X_{k}$. Define vector fields Z, Y_{1} and Y_{2} by

$$
\begin{aligned}
Z=x_{3} & +\left(c_{23}^{3}+c_{24}^{4}+c_{25}^{5}\right) x_{1}-\left(c_{13}^{3}+c_{14}^{4}+c_{15}^{5}\right) x_{2}, \\
y_{1}=x_{4} & -\left(c_{14}^{4}+c_{15}^{5}\right) x_{3} \\
& +\left(c_{24}^{3}-x_{2}\left(c_{14}^{4}+c_{15}^{5}\right)+c_{24}^{4}\left(c_{14}^{4}+c_{15}^{5}\right)+c_{24}^{5}\left(c_{24}^{4}+c_{25}^{5}\right)\right) x_{1} \\
& -\left(c_{14}^{3}-x_{1}\left(c_{14}^{4}+c_{15}^{5}\right)+c_{14}^{4}\left(c_{14}^{4}+c_{15}^{5}\right)+c_{14}^{5}\left(c_{24}^{4}+c_{25}^{5}\right)\right) x_{2}, \\
y_{2}=x_{5} & -\left(c_{24}^{4}+c_{25}^{5}\right) x_{3} \\
& +\left(c_{25}^{3}-x_{2}\left(c_{25}^{4}+c_{25}^{5}\right)+c_{25}^{4}\left(c_{14}^{4}+c_{15}^{5}\right)+c_{25}^{5}\left(c_{24}^{4}+c_{25}^{5}\right)\right) x_{1} \\
& -\left(c_{15}^{3}-x_{1}\left(c_{25}^{4}+c_{25}^{5}\right)+c_{15}^{4}\left(c_{14}^{4}+c_{15}^{5}\right)+c_{15}^{5}\left(c_{24}^{4}+c_{25}^{5}\right)\right) x_{2},
\end{aligned}
$$

Then $V_{1} \oplus V_{2} \oplus V_{3}=\operatorname{span}\left\{X_{1}, X_{2}\right\} \oplus \operatorname{span}\{Z\} \oplus \operatorname{span}\left\{Y_{1}, Y_{2}\right\}$ is independent of basis chosen.

Flatness theorem for (2, 3, 5)-manifolds

Let \bar{g} be the Riemannnian metric making $X_{1}, X_{2}, Z, Y_{1}, Y_{2}$ into an orthonormal basis with Levi-Civita connection $\nabla^{\bar{g}}$.

Define a connection ∇ making $V_{1} \oplus V_{2} \oplus V_{3}$ parallel and further determined by the rules $\nabla Z=0$ and

$$
\begin{aligned}
& \left\langle\nabla_{X_{i}} X_{j}, X_{k}\right\rangle_{\bar{g}}=\left\langle\nabla_{X_{i}} Y_{j}, Y_{k}\right\rangle_{\bar{g}}=\left\langle\nabla_{X_{i}}^{\bar{g}} X_{j}, X_{k}\right\rangle_{\bar{g}}, \\
& \left\langle\nabla_{Z} X_{j}, X_{k}\right\rangle_{\bar{g}}=\left\langle\nabla_{Z} Y_{j}, Y_{k}\right\rangle_{\bar{g}}=\left\langle\left[Z, X_{j}\right], X_{k}\right\rangle_{\bar{g}}+\frac{1}{2}\left(\mathcal{L}_{Z}\right)\left(X_{j}, X_{k}\right), \\
& \left\langle\nabla_{Y_{i},} X_{j}, X_{k}\right\rangle_{\bar{g}}=\left\langle\nabla_{Y_{i}} Y_{j}, Y_{k}\right\rangle_{\bar{g}}=\left\langle\left[Y_{i}, X_{j}\right], X_{k}\right\rangle_{\bar{g}}+\frac{1}{2}\left(\mathcal{L}_{Y_{i}} \bar{g}\right)\left(X_{j}, X_{k}\right) .
\end{aligned}
$$

Then (M, E, g) is locally isometric to the Carnot group with growth vector $(2,3,5)$ if and only if the curvature R vanishes and the only non-zero parts of the torsion T are given by

$$
T\left(X_{2}, X_{1}\right)=Z, \quad T\left(Z, X_{j}\right)=Y_{j} .
$$

Concluding remarks

- For most cases, an explicit formula for the canonical connection and grading is still unknown.
- There has been very little consideration of constant curvature models.

囯 Erlend Grong.
Model spaces in sub-Riemannian geometry.
Comm. Anal. Geom. 29 (2021), no. 1.
Eirik Berge and Erlend Grong.
On G2 and Sub-Riemannian Model Spaces of Step and Rank Three.
Math. Z. 298 (2021), no. 3-4, 1853-1885.

Concluding remarks

- For most cases, an explicit formula for the canonical connection and grading is still unknown.
- There has been very little consideration of constant curvature models.
- Are the normalization conditions

$$
\begin{aligned}
& \langle R(\chi(v)), D\rangle_{g_{1}}=\langle T(v, \cdot), D\rangle_{g_{1}} \\
& \langle T(\chi(v)), w\rangle_{g_{i}}=-\langle T(v, \cdot), \mathbb{T}(w, \cdot)\rangle_{g_{1}}
\end{aligned}
$$

really the best one? (Chitour, G., Jean, Kokkonen, Ann. Inst. Fourier, 2019)

Děkuji mnohokrát

 Uvidíme se přiš̌tě v Srní