$N=2$ spinning particle BRST and R-R fields

E Boffo
joint work with I Sachs and D Bockisch

42th Winter School Geometry and Physics, Srní
January 16, 2022

MATEMATICKO-FYZIKÁLNÍ
FAKULTA
Univerzita Karlova

Table of Contents

1 Spinning particle in worldline approach

$2 R$ and $R-R$ fields

Particle in worldline approach

Classical action:
$x^{\mu}(\tau), p_{\mu}(\tau): I \subset \mathbb{R} \mapsto M$ (4-dim pseudo-Riemannian manifold), $e(\tau) \mathrm{d} \tau \in \Omega^{1}(I)$

$$
\begin{equation*}
\underbrace{S=\int_{\tau_{i}}^{\tau_{f}} \mathrm{~d} \tau\left(p_{\mu} \dot{x}^{\mu}+\frac{e}{2} p^{2}\right)}_{1 \text { st order }}, \quad \underbrace{S=\int_{\tau_{i}}^{\tau_{f}} \mathrm{~d} \tau \frac{1}{2 e} \dot{x}^{\mu} \dot{x}_{\mu}}_{2 \text { nd order }} . \tag{1}
\end{equation*}
$$

Invariance under reparametrization $\tau \mapsto \tau^{\prime}(\tau)$.
Pure spinor: $p_{\alpha \dot{\alpha}}=p_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu}, \sigma^{\mu}=\left(\right.$ id,$\left.\sigma^{i}\right) 2 \times 2$ Pauli matrices,

$$
\begin{equation*}
S=\int_{\tau_{i}}^{\tau_{f}} \mathrm{~d} \tau p_{\alpha \dot{\alpha}}\left(\dot{x}^{\alpha \dot{\alpha}}-2 \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}}\right) \tag{2}
\end{equation*}
$$

for λ^{α} spinor.

Spinning particle in worldline approach

Supersymmetrizing along the worldline with Grassmann odd θ (easier in 2nd order action) can be regarded as endowing the particle with a half-integer spin at the classical level:

```
\(x^{\mu}(\tau) \mapsto\left(x^{\mu}(\tau)+\theta \psi^{\mu}(\tau)\right): \mathbb{R}^{(1 \mid 1)} \mapsto M\),
\(e(\tau) \mathrm{d} \tau \mapsto(e(\tau)+\theta \chi(\tau)) \mathrm{d} \tau\),
\(\frac{\mathrm{d}}{\mathrm{d} \tau} \mapsto \frac{\mathrm{d}}{\mathrm{d} \theta}+\theta \frac{\mathrm{d}}{\mathrm{d} \tau}\) and integrate in \(\mathrm{d} \theta\) using standard integration rules for \(\theta\) :
```

$$
\begin{equation*}
S=\int_{\tau_{i}}^{\tau_{f}} \mathrm{~d} \tau\left(p_{\mu} \dot{x}^{\mu}+\mathrm{i} \psi^{\mu} \dot{\psi}_{\mu}+\frac{e}{2} p^{2}+\chi \psi^{\mu} p_{\mu}\right) . \tag{3}
\end{equation*}
$$

Now invariance under supersymmetry transformations too.
ψ^{μ} and χ have odd parity.
Equivalently:

$$
\begin{gather*}
S=\int_{\tau_{i}}^{\tau_{f}} \mathrm{~d} \tau p_{\alpha \dot{\alpha}}\left(\dot{x}^{\alpha \dot{\alpha}}+2 \mathrm{i}\left(\theta^{\alpha} \dot{\tilde{\theta}}^{\dot{\alpha}}-\tilde{\theta}^{\dot{\alpha}} \dot{\theta}^{\alpha}\right)-2 \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}}\right) \\
-\mathrm{i} \rho(\lambda \tilde{\theta}+\tilde{\lambda} \theta-\zeta) \tag{4}
\end{gather*}
$$

Dirac covariant quantization with constraints:

- represent the symplectic Lie superalgebra $\left[x^{\mu}, p_{\nu}\right]=\delta_{\nu}^{\mu},\left\{\psi^{\mu}, \psi^{\nu}\right\}=g^{\mu \nu}$
- conservation of charges $p^{2}=: H, \psi^{\mu} p_{\mu}=: q$, respecting superalgebra $\{q, q\}=H,[q, H]=0$, gives dynamical equations for physical states.

Two sectors (representations):

- \mid phys $\rangle=u(p) e^{-\mathrm{i} p \cdot x}|0\rangle$ for $u(p)$ Dirac spinor, with $p^{2}|p h y s\rangle=0$ and $p u(p)=0$;
- focus on $S U(2) \subset$ Cliff(4) by introducing
$\psi_{ \pm}^{i}:=\frac{1}{\sqrt{2}}\left(\psi^{2 i} \pm \mathrm{i} \psi^{2 i+1}\right), \quad i=0,1, \quad \psi_{+}^{i}|0, p\rangle=0$, so the physical states are the massless and tranverse $|0, p\rangle, \psi_{-}^{i}|0, p\rangle$ and $\left(\psi_{-}^{i} \psi_{-}^{j}-\psi_{-}^{j} \psi_{-}^{i}\right)|0, p\rangle$.

Yang-Mills ($\mathrm{N}=2$ spinning particle) Dai-Huang-Siegel 2008

Now 2 Grassmann wordline coordinates θ^{i}, supersymmetric partners of τ Convenient to arrange Clifford Gamma matrices in linear complex combinations (annihilation-creation pair $(\psi, \bar{\psi})$) as before, $\left\{\psi^{\mu}, \bar{\psi}^{\nu}\right\}=2 g^{\mu \nu}$
For BRST: consider algebra of $S O(D-1,1) \times \operatorname{Osp}(1,1 \mid 2)$ with generators:

$$
\begin{align*}
\Sigma^{\mu \nu} & :=\psi^{\mu} \bar{\psi}^{\nu}-\psi^{\nu} \bar{\psi}^{\mu}, \tag{5}\\
S^{\mu} & :=\mathrm{i} \gamma \bar{\psi}^{\mu}+\mathrm{i} \bar{\gamma} \psi^{\mu}, \tag{6}\\
S & :=2 \gamma \bar{\gamma} . \tag{7}
\end{align*}
$$

Brackets of the ghosts (Weyl algebra):

$$
\begin{equation*}
[\gamma, \bar{\beta}]=[\bar{\gamma}, \beta]=\{b, c\}=1 \tag{8}
\end{equation*}
$$

Choose polarization that annihilates highest weight vector of the module $(\bar{\psi}, \bar{\gamma}, \bar{\beta}, b)|0\rangle=0$
$U(1)$ current J

$$
J=\psi \cdot \bar{\psi}-\gamma \bar{\beta}+\bar{\gamma} \beta-1,
$$

can further constrain the polynomials in the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{4}\right) \otimes$ Weyl \otimes Cliff constructed by acting with arbitrary numbers of ψ, γ, β and at most one c on the vacuum.

A spin 1 gauge field respecting Yang-Mills equations is found in the cohomology of

$$
\begin{equation*}
Q=c H+\gamma \bar{q}+\bar{\gamma} q-\gamma \bar{\gamma} b . \tag{9}
\end{equation*}
$$

BRST differential with a curved target space background $\nabla=p+A$, $\left[\nabla_{\mu}, \nabla_{\nu}\right]=\mathrm{i} F_{\mu \nu}: \Rightarrow Q_{I}=\frac{1}{2} c\left(\nabla^{2}-\mathrm{i} F_{\mu \nu} \Sigma^{\mu \nu}\right)+S^{\mu} \nabla_{\mu}+S b$ $H^{\bullet}\left(Q_{I}, \operatorname{ker}(J)\right), \operatorname{ker}(J) \subset \mathcal{H}$.
Then $Q_{I}^{2}=0$ if

$$
\begin{equation*}
\nabla \star F=0 . \tag{10}
\end{equation*}
$$

Proceed with vertices $Q_{I}-Q \equiv V \Rightarrow Q_{I}^{2}=0$ yields $\{Q, V\}+V^{2}=0$. Scattering amplitudes with loops are then easily computed knowing the vertices.

Einstein gravity and SUGRA ($\mathrm{N}=4$ spinning particle)

Bonezzi-Meyer-Sachs 2018,2020

Repeat the construction with 4 Grassmann odd θ^{i} now $\leadsto \psi_{i}^{\mu}, \bar{\psi}_{i}^{\mu}, i=1,2$
As ψ_{1}^{μ} and ψ_{2}^{ν} generate states from a (Fock) vacuum, a spin-2 field is there
Consistency of BRST differential Q (together with $\mathfrak{s o (4)}$ current J now) implies Einstein gravity or (g, H, ϕ) Supergravity eom's

Which of the two occurs depends on which subalgebra of $\mathfrak{s o (4)}$ is gauged.

The worldline approach once again lets us calculate scattering amplitude (just tree level so far, but loops are possible)

However just the "bosonic" NS-NS sector could be seen in the cohomology and subsequently used to deform Q. What about "fermionic" R-R?

Table of Contents

1 Spinning particle in worldline approach

2 R and $\mathrm{R}-\mathrm{R}$ fields

"Spin field" for the particle: an attempt

Consider the set of graded elements $\left\{x^{\mu},-\frac{\mathrm{d}}{\mathrm{d} x^{\mu}} \equiv p_{\mu}, \theta^{\alpha}, \uparrow, \lambda_{\alpha}\right\}$ with brackets:

$$
\begin{gather*}
{\left[x^{\mu}, p_{\nu}\right]=\delta_{\nu}^{\mu},\left[\lambda_{\alpha}, \theta^{\beta}\right]=\delta_{\alpha}^{\beta} \uparrow,} \\
{\left[\lambda_{\alpha}, \uparrow\right]=0=\left[\lambda_{\alpha}, \lambda_{\beta}\right]=\left\{\theta^{\alpha}, \theta^{\beta}\right\}, \quad\left\{\theta^{\alpha}, \uparrow\right\} \neq 0,} \tag{11}
\end{gather*}
$$

θ^{α} and λ_{α} are 2 dimensional Weyl spinors. Add to this set the chiral pair $\tilde{\lambda}^{\dot{\alpha}}$ and $\tilde{\theta}_{\dot{\beta}}$, and with $\tilde{\sigma}^{\mu} \equiv\left(\mathrm{id},-\sigma^{j}\right)$ define

$$
\begin{equation*}
\psi^{\mu}:=\theta^{\alpha} \sigma_{\alpha \dot{\beta}}^{\mu} \tilde{\lambda}^{\dot{\beta}}+\tilde{\theta}_{\dot{\gamma}} \tilde{\sigma}^{\mu \dot{\gamma} \delta} \lambda_{\delta}, \tag{12}
\end{equation*}
$$

then one could treat this as $N=1$ spinning particle in $4 d$, but with ψ^{μ} as in (12).
Introduce ghosts γ, β, c and b as usual and create states from bosonic vacuum $|0\rangle$ with $(\theta, \tilde{\theta}, \uparrow, c, \gamma)$.

BRST cohomology of $\mathrm{N}=1$

Study cohomology of $Q=c H+\gamma \psi \cdot p+\gamma^{2} b$ with ψ as in (12):
Nilpotency: $Q^{2}=\gamma^{2}\left(-2 \mathcal{I} p^{2}+H\right)+\gamma c[\psi \cdot p, H], \quad \mathcal{I}:=\left(\theta^{\alpha} \lambda_{\alpha} \uparrow+\tilde{\theta}_{\dot{\alpha}} \tilde{\lambda}^{\dot{\alpha}} \uparrow\right)$
Always nilpotent if we restrict to $\operatorname{ker}(\mathcal{I}-1) \subset \mathcal{H}$
Generic element $|\Psi\rangle \in \operatorname{ker}(\mathcal{I}-1)$ has arbitrary powers of γ :

$$
\begin{align*}
|\Psi\rangle= & \varphi_{\alpha}(x) \theta^{\alpha}|0\rangle+\varphi_{\alpha}^{\uparrow}(x) \theta^{\alpha} \uparrow|0\rangle+\underbrace{B_{\alpha \beta}\left(\theta^{\alpha} \theta^{\beta}-\theta^{\alpha} \uparrow \theta^{\beta} \uparrow\right)|0\rangle}_{=: B^{\alpha \beta}|\alpha \beta\rangle}+\ldots \\
& +\left(\gamma^{n} \phi_{\alpha}^{(n)} \theta^{\alpha}+c \gamma^{n} \phi_{\alpha}^{(n) c} \theta^{\alpha}\right)|0\rangle . \tag{13}
\end{align*}
$$

Infinite dimensional field space! \Longrightarrow Siegel gauge: $b|\Psi\rangle=0=\beta|\Psi\rangle$ kills last row in (13).
The physical states in $\operatorname{ker} Q \cap \operatorname{ker}(\mathcal{I}-1)$ are:

- $n_{\theta}=1$: spinors fulfilling Weyl equation $(\not \partial \varphi)^{\dot{\beta}}=0$.
- $n_{\theta}=2: B_{\alpha \beta}=B_{\mu \nu}\left(\sigma^{\mu \nu}\right)_{\alpha \beta}+\chi \epsilon_{\alpha \beta}$ and $A_{\mu} \sigma^{\mu}(\theta \uparrow \tilde{\theta}-\theta \tilde{\theta} \uparrow)$, are exact $0,1,2$-forms $\Leftrightarrow R$-R field strengths.

Non-flat target space

Which kind of backgrounds can be coupled to the worldline?

An allowed deformation of Q is

$$
\begin{equation*}
\gamma \delta q=\gamma \phi\left(\theta^{\alpha} \lambda_{\alpha}+\tilde{\theta}_{\dot{\alpha}} \tilde{\lambda}^{\dot{\alpha}}\right) . \tag{14}
\end{equation*}
$$

It corresponds to a mass term for the massless spinors or form fields.

$\mathrm{N}=2$ as $\mathrm{N}=1 \times \mathrm{N}=1$

- As usual, consider $S U(4) \subset C l i f f(4)$ gamma matrices:

$$
\psi^{\mu}=\tilde{\theta}_{\dot{\alpha}} \tilde{\sigma}^{\mu \dot{\alpha} \alpha} \lambda_{\alpha}, \quad \bar{\psi}^{\mu}=\theta^{\alpha} \sigma_{\alpha \dot{\alpha}}^{\mu} \tilde{\lambda}_{\dot{\alpha}} .
$$

Notice that $\left\{\psi^{\mu}, \bar{\psi}^{\nu}\right\} \neq 0$ but it is not just $\sim g^{\mu \nu}$, could retain $\sigma^{\mu \nu}:=\mathrm{i}\left(\tilde{\sigma}^{[\mu} \sigma^{\nu]}\right) / 2$ as well.

- Define a number operator

$$
\begin{equation*}
\mathcal{I}^{\prime}:=\tilde{\theta}_{\dot{\alpha}} \tilde{\lambda}^{\dot{\alpha}} \uparrow-\gamma \bar{\beta}+\beta \bar{\gamma}-1, \tag{15}
\end{equation*}
$$

then the space of fields ker \mathcal{I}^{\prime} is finite. Elements \in ker \mathcal{I}^{\prime} are arbitrary in θ, with different total n_{θ} number,

- $n_{\theta}=1:|\tilde{\chi}\rangle=\left(\tilde{\chi}^{\dot{\beta}} \tilde{\theta}_{\dot{\beta}}+\beta \varphi_{\alpha} \theta^{\alpha} \uparrow+c \beta F_{\alpha} \theta^{\alpha} \uparrow\right)|0\rangle+$ antifields;
- $n_{\theta}=2: B^{\dot{\alpha} \dot{\beta}}|\dot{\alpha} \dot{\beta}\rangle+\beta g_{\beta}{ }^{\dot{\gamma}}(x)\left|e^{\beta}{ }_{\gamma}\right\rangle+c \beta F_{\beta}{ }^{\dot{\gamma}}(x)\left|e^{\beta} \dot{\gamma}\right\rangle+$ antifields, where $\left|e^{\beta} \dot{\gamma}\right\rangle=\theta^{\beta}\left(\uparrow \tilde{\theta}_{\dot{\gamma}}-\tilde{\theta}_{\dot{\gamma}} \uparrow\right)|0\rangle$.
- Cohomology of

$$
\begin{equation*}
Q=c p^{2}+\gamma \bar{\psi}^{\nu} p_{\nu}+\bar{\gamma} \psi^{\mu} p_{\mu}+\gamma \bar{\gamma} b, \tag{16}
\end{equation*}
$$

nilpotent on the states above: the physical states have to satisfy, respectively,
$\bullet n_{\theta}=1: F_{\alpha}=\mathrm{i}(\not \partial \tilde{\chi})_{\alpha}$, with gauge trafo $\delta \tilde{\chi}^{\dot{\beta}}=-\mathrm{i}(\not \partial \varphi)^{\dot{\beta}}$
$\bullet n_{\theta}=2$: in gauge $b|B\rangle=0=\bar{\beta}|B\rangle$, linearized gauge theory for $B^{\dot{\alpha} \dot{\beta}}$, being a scalar potential or a self-dual 2 -form potential. If not in gauge slice, it is off-shell theory.вofo

Next step: deform the BRST differential with R-R background coupling (scalar + 2-form)
$p_{\mu} \rightarrow \Pi_{\mu}=p_{\mu}+\frac{i}{2} \tilde{\phi}_{\dot{\beta}}^{\gamma} B^{\dot{\alpha} \dot{\beta}} \sigma_{\mu \gamma \dot{\alpha}}$

$$
\begin{gather*}
\Downarrow \\
\left.\gamma \bar{\gamma}\left(\left\{\psi^{(\mu}, \bar{\psi}^{\nu}\right)\right\} \Pi_{\mu} \Pi_{\nu}+\frac{1}{2}\left[\psi^{\mu}, \bar{\psi}^{\nu}\right]\left[\Pi_{\mu}, \Pi_{\nu}\right]\right)=-\gamma \bar{\gamma} H \tag{17}\\
\gamma \subset[\bar{\psi} \cdot \Pi, H]=0=\bar{\gamma} c[\psi \cdot \Pi, H] \tag{18}
\end{gather*}
$$

fulfilled with no conditions on the background field $B^{\dot{\alpha} \dot{\beta}}$.

- $R-R$ vector is also in the cohomology for $n_{\theta}=2$: take

$$
\begin{equation*}
|A\rangle=A^{\dot{\alpha}}{ }_{\beta}\left|e_{\dot{\alpha}}{ }^{\beta}\right\rangle+\left(c \beta f_{\alpha \beta}+\beta G_{\alpha \beta}\right)|\alpha \beta\rangle . \tag{19}
\end{equation*}
$$

However the theory is again off-shell (no dynamical equations) when we are not in Siegel gauge.

- A $\mathrm{R}-\mathrm{R}$ vector background is also supported.
- $N=2$ as $N=1 \times N=1$: by changing polarization, i.e. trading β for $\bar{\gamma} \Longrightarrow$ now the interpretation of $|A\rangle$ and $|B\rangle$ as R - R field strengths is consistent.

Conclusions:

■ the graded set $\theta, \lambda, \uparrow$ gives us a "spin field";

- the BRST-BV cohomology is that of a spinor, or can give closure (Bianchi) of $0,1,2$-form field strengths (from bispinor decomposition);
- non-flat backgrounds (with these form fields) are also supported, but no dynamics yet.

