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Recall from last time

Let (M, E,g) be a sub-Riemannian manifold. We will assume
that E is equiregular. Have a flag of subbundles

E0 = 0 = E1 = E ⊆ E2 ⊆ · · · ⊆ Es.

Define
symbx = Ex ⊕ E2x/Ex ⊕ · · · ⊕ Es/Es−1.

Then we can define a Lie algebra for Xx ∈ Eix, Yx ∈ E
j
x

[[Xx mod Ei−1x , Yx mod Ej−1x ]] = [X, Y]|x mod Ei+j−1x ,

where X and Y are any vector field extending Xx and Yx. This
makes (symbx, [[·, ·]]) into a nilpotent Lie algebra with a
stratification symbx,j = Ejx/Ej−1x and with an inner product on
symbx,1; in other words, a Carnot algebra.
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Recall from last time

From the Carnot algebra symbx, we get a corresponding Carnot
groups (Symbx, Ẽ, g̃). This Carnot group is what (M, E,g) looks
like when we “zoom in”. This can be made precise in terms of
Gromov-Hausdorff convergence of metric spaces.

We say that (M, E,g) has constant symbol g if symbx is
isometric to g for any x ∈ M.
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Erlend Grong,
Canonical connections on sub-riemannian manifolds with
constant symbol.
arXiv:2010.05366, 2020.
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Sub-Riemannian frame bundles



Nonholonomic frame bundle

• Assume (M, E,g) has constant symbol g. Define
G0 = Isom(g) with Lie algebra g0 = isom(g).

• g0 consist of derivations of g preserving the stratification
and whose restriction to g1 is skew symmetric.

• Define a new algebra ĝ = g0 ⊕ g such that both g0 and g as
subalgebras and with

[D,A] = DA.

Exercise
Show that ĝ is the Lie algebra of isometries of the isometry
algebra Ĝ = Isom(G).
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Nonholonomic frame bundle

• Define a vector bundle of symbols symb→ M over M. We
will call this the nonholonomic tangent bundle.

• We now define a nonholonomic frame as a Carnot
isomorphism u : g → symbx. We will write a the set of all
such frames as Fx.

• We again have a right action of G0 on Fx by
precomposition. This gives us a principal bundle

G0 → F → M.

5



Cartan connections on the frame bundle

Let ψ be a (ĝ, g0) Cartan connection with values in ĝ. We can
write it as ψ = (ω, θ) where ω and θ has values in respectively
g0 and g. Observe.

• ω is a principal connection on the bundle F . Corresponds
to an affine connection ∇̃ on symb such that parallel
transport are Cartan isometries.
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Cartan connections on the frame bundle

Let ψ be a (ĝ, g0) Cartan connection with values in ĝ. We can
write it as ψ = (ω, θ) where ω and θ has values in respectively
g0 and g−. Observe.

• ω gives ∇̃ on symb.
• θ correspond to a vector bundle isomorphism
I : TM→ symb. For any v ∈ TxM, and u ∈ Fx,

I : v 7→ huv ∈7→ θ(huv) ∈ g 7→ u−1θ(huv) ∈ symbx . (1)

We can see this map as a way choosing complements to
Ek+1 = Vk+1 ⊕ Ek by I−1(Ek+1/Ek).

• We can define a connection ∇ = I−1∇̃I on TM.
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Summary: any choice of Cartan connection gives us an
identification I : TM→ symb and connection ∇ on TM.
Properties

• I(Ek) = symb1⊕ · · · ⊕ symbk. Recall that this gives a
decomposition TM = V1 ⊕ · · · ⊕ Vs such that
Ek+1 = Ek ⊕ Vk+1.

• The connection ∇ is compatible with sub-Riemannian
metric (E,g),

• Each vector bundle Vk is parallel,
• Define a tensor T such that

T(v,w) = −I−1[[Iv, Iw]].

Then ∇T = 0.

We say that such an I is an E-grading. We will call (E,g, I) a
graded sub-Riemannian and say that a connection satisfying
the above is strongly compatible with (E,g, I).
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Theorem (Partial flatness theorem)
Let (M, E,g, I) is a graded sub-Riemannian manifold. If ∇ is
strongly compatible with (E,g, I), and if

R = 0, T = T,

then (M, E,g) is locally isometric to a Carnot group.

To get the converse, we need a canonical way to choose I
and ∇.
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Tohru Morimoto.
Geometric structures on filtered manifolds.
Hokkaido Math. J., 22(3):263–347, 1993.,
Tohru Morimoto.
Cartan connection associated with a subriemannian
structure.
Differential Geom. Appl., 26(1):75–78, 2008.
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Canonical structures



• We can introduce an inner product on ĝ: We can see
g1 ⊕ · · · ⊕ gs as a surjection from the truncated tensor
algebra Ts(g1), and induce the inner product from there.
We now have that g0 consist of skew-symmetric mappings
on an inner product space, which have their own induced
inner product.
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• On the set of linear k-forms on g with values in ĝ, we
define the Spencer differential or the Lie algebra
cohomology differential by ∂ : ∧kg∗ ⊗ ĝ → ∧k+1g∗ ⊗ ĝ,

(∂α)(A0, . . . , Ak)

=
n∑
i=0

(−1)i[Ai, α(A0, . . . , Âi, . . . , Ak)]

+
∑
i<j

(−1)i+jα([Ai,Aj],A0, . . . , Âi, . . . , Âj, . . . , Ak),

• We can write ∂∗ for the dual of ∂.

Theorem
There is a unique (ĝ, g0)-Cartan connection ψ : TF → g with
κ : F → ∧2g∗ ⊗ ĝ satisfying ∂∗κ = 0.
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How to make the canonical choice of a grading I and
connection ∇.

• By I we can get an Carnot algebra structure on each TxM.
From this structure, we can extend the metric g to a
Riemannian metric gI.

• Define a subbundle s of End TM consisting of isometry
algebras sx = isom(TxM) on each fiber.
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• sx = isom(TxM).
• Finally define χ : TM→ ∧2TM by
〈χ(v),w1 ∧ w2〉gI = −〈v,T(w1,w2)〉gI .

Theorem

There is a unique grading and strongly compatible connection
such that the torsion T and curvature R satisfies for any D ∈ s

and any v ∈ Ei, w ∈ Ej with 0 ≤ j < i ≤ s,

〈R(χ(v)),D〉gI = 〈T(v, ·),D〉gI (2)
〈T(χ(v)),w〉gi = −〈T(v, ·),T(w, ·)〉gI . (3)

We can ue this to see the difference between sub-Riemannian
manifolds.
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Contact manifolds



The n-th Heisenberg algebra hn = g1 ⊕ g2 where

g2 = span{Z}, g1 = span{X1, . . . , Xn, Y1, . . . , Yn},

Only non-zero brackets

[Xj, Yj] = Z, j = 1, 2 . . . ,n.

For any vector λ = (λ1, . . . , λn) ∈ Rn such that
1 = λ1 ≤ λ2 ≤ · · · ≤ λn, we define

〈Xj, Xj〉g1 = 〈Yj, Yj〉g1 = λ2j .

We write this Carnot algebra hn(λ). All Carnot algebra
structures on the Heisenberg groups are of this form.

15



Only non-zero brackets

[Xj, Yj] = Z, j = 1, 2 . . . ,n.

For any vector λ = (λ1, . . . , λn) ∈ Rn such that
1 = λ1 ≤ λ2 ≤ · · · ≤ λn, we define

〈Xj, Xj〉g1 = 〈Yj, Yj〉g1 = λ2j .

The isometry algebra g0 = isom(hn(λ)) is given by

g0 = span{Dij : i < j, λi = λj} ∪ {Qij : i ≤ j, λi = λj}.

Dij(Xk) = δkiXj − δkjXi, Qij(Xk) =
1
2δkiYj +

1
2δkjYi,

Dij(Yk) = δkiYj − δkjYi, Qij(Yk) = − 12δkiXj −
1
2δkjXi,

DijZ = 0, QijZ = 0.

16



Contact manifolds

Let (M, E,g) be a sub-Riemannian manifold of dimension
2n+ 1 assume that E has rank 2n. We assume that E is a
contact distribution, that is X ∧ Y 7→ [[X, Y]] = [X, Y] mod E is
non-degenerate.

Working locally, we can assume that E = ker θ for a one-form θ.
We normalize θ by requiring that the maximal imaginary part of
the eigenvalues of dθ|E is one.
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Contact manifolds

We can then write

dθ(v,w) = 〈v,Λ−1Jw〉g, v,w ∈ E, J2 = − idE .

where Λ|x is symmetric on E and has eigenvalues
1 = λ1,x ≤ · · · ≤ λn, each appearing twice. The symbol at each
point hn(λx). Hence (M, E,g) only has constant symbol if λx = λ

is constant.
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Contact manifolds

dθ(v,w) = 〈v,Λ−1Jw〉g, v,w ∈ E, J2 = − idE .

1 = λ1 ≤ · · · ≤ λn, symbx ∼= hn(λ).

• Let 1 = λ[1] < λ[2] < · · · < λ[k] be the eigenvalues without
repetition, with corresponding decomposition
E = E[1]⊕ · · · ⊕ E[k]. Let pr[1], . . . , pr[k] be the
corresponding projections.

• Reeb vector field Z:

θ(Z) = 1, dθ(Z, ·) = 0.

Define I such that V1 ⊕ V2 = E⊕ span{Z} with gI defined
such that Z is a unit vector field.
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〈τXY1, Y2〉 =
1
2

k∑
j=1

(LX−pr[j]XgI)(pr[j]Y1, pr[j]Y2),

∇Z = ∇′Z = 0,

∇XY =
k∑
j=1

pr[j]∇gI
pr[j]X pr[j]Y+

k∑
j=1

pr[j][X− pr[j]X, pr[j]Y] + τXY,

∇′
XY = ∇XY+

1
2(∇XJ)JY,
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Theorem
A contact manifold with constant symbol is a Carnot group if
and only if ∇′ has curvature R′ = 0 and torsion T′ = T.

Note that ∇′ is not the connection that can be deduced from
the previous theorem, but a simplification of that one.
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For (2,3,5) manifolds



Flatness theorem for (2, 3, 5)-manifolds

Assume (M, E,g) that E has growth vector (2, 3, 5). Let X1, X2 be
any local orthonormal basis of E and define X3 = [X1, X2],
X4 = [X1, X3] and X5 = [X2, X3] with [Xi, Xj] =

∑5
k=1 ckijXk. Define

vector fields Z, Y1 and Y2 by

Z = X3 + (c323 + c424 + c525)X1 − (c313 + c414 + c515)X2,
Y1 = X4 − (c414 + c515)X3

+ (c324 − X2(c414 + c515) + c424(c414 + c515) + c524(c424 + c525))X1
− (c314 − X1(c414 + c515) + c414(c414 + c515) + c514(c424 + c525))X2,

Y2 = X5 − (c424 + c525)X3
+ (c325 − X2(c425 + c525) + c425(c414 + c515) + c525(c424 + c525))X1
− (c315 − X1(c425 + c525) + c415(c414 + c515) + c515(c424 + c525))X2,

Then V1 ⊕ V2 ⊕ V3 = span{X1, X2} ⊕ span{Z} ⊕ span{Y1, Y2} is
independent of basis chosen. 22



Flatness theorem for (2, 3, 5)-manifolds

Let ḡ be the Riemannnian metric making X1, X2, Z, Y1, Y2 into an
orthonormal basis with Levi-Civita connection ∇ḡ.

Define a connection ∇ making V1 ⊕ V2 ⊕ V3 parallel and further
determined by the rules ∇Z = 0 and

〈∇XiXj, Xk〉ḡ = 〈∇XiYj, Yk〉ḡ = 〈∇ḡ
XiXj, Xk〉ḡ,

〈∇ZXj, Xk〉ḡ = 〈∇ZYj, Yk〉ḡ = 〈[Z, Xj], Xk〉ḡ +
1
2(LZḡ)(Xj, Xk),

〈∇YiXj, Xk〉ḡ = 〈∇YiYj, Yk〉ḡ = 〈[Yi, Xj], Xk〉ḡ +
1
2(LYi ḡ)(Xj, Xk).

Then (M, E,g) is locally isometric to the Carnot group with
growth vector (2, 3, 5) if and only if the curvature R vanishes
and the only non-zero parts of the torsion T are given by

T(X2, X1) = Z, T(Z, Xj) = Yj.
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Concluding remarks

• For most cases, an explicit formula for the canonical
connection and grading is still unknown.

• There has been very little consideration of constant
curvature models.

Erlend Grong.
Model spaces in sub-Riemannian geometry.
Comm. Anal. Geom. 29 (2021), no. 1.
Eirik Berge and Erlend Grong.
On G2 and Sub-Riemannian Model Spaces of Step and
Rank Three.
Math. Z. 298 (2021), no. 3-4, 1853–1885.
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Concluding remarks

• For most cases, an explicit formula for the canonical
connection and grading is still unknown.

• There has been very little consideration of constant
curvature models.

• Are the normalization conditions

〈R(χ(v)),D〉gI = 〈T(v, ·),D〉gI
〈T(χ(v)),w〉gi = −〈T(v, ·),T(w, ·)〉gI .

really the best one? (Chitour, G., Jean, Kokkonen, Ann. Inst.
Fourier, 2019)
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Děkuji mnohokrát
Uvidíme se příště v Srní
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