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We start with the modern definition of a presheaf.

A presheaf of sets on a category C is a functor
F: C% — Sets,

where Sets is the category of sets.

If X is a topological space, let € := Openy be the category whose objects are
the open sets of X, and whose morphisms are all the inclusions U — V of
open sets. A presheaf on Openy is what one usually finds in most textbooks.



A Grothendieck topology on a category C is a subclass T C Mor(C) of
morphisms that

» contains all isomorphisms
» is closed under composition

> is closed under pullbacks along arbitrary morphisms, i.e., if 7: Y — M is
in T, and ¢ : N — M is a morphism, then the pullback

Y 2y

— M

exists and ¢*misin T.
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A category together with a Grothendieck topology T is called a site. The
elements of T are called coverings. Coverings are those morphisms in € for
which we want to discuss descent, or gluing.

For us, only a single example will be relevant, namely, where € = Man is the
category of smooth manifolds, and T consists of all surjective submersions.



Let C be a site, F be a presheaf on C, and 7 : Y — M be a covering. We
define the set of gluing data:

Sluer (F) := {f € F(Y) | prif = prif in F(YP)}

Note that the map 7" : F(M) — F(Y) lands in the gluing data, since
primf = (mopry)'f = (xopr)f = prin°f.
Thus, we obtain a map
teary : F(M) — SGluer(F)

that produces gluing data from global data.
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Sluer (F) := {f € F(Y) | prif = prif in F(YP)}

Note that the map 7" : F(M) — F(Y) lands in the gluing data, since
primf = (mopry)'f = (xopr)f = prin°f.
Thus, we obtain a map
teary : F(M) — SGluer(F)

that produces gluing data from global data.

A presheaf F on a site C is called separated presheaf, if for all coverings the map
teary : F(X) — Sluer(F)

is injective, and it is called sheaf, if it is a bijection.



The presheaves Q¥ of k-forms and QY of closed k-forms are sheaves.
Here is an application of this fact:

> Let G = (Y,m B, P,w, 1) be a bundle gerbe with connection over M.
Recall the identity
curv(w) = pry B — pr; B

over Y. We obtain an equality
pr,dB = pridB
in Q3(Y™); thus, dB € Glue, ().
> Hence, there exists a unique closed 3-form H € Q3,(X) such that
tear(H) = n"H = dB.

The 3-form H is called the curvature of G.



If F is a presheaf, then we define another presheaf 3 by
FHM) = {(n,f) | 7: Y — Mis a covering, f € Glue-(F)}/ ~,

where
(777 f) ~ (7rl» f/)

whenever f and f’ coincide in F(Y xum Y').
Fora map ¢ : N — M, we set

¢ FHM) = FF(N) : [x, f] = [¢p*m, d*F],
where @ is the covering map in the pullback diagram

A S v

1

NT>M

The passage F — J* is called Grothendieck’s plus construction.



If F is separated, then F* is a sheaf.

Since F is separated, it remains to prove that the map
tearg : FH(M) — Gluee(FF)
is surjective for all coverings £ : Z — M.
We have, by definition,
Gluee(F7) = {[r, ] € F*(2) | pri[m, F] = prilm, ] in T (22},

Here, m: Y — Z and f € F(Y). An exercise in computing fibre products
reveals that the condition on [, f] is equivalent to the condition prjf = pryf
in F(Y xum Y). In other words,

[Eom, fl e FH(M).

One can then check that £*[¢ o 7, f] = [r, f]; hence tear¢ is surjective, QED.



A presheaf of categories on a category C is a 2-functor
F: €% — Cat,

where Cat is the 2-category of categories, functors, and natural transformations.

Thus, a presheaf of categories JF assigns:
> to each smooth manifold M a category F(M),
> to each smooth map ¢ : N — M a functor ¢* : F(M) — F(N),

> and to each pair (¢, 1)) of composable smooth maps ¢ : N — M and
Y : M — L, a natural equivalence

o (Yo@) = ¢ 0y,

and these are required to satisfy a coherence axiom w.r.t. triples of
composable smooth maps.



The category Gluer(F) of gluing data for F is defined as follows:

» The objects are pairs (P, ¢) consisting of an object P € F(Y) and of an
isomorphism
¢ :pr,P — pry P

in ?(Y[Q]), which satisfying the cocycle condition

pry3¢ prizé
pr; P 2 pr; P 1 pr; P
Prf3¢

» The morphisms (P, ¢) — (P’,¢’) are morphisms ¢ : P — P" in F(Y)
which are compatible with ¢ and ¢':

* ¢ *
pry P —— pri P

pry wl lprl* »

pri P’ — > priP



Again, we find for each covering 7 : Y — M a functor
teary : F(M) — Gluer(F) : P (7" P, ¢p,x)
where ¢p » is the canonical morphism

—1
Cpry.m Cpry,m )P

pI‘27T*P4>(7TOpr2) P = (ropr)* P4>prfﬂ'*P

A presheaf of categories is called prestack, if for all coverings m: Y — M the
functor
tear, : F(M) — Slue,(F)

is full and faithful, and it is called stack or sheaf of categories, if this functor is
an equivalence of categories.



The most familiar stack probably is the stack Bung of principal G-bundles.

It is easy to see that Bun is a presheaf of categories. In a minute, we give a
proof that it is a stack.

In order to get another example, we fix the following notation. If H is any
group, we denote by BH the groupoid with a single object that has
automorphism group H. Composition is multiplication.

The notation expresses the fact that the geometric realization of the groupoid
BH is the classifying space BH.

Let G be a Lie group. Let BG be the presheaf on Man with
BG(M) := BC™(M,G).

We are going to prove that this is a prestack, but not a stack.



To see this, we analyze Slue,(BG) for a covering 7 : Y — M:
> objects are smooth maps f : Y — G satisfying the cocycle condition

f(y2,y3)f(y1,y2) = f(y1, y2).

» morphisms f — f’ are smooth maps h: Y — G such that

h(y2)f (y1, y2) = f'(y1, y2) h(y1).
This category is equivalent to the category of principal G-bundles that trivialize
when pulled back along 7: Y — M.

The functor
teary : BG(M) — Glue-(BG)

is the inclusion of the trivial bundle in this category. We see that it is full and
faithful, but not essentially surjective.

This proves that BG is a prestack, but not a stack.



The plus construction for presheaves of categories works as before: the objects
of FT(M) are pairs of

» acoveringm:Y — M

> an object (P, ¢) in Gluer(F).

If F is a prestack, then I is a stack.



The plus construction for presheaves of categories works as before: the objects
of FT(M) are pairs of

» acoveringm:Y — M

> an object (P, ¢) in Gluer(F).

If F is a prestack, then I is a stack.

Applying the plus construction to the prestack BG, it collects principal
G-bundles trivializing over a given covering 7, and then collects all possible
coverings. This gives us all principal G-bundles, and we obtain

BGCT = Bung.

In particular, we have just proved that the presheaf Bung of principal
G-bundles is a stack on the site of smooth manifolds.



Here is an example how to use this.

Suppose M is a smooth manifold on which a Lie group H acts smoothly, freely,
and properly. This ensures that the projection M — M/H is a surjective
submersion, and that

M XM/H M=MxH.
This leads to the result that
Slue, (Bung) = Bung(M)",
the category of H-equivariant principal G-bundles.

Thus, we not only automatically get the correct definition of H-equivariant
G-bundles, we also get for free the theorem that

Bung(M/H) = Bung(M)".



Next we look at presheaves of bicategories and 2-stacks.

Bundle gerbes with connection over a smooth manifold M form a bicategory

SrbY(M).

Its objects are bundle gerbes with connections, its morphisms are the
isomorphisms (Q, «) discussed in the first lecture, and its 2-morphisms are
isomorphisms between those: connection-preserving bundle isomorphisms

Q—q
over Y xu Y’ that are compatible with the isomorphisms o and «’.

Further, one can easily define the pullback of a bundle gerbe along a smooth
map ¢ : N — M, and then complete this to a presheaf GrbY of bicategories.

Similarly, bundle gerbes without connections form a presheaf Grb of
bicategories.



If C is a monoidal category, we denote by BC the bicategory with a single object
and with category of endomorphisms ©. Composition is the monoidal structure.

Consider then the presheaf of bicategories BBuny; ;) defined by
(BBunU(l))(M) = B(%unU(l)(M)).
The fact that Bunyy, is a stack is equivalent to the statement that BBunyy,
is a pre-2-stack. We claim that
Grb = (BBunyq) ™.

The presheaf Grb of bundle gerbes is a 2-stack on the site of smooth manifolds.



Let us try to understand the claim

Grb = (BBunyq) .

The plus construction tells us to consider pairs of a covering 7 : Y — M and of
an object in the bicategory Gluer(BBunyyy,).

This is:
> an object of BBuny,(Y): no information
> a 1-morphism in 'B%unU(l)(Y[Z]): a principal U(1)-bundle P over Y1
> a 2-morphism in 'B%unU(l)(YB]): a bundle isomorphism 1 over Y

> a condition in BBunU(l)(Y[4]): a commutative diagram of isomorphisms
over Y.



For bundle gerbes with connection, one needs a slightly more elaborate
pre-2-stack.

Consider the presheaf T for which T(M) is the bicategory with:
> Objects: 2-forms B € Q*(M)

» 1-morphisms By — B,: principal U(1)-bundles P over M with connection
w such that
curv(w) = By — B,.
» 2-morphisms: connection-preserving bundle isomorphisms.

The new claim is now

91rbV =7,
and it can be understood and proved as before.

This proves that the presheaf GrbY is a 2-stack, too.



Every compact simple Lie group G has a simply-connected universal covering
group, G = G/Z, where Z C Z(G) is a (finite) subgroup of the center. The
quotient map

G—G

is a surjective submersion.

Wess-Zumino-Witten models on the group G require a gauge field for strings,
and the idea is to let the basic bundle gerbe Gpasic descend to G.

In order to do so, one needs to promote Gpasic to an object in Slueﬂ(Srbv), and
this turns out to be the same as equipping it with a Z-equivariant structure.

Such structures can be constructed explicitly and have been classified by group
cohomology of the group Z.

For instance, when G = PSO(4n), then G = Spin(4n) and Z = Zy x Z,. In this
case, there exist two different Z-equivariant structures on Gpasic, corresponding
to two different bundle gerbes with connection on G. In turn, these correspond
to two different Wess-Zumino-Witten models on PSO(4n) at each level.



We are now in position to create other versions of bundle gerbes.
> Consider the stack Bun, for any abelian Lie group A, and define
Grby 1= (BBunA)+.
For instance, when A = Z,, the spin lifting gerbe is a Z-bundle gerbe.
> Let LBung be the stack of complex line bundles. Then,
LGrbe := (BLBune)"
gives the definition of a “line bundle gerbe”.
The associated bundle construction establishes a stack isomorphism
Bungx = LBunc.
Under the plus construction, it induces 2-stack isomorphism

Grbex 22 LGrbe.



Let Alg. denote the bicategory whose objects are (unital, associative, complex)
algebras, whose 1-morphisms A — B are B-A-bimodules, and whose
2-morphisms are bi-intertwiners.

Let AlgBun, denote the corresponding bundle version of this bicategory. Then,
2-VectBung := (AlgBung)”
yields the 2-stack of 2-vector bundles.

There is an inclusion
B(LBunc) — AlgBunc

that sends (over a smooth manifold M) the single object to the trivial algebra
bundle M x C.

This inclusion induces under the plus construction a morphism
LGrbe — 2-VectBunc

of 2-stacks. It thus embeds the theory of bundle gerbes into the much richer
theory of 2-vector bundles.



In the context of higher gauge theory it turns out that the correct
generalization of “abelian group” is not “group” but “2-group”.

A (strict) Lie 2-group is a groupoid I in the category of Lie groups: it has a Lie
group g of objects and a Lie group '1 of morphisms, and all structure maps

s,t:l’1—>I'0 ) id:To—T1 rlsxtrl_’rl

are Lie group homomorphisms.

In a moment we explain that there is an isomorphism of categories

Strict Lie ~ J Crossed modules
2-groups o of Lie groups



A crossed module of Lie groups consists of:
> two Lie groups G and H
» a Lie group homomorphism t: H — G
» a smooth action a: G x H — H of G on H by Lie group homomorphisms,
such that
t(a(g, h)) = gt(h)g™" and  a(t(h),x) = hxh™"
hold for all g € G and h,x € H.

If [ is a Lie 2-group, we obtain a crossed module by
G:=To , H:i=ker(s)Cl: , alg,v):=idg-7v-idg-1.
Conversely, if t : H— G is a crossed module, then we obtain a Lie 2-group by

setting
FO::G , F1::H[><aG.



» If Ais an abelian Lie group, then BA is a Lie 2-group. The corresponding

crossed module is
A— {1}

» If X is a set, we denote by Xyis the category whose set of objects is X, and
which only has identity morphisms.

If G is a Lie group, then Ggjs is a Lie 2-group. The corresponding crossed
module is

G486
with the conjugation action.

> If H is a Lie group, then there is a Lie 2-group Aut(H) whose crossed
module is
H 5 Aut(H),

where t(h)(x) := hxh™', and a(p, h) := @(h).



Let T = (H 5 G) be a Lie 2-group.

A principal '-bundle over M is:
» a principal H-bundle P over M

> a smooth map f : P — G that is G-anti-equivariant, i.e.:
f(ph) = t(h)~*f(p)
The map f is also called the anchor of P.
Let (P, f) and (Q, g) be the principal I'-bundles over M. The tensor product is:
PR Q:=(PxuQ)/~ where (p-hq)~(p,q-a(f(p)”",h)).

Principal -bundles form a stack Bun of monoidal categories.



The 2-stack of [-bundle gerbes is defined by
Grbr := (BBunr)™.

In our first two examples, we obtain the following:
» For I = BA, we have Bung, = Bun, and hence

Grbga = Grba.

» For ' = Ggis, we have an isomorphism of monoidal categories
BunGdis(X) = COO(X, G)dis
and thus obtain an equivalence

BBunGdis =~ BGyis.

From there we obtain

Grbe,, = (BBung,, )" = (BGas)" = (BG)ais = (Bung)ds.



For I' = Aut(H), a principal -bundle P is the same as a principal H-bibundle.
The additional left H-action on P is defined by

h-p:=p-f(p)(h),
where f : P — (H) is the anchor of P.

The first non-abelian gerbes have been discussed for I = Aut(H) in the setting
of bibundles, in work of Breen-Messing and Aschieri-Cantini-Jurco.



For I' = Aut(H), a principal -bundle P is the same as a principal H-bibundle.
The additional left H-action on P is defined by

h-p:=p-f(p)(h),
where f : P — (H) is the anchor of P.

The first non-abelian gerbes have been discussed for I = Aut(H) in the setting
of bibundles, in work of Breen-Messing and Aschieri-Cantini-Jurco.

The 2-group Aut(U(1)) has
Aut(U(1))o = Aut(U(1)) =Z2 and  Aut(U(1)): = U(1).

The corresponding bundle gerbes look like ordinary U(1)-bundle gerbes with an
additional Zy-anti-equivariance.

They have found an application in so-called orientifold sigma models, where a
Zs-action flips the orientation of the worldsheet.



The T-duality 2-group TD,, is given by a crossed module
U(1) xZ"xZ" - R" xR": (z,m, i) — (m, M)
in which R" x R" acts on U(1) x Z" x Z" via

(a,3) - (z,m, ) := (z- €™ m, ).

One can show that there is an equivalence of bicategories

{ Topological T-duality }

Grbgp, = correspondences for

T"-bundles



For a Lie 2-group I = (H — G), the groups
mol := G/t(H) and mil := ker(t)
are called the homotopy groups of I'.
> mil is abelian.

» There is an action of mol on m1l.

We obtain a sequence of Lie 2-group homomorphisms
1—Bmln =T — (mlNas — 1.

This is in fact an extension of Lie 2-groups in a certain homotopy-theoretical
sense.

Such an extension is called central, if the action of mol" on m1[ is trivial.



Any Lie 2-group homomorphism I' — € induces “extension” functors
Bunr — Bung and  Grbr — Grbg.
We shall describe these functors in case of the homomorphism I' — ol gis.
The extension functor
Bunr(M) — Bunr, (M) = C™(M,molais
is given as follows.
If P is a principal I'-bundle over M with anchor map f : P — Iq, then the map
M — ml with  7(p) — [f(p)]

is well-defined and smooth. We call it the base map of P and denote it by
moP : M — mol.

Note that isomorphic principal '-bundles have the same base map, and that
the base map of a tensor product gives the product of base maps.



If P is a [-bundle gerbe, the extension functor
9rbr(/\/l) - 9rbfrordis(/\/l) = Bunﬂor(M)
is the following.

If 71 Y — M is the surjective submersion of P, then let moP : Y — 7ol be
the base map of its principal -bundle P.

The bundle isomorphism
pry3P @ pri, P = pri3P

over YBI implies the cocycle condition for mP, and hence, gluing produces a
principal mol-bundle over M.

We denote it by mP and call it the base bundle of P.



One can now pose the following lifting problem:

Given a principal mol-bundle P over M, does there exist a '-bundle gerbe P
with meP = P?

In other words, can the structure group of P be lifted along a central extension

1— Bml > T — (molNais — 1.

Note that this is a generalization of the lifting problem considered in the first
lecture, replacing a Lie group homomorphisms G — mol" by a 2-group
homomorphisms I' — mol.



In the next lecture we will study a 2-group model I' = String(d) for the string
group, which is a central extension

1 — BU(1) — String(d) — Spin(d)ais — 1.

Suppose M is a spin manifold, and let P := Spin(M) be its spin structure,
which is a principal Spin(d)-bundle.

A string structure on M is a lift of the structure group of Spin(M) to
String(d).



Our last goal for today is to describe generalized lifting problems in terms of a
lifting gerbe, analogous to the lifting gerbe from the first lecture.

Associated to any central Lie 2-group extension
1— er — [ — 7'l’ord,'5 —1
is a multiplicative 71l-bundle gerbe over mol", which we denote by Gr.

Its surjective submersion is the projection 7w : G — mol. The double fibre
product G X ,r G comes equipped with a central extension

1—-mlN —=HXaG— G Xnor G —1,
which is, in particular, a principal m1-bundle over G X ,,r G.

The bundle gerbe product 1 can be provided in a straightforward way, and the
multiplicative structure can be induced from the multiplicative structure we get
from above sequence.

This construction defines a functor

Central extensions . Multiplicative m-bundle
Bmil - T — mwol gis gerbes over mol



Let CS(P, Gr) be the Chern-Simons 2-gerbe associated to the bundle P and the
multiplicative bundle gerbe Gr. Then, there is an equivalence of bicategories

Lifts of P to a ~ | Trivializations of
[-bundle gerbe P

—{ CS(P,Gr) }



Let CS(P, Gr) be the Chern-Simons 2-gerbe associated to the bundle P and the
multiplicative bundle gerbe Gr. Then, there is an equivalence of bicategories

{ Lifts of P to a } ~ | Trivializations of

*{ CS(P, Gr) }

~

[-bundle gerbe P

Sketch of a proof. Given a lift P, consider its pullback 7*P along the
projection w : P — M. Then, the base bundle of 7*P is 7* P, and hence
trivializable. A T-bundle gerbe with trivializable base bundle reduces to an
abelian 7wl1-bundle gerbe O over P. This is the first ingredient of a
trivialization of CS(P, Gr).

Conversely, given a trivialization of CS(P, Gr). Its first ingredient is an abelian

w1 -bundle gerbe Q over P. Extending along i : Bmi[T — I', we may regard it is
a [-bundle gerbe. The remaining parts of the trivialization complete i(Q) to an
object in Gluer(SGrbr), it therefore descends and yields an appropriate '-bundle
gerbe P. O



The bundle gerbe Gy ing(q) associated to the central 2-group extension
1 — BU(1) — String(d) — Spin(d)4is — 1.
is the basic bundle gerbe over Spin(d),

gString(d) = gbasic .

This shows that the lifting Chern-Simons 2-gerbe is precisely the Chern-Simons
2-gerbe CSgpin(m) introduced at the end of Lecture .

Corollary

A spin manifold M admits string structures if and only if
1
EPI(M) =0.

Moreover, there is an equivalence of bicategories

String structures \ ~ Trivializations of the
on M } ~ | Chern-Simons 2-gerbe CSspin(m)
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