

Curvature in sub-Riemannian geometry

Lecture 3 42nd Winter School: Geometry and Physics

Erlend Grong, erlend.grong@uib.no Srní, January 21, 2022

University of Bergen, Norway

Recall from last time

Let (M, E, g) be a sub-Riemannian manifold. We will assume that E is equiregular. Have a flag of subbundles

$$E^0 = 0 = E^1 = E \subseteq E^2 \subseteq \cdots \subseteq E^s.$$

Define

$$\operatorname{symb}_{x} = E_{x} \oplus E_{x}^{2}/E_{x} \oplus \cdots \oplus E^{s}/E^{s-1}.$$

Then we can define a Lie algebra for $X_x \in E_x^i, Y_x \in E_x^j$

$$\llbracket X_x \mod E_x^{i-1}, Y_x \mod E_x^{j-1} \rrbracket = \llbracket X, Y \rrbracket|_x \mod E_x^{i+j-1},$$

where X and Y are any vector field extending X_x and Y_x . This makes $(symb_x, [\![\cdot, \cdot]\!])$ into a nilpotent Lie algebra with a stratification $symb_{x,j} = E_x^j/E_x^{j-1}$ and with an inner product on $symb_{x,1}$; in other words, a Carnot algebra.

From the Carnot algebra $symb_x$, we get a corresponding Carnot groups $(Symb_x, \tilde{E}, \tilde{g})$. This Carnot group is what (M, E, g) looks like when we "zoom in". This can be made precise in terms of Gromov-Hausdorff convergence of metric spaces.

We say that (M, E, g) has constant symbol \mathfrak{g} if $symb_x$ is isometric to \mathfrak{g} for any $x \in M$.

Erlend Grong,

Canonical connections on sub-riemannian manifolds with constant symbol. arXiv:2010.05366, 2020.

Sub-Riemannian frame bundles

Nonholonomic frame bundle

- Assume (M, E, g) has constant symbol g. Define $G_0 = \text{Isom}(g)$ with Lie algebra $g_0 = \text{isom}(g)$.
- \mathfrak{g}_0 consist of derivations of \mathfrak{g} preserving the stratification and whose restriction to \mathfrak{g}_1 is skew symmetric.
- Define a new algebra $\hat{\mathfrak{g}}=\mathfrak{g}_0\oplus\mathfrak{g}$ such that both \mathfrak{g}_0 and \mathfrak{g} as subalgebras and with

$$[D,A]=DA.$$

Exercise

Show that $\hat{\mathfrak{g}}$ is the Lie algebra of isometries of the isometry algebra $\hat{G} = \text{Isom}(G)$.

Nonholonomic frame bundle

- Define a vector bundle of symbols $symb \rightarrow M$ over M. We will call this <u>the nonholonomic tangent bundle</u>.
- We now define a nonholonomic frame as a Carnot isomorphism $u : \mathfrak{g} \to \mathbf{symb}_x$. We will write a the set of all such frames as \mathscr{F}_x .
- We again have a right action of G_0 on \mathscr{F}_X by precomposition. This gives us a principal bundle

$$G_0 \to \mathscr{F} \to M.$$

Let ψ be a $(\hat{\mathfrak{g}}, \mathfrak{g}_0)$ Cartan connection with values in $\hat{\mathfrak{g}}$. We can write it as $\psi = (\omega, \theta)$ where ω and θ has values in respectively \mathfrak{g}_0 and \mathfrak{g} . Observe.

• ω is a principal connection on the bundle \mathscr{F} . Corresponds to an affine connection $\tilde{\nabla}$ on **symb** such that parallel transport are Cartan isometries.

Cartan connections on the frame bundle

Let ψ be a $(\hat{\mathfrak{g}}, \mathfrak{g}_0)$ Cartan connection with values in $\hat{\mathfrak{g}}$. We can write it as $\psi = (\omega, \theta)$ where ω and θ has values in respectively \mathfrak{g}_0 and \mathfrak{g}_- . Observe.

- $\cdot \,\, \omega$ gives $\tilde{\nabla}$ on ${\rm symb}.$
- + $\boldsymbol{\theta}$ correspond to a vector bundle isomorphism

 $I: TM \rightarrow$ **symb**. For any $v \in T_xM$, and $u \in \mathscr{F}_x$,

$$I: v \mapsto h_u v \in \mapsto \theta(h_u v) \in \mathfrak{g} \mapsto u^{-1}\theta(h_u v) \in \operatorname{symb}_x.$$
(1)

We can see this map as a way choosing complements to $E^{k+1} = V^{k+1} \oplus E^k$ by $I^{-1}(E^{k+1}/E^k)$.

• We can define a connection $\nabla = I^{-1} \tilde{\nabla} I$ on TM.

Summary: any choice of Cartan connection gives us an identification $I: TM \rightarrow symb$ and connection ∇ on TM. Properties

• $I(E^k) = \text{symb}_1 \oplus \cdots \oplus \text{symb}_k$. Recall that this gives a decomposition $TM = V_1 \oplus \cdots \oplus V_s$ such that $E^{k+1} = E^k \oplus V^{k+1}$.

Summary: any choice of Cartan connection gives us an identification $I: TM \rightarrow$ **symb** and connection ∇ on *TM*. Properties

- $I(E^k) = \operatorname{symb}_1 \oplus \cdots \oplus \operatorname{symb}_k$. Recall that this gives a decomposition $TM = V_1 \oplus \cdots \oplus V_s$ such that $E^{k+1} = E^k \oplus V^{k+1}$.
- The connection ∇ is compatible with sub-Riemannian metric (E, g),
- Each vector bundle V^k is parallel,
- $\cdot\,$ Define a tensor $\mathbb T$ such that

$$\mathbb{T}(v,w) = -l^{-1}\llbracket v, lw \rrbracket.$$

Then $\nabla \mathbb{T} = 0$.

Summary: any choice of Cartan connection gives us an identification $I: TM \rightarrow$ **symb** and connection ∇ on *TM*. Properties

- $I(E^k) = \text{symb}_1 \oplus \cdots \oplus \text{symb}_k$. Recall that this gives a decomposition $TM = V_1 \oplus \cdots \oplus V_s$ such that $E^{k+1} = E^k \oplus V^{k+1}$.
- The connection ∇ is compatible with sub-Riemannian metric (E, g),
- Each vector bundle V^k is parallel,
- $\cdot\,$ Define a tensor $\mathbb T$ such that

$$\mathbb{T}(\mathbf{V},\mathbf{W}) = -I^{-1}\llbracket I\mathbf{V},I\mathbf{W}\rrbracket.$$

Then $\nabla \mathbb{T} = 0$.

We say that such an I is an E-grading. We will call (E, g, I) a graded sub-Riemannian and say that a connection satisfying the above is strongly compatible with (E, g, I).

Theorem (Partial flatness theorem)

Let (M, E, g, I) is a graded sub-Riemannian manifold. If ∇ is strongly compatible with (E, g, I), and if

$$R=0, \qquad T=\mathbb{T},$$

then (M, E, g) is locally isometric to a Carnot group.

To get the converse, we need a canonical way to choose I and $\nabla.$

📔 Tohru Morimoto.

Geometric structures on filtered manifolds. Hokkaido Math. J., 22(3):263–347, 1993.,

📔 Tohru Morimoto.

Cartan connection associated with a subriemannian structure.

Differential Geom. Appl., 26(1):75–78, 2008.

Canonical structures

 We can introduce an inner product on ĝ: We can see g₁ ⊕ · · · ⊕ g_s as a surjection from the truncated tensor algebra T^s(g₁), and induce the inner product from there. We now have that g₀ consist of skew-symmetric mappings on an inner product space, which have their own induced inner product.
 • On the set of <u>linear</u> k-forms on \mathfrak{g} with values in $\hat{\mathfrak{g}}$, we define the Spencer differential or the Lie algebra cohomology differential by $\partial : \wedge^k \mathfrak{g}^* \otimes \hat{\mathfrak{g}} \to \wedge^{k+1} \mathfrak{g}^* \otimes \hat{\mathfrak{g}}$,

$$\begin{aligned} (\partial \alpha)(A_0,\ldots,A_k) \\ &= \sum_{i=0}^n (-1)^i [A_i,\alpha(A_0,\ldots,\hat{A}_i,\ldots,A_k)] \\ &+ \sum_{i< j} (-1)^{i+j} \alpha([A_i,A_j],A_0,\ldots,\hat{A}_i,\ldots,\hat{A}_j,\ldots,A_k), \end{aligned}$$

• We can write ∂^* for the dual of ∂ .

• On the set of <u>linear</u> k-forms on \mathfrak{g} with values in $\hat{\mathfrak{g}}$, we define the Spencer differential or the Lie algebra cohomology differential by $\partial : \wedge^k \mathfrak{g}^* \otimes \hat{\mathfrak{g}} \to \wedge^{k+1} \mathfrak{g}^* \otimes \hat{\mathfrak{g}}$,

$$\begin{aligned} (\partial \alpha)(A_0,\ldots,A_k) \\ &= \sum_{i=0}^n (-1)^i [A_i,\alpha(A_0,\ldots,\hat{A}_i,\ldots,A_k)] \\ &+ \sum_{i< j} (-1)^{i+j} \alpha([A_i,A_j],A_0,\ldots,\hat{A}_i,\ldots,\hat{A}_j,\ldots,A_k), \end{aligned}$$

• We can write ∂^* for the dual of ∂ .

Theorem

There is a unique $(\hat{\mathfrak{g}}, \mathfrak{g}_0)$ -Cartan connection $\psi : T\mathscr{F} \to \mathfrak{g}$ with $\kappa : \mathscr{F} \to \wedge^2 \mathfrak{g}^* \otimes \hat{\mathfrak{g}}$ satisfying $\partial^* \kappa = 0$.

How to make the canonical choice of a grading ${\it I}$ and connection $\nabla.$

- By *I* we can get an Carnot algebra structure on each T_xM . From this structure, we can extend the metric *g* to a Riemannian metric g_1 .
- Define a subbundle \mathfrak{s} of End TM consisting of isometry algebras $\mathfrak{s}_x = \mathfrak{isom}(T_x M)$ on each fiber.

• $\mathfrak{s}_{X} = \mathfrak{isom}(T_{X}M).$

• Finally define
$$\chi : TM \to \wedge^2 TM$$
 by $\langle \chi(\mathbf{v}), w_1 \wedge w_2 \rangle_{g_l} = -\langle \mathbf{v}, \mathbb{T}(w_1, w_2) \rangle_{g_l}$.

Theorem

There is a unique grading and strongly compatible connection such that the torsion T and curvature R satisfies for any $D \in \mathfrak{s}$ and any $v \in E^i$, $w \in E^j$ with $0 \le j < i \le s$,

$$\langle R(\chi(\mathbf{v})), D \rangle_{g_l} = \langle T(\mathbf{v}, \cdot), D \rangle_{g_l}$$
⁽²⁾

$$\langle T(\chi(\mathbf{v})), \mathbf{w} \rangle_{g_i} = -\langle T(\mathbf{v}, \cdot), \mathbb{T}(\mathbf{w}, \cdot) \rangle_{g_i}.$$
 (3)

We can ue this to see the difference between sub-Riemannian manifolds.

The *n*-th Heisenberg algebra $\mathfrak{h}_n = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ where

$$\mathfrak{g}_2 = \operatorname{span}\{Z\}, \qquad \mathfrak{g}_1 = \operatorname{span}\{X_1, \ldots, X_n, Y_1, \ldots, Y_n\},\$$

Only non-zero brackets

$$[X_j, Y_j] = Z, \qquad j = 1, 2..., n.$$

For any vector $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ such that $1 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$, we define

$$\langle X_j, X_j \rangle_{\mathfrak{g}_1} = \langle Y_j, Y_j \rangle_{\mathfrak{g}_1} = \lambda_j^2.$$

We write this Carnot algebra $\mathfrak{h}_n(\lambda)$. All Carnot algebra structures on the Heisenberg groups are of this form.

Only non-zero brackets

$$[X_j, Y_j] = Z, \qquad j = 1, 2..., n.$$

For any vector $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ such that $1 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$, we define

$$\langle X_j, X_j \rangle_{\mathfrak{g}_1} = \langle Y_j, Y_j \rangle_{\mathfrak{g}_1} = \lambda_j^2.$$

The isometry algebra $\mathfrak{g}_0 = \mathfrak{isom}(\mathfrak{h}_n(\lambda))$ is given by

$$\mathfrak{g}_0 = \operatorname{span}\{D_{ij} : i < j, \lambda_i = \lambda_j\} \cup \{Q_{ij} : i \le j, \lambda_i = \lambda_j\}.$$

$$D_{ij}(X_k) = \delta_{ki}X_j - \delta_{kj}X_i, \qquad Q_{ij}(X_k) = \frac{1}{2}\delta_{ki}Y_j + \frac{1}{2}\delta_{kj}Y_i,$$

$$D_{ij}(Y_k) = \delta_{ki}Y_j - \delta_{kj}Y_i, \qquad Q_{ij}(Y_k) = -\frac{1}{2}\delta_{ki}X_j - \frac{1}{2}\delta_{kj}X_i,$$

$$D_{ij}Z = 0, \qquad Q_{ij}Z = 0.$$

Let (M, E, g) be a sub-Riemannian manifold of dimension 2n + 1 assume that E has rank 2n. We assume that E is a contact distribution, that is $X \land Y \mapsto [\![X, Y]\!] = [\![X, Y]\!] \mod E$ is non-degenerate.

Working locally, we can assume that $E = \ker \theta$ for a one-form θ . We normalize θ by requiring that the maximal imaginary part of the eigenvalues of $d\theta|_E$ is one.

We can then write

$$d\theta(\mathbf{v}, w) = \langle \mathbf{v}, \Lambda^{-1} J w \rangle_g, \qquad \mathbf{v}, w \in E, J^2 = -\operatorname{id}_E.$$

where $\Lambda|_x$ is symmetric on *E* and has eigenvalues $1 = \lambda_{1,x} \leq \cdots \leq \lambda_n$, each appearing twice. The symbol at each point $\mathfrak{h}_n(\lambda_x)$. Hence (M, E, g) only has constant symbol if $\lambda_x = \lambda$ is constant.

$$d\theta(\mathbf{v}, w) = \langle \mathbf{v}, \Lambda^{-1} J w \rangle_g, \qquad \mathbf{v}, w \in E, J^2 = -\operatorname{id}_E.$$
$$1 = \lambda_1 \le \cdots \le \lambda_n, \operatorname{symb}_X \cong \mathfrak{h}_n(\lambda).$$

$$d\theta(v, w) = \langle v, \Lambda^{-1} J w \rangle_g, \qquad v, w \in E, J^2 = -\operatorname{id}_E.$$

 $1 = \lambda_1 \leq \cdots \leq \lambda_n$, symb_x $\cong \mathfrak{h}_n(\lambda)$.

- Let $1 = \lambda[1] < \lambda[2] < \cdots < \lambda[k]$ be the eigenvalues without repetition, with corresponding decomposition $E = E[1] \oplus \cdots \oplus E[k]$. Let $pr[1], \ldots, pr[k]$ be the corresponding projections.
- Reeb vector field Z:

$$\theta(Z) = 1, \qquad d\theta(Z, \cdot) = 0.$$

Define *I* such that $V^1 \oplus V^2 = E \oplus \operatorname{span}\{Z\}$ with g_I defined such that *Z* is a unit vector field.

$$\langle \tau_X Y_1, Y_2 \rangle = \frac{1}{2} \sum_{j=1}^k (\mathcal{L}_{X-\text{pr}[j]X} \mathcal{G}_l) (\text{pr}[j]Y_1, \text{pr}[j]Y_2),$$

$$\nabla Z = \nabla' Z = 0,$$

$$\nabla_X Y = \sum_{j=1}^k \text{pr}[j] \nabla_{\text{pr}[j]X}^{\mathcal{G}_l} \text{pr}[j]Y + \sum_{j=1}^k \text{pr}[j][X - \text{pr}[j]X, \text{pr}[j]Y] + \tau_X Y,$$

$$\nabla'_X Y = \nabla_X Y + \frac{1}{2} (\nabla_X J) JY,$$

Theorem

A contact manifold with constant symbol is a Carnot group if and only if ∇' has curvature R' = 0 and torsion $T' = \mathbb{T}$.

Note that ∇' is not the connection that can be deduced from the previous theorem, but a simplification of that one.

For (2,3,5) manifolds

Flatness theorem for (2, 3, 5)-manifolds

Assume (M, E, g) that *E* has growth vector (2, 3, 5). Let X_1, X_2 be any local orthonormal basis of *E* and define $X_3 = [X_1, X_2]$, $X_4 = [X_1, X_3]$ and $X_5 = [X_2, X_3]$ with $[X_i, X_j] = \sum_{k=1}^5 c_{ij}^k X_k$. Define vector fields *Z*, Y_1 and Y_2 by

$$Z = X_3 + (c_{23}^3 + c_{24}^4 + c_{25}^5)X_1 - (c_{13}^3 + c_{14}^4 + c_{15}^5)X_2,$$

$$Y_1 = X_4 - (c_{14}^4 + c_{15}^5)X_3$$

$$+ (c_{24}^3 - X_2(c_{14}^4 + c_{15}^5) + c_{24}^4(c_{14}^4 + c_{15}^5) + c_{24}^5(c_{24}^4 + c_{25}^5))X_1$$

$$- (c_{14}^3 - X_1(c_{14}^4 + c_{15}^5) + c_{14}^4(c_{14}^4 + c_{15}^5) + c_{14}^5(c_{24}^4 + c_{25}^5))X_2,$$

$$Y_2 = X_5 - (c_{24}^4 + c_{25}^5)X_3$$

$$+ (c_{25}^3 - X_2(c_{25}^4 + c_{25}^5) + c_{25}^4(c_{14}^4 + c_{15}^5) + c_{25}^5(c_{24}^4 + c_{25}^5))X_1$$

$$- (c_{15}^3 - X_1(c_{25}^4 + c_{25}^5) + c_{15}^4(c_{14}^4 + c_{15}^5) + c_{15}^5(c_{24}^4 + c_{25}^5))X_2,$$

Then $V \oplus V \oplus V$

Then $V_1 \oplus V_2 \oplus V_3 = \operatorname{span}\{X_1, X_2\} \oplus \operatorname{span}\{Z\} \oplus \operatorname{span}\{Y_1, Y_2\}$ is independent of basis chosen.

Flatness theorem for (2, 3, 5)-manifolds

Let \bar{g} be the Riemannnian metric making X_1, X_2, Z, Y_1, Y_2 into an orthonormal basis with Levi-Civita connection $\nabla^{\bar{g}}$.

Define a connection ∇ making $V_1 \oplus V_2 \oplus V_3$ parallel and further determined by the rules $\nabla Z = 0$ and

$$\begin{split} \langle \nabla_{X_i} X_j, X_k \rangle_{\bar{g}} &= \langle \nabla_{X_i} Y_j, Y_k \rangle_{\bar{g}} = \langle \nabla_{X_i}^{\bar{g}} X_j, X_k \rangle_{\bar{g}}, \\ \langle \nabla_Z X_j, X_k \rangle_{\bar{g}} &= \langle \nabla_Z Y_j, Y_k \rangle_{\bar{g}} = \langle [Z, X_j], X_k \rangle_{\bar{g}} + \frac{1}{2} (\mathcal{L}_Z \bar{g}) (X_j, X_k), \\ \langle \nabla_{Y_i} X_j, X_k \rangle_{\bar{g}} &= \langle \nabla_{Y_i} Y_j, Y_k \rangle_{\bar{g}} = \langle [Y_i, X_j], X_k \rangle_{\bar{g}} + \frac{1}{2} (\mathcal{L}_{Y_i} \bar{g}) (X_j, X_k). \end{split}$$

Then (M, E, g) is locally isometric to the Carnot group with growth vector (2, 3, 5) if and only if the curvature *R* vanishes and the only non-zero parts of the torsion *T* are given by

$$T(X_2, X_1) = Z, \qquad T(Z, X_j) = Y_j.$$

Concluding remarks

- For most cases, an explicit formula for the canonical connection and grading is still unknown.
- There has been very little consideration of constant curvature models.
- Erlend Grong.

Model spaces in sub-Riemannian geometry. Comm. Anal. Geom. 29 (2021), no. 1.

🔋 Eirik Berge and Erlend Grong.

On G2 and Sub-Riemannian Model Spaces of Step and Rank Three.

Math. Z. 298 (2021), no. 3-4, 1853-1885.

Concluding remarks

- For most cases, an explicit formula for the canonical connection and grading is still unknown.
- There has been very little consideration of constant curvature models.
- Are the normalization conditions

 $\langle R(\chi(\mathbf{v})), D \rangle_{g_i} = \langle T(\mathbf{v}, \cdot), D \rangle_{g_i}$ $\langle T(\chi(\mathbf{v})), w \rangle_{g_i} = -\langle T(\mathbf{v}, \cdot), \mathbb{T}(w, \cdot) \rangle_{g_i}.$

really the best one? (Chitour, G., Jean, Kokkonen, Ann. Inst. Fourier, 2019) Děkuji mnohokrát Uvidíme se příště v Srní