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From 2nd order ODEs to path geometries

I Consider a system of 2nd order ODEs

f : R→ N, f̈ (t) = F (t , f (t), ḟ (t)).

I View F as an assignment

TN = TR× TN 3 (1t ,X (x)) 7→ (1̇t ,F (t , x ,X (x)) ∈ TTN

where N := R× N 3 (t , x) and X (x) ∈ TxN.
I Arbitrary parametrization for t ⇒ record the data as

PTN 3 ` 7→ a line E` ⊆ T`PTN
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From 2nd order ODEs to path geometries II

I The ODE-system yields a (possibly locally defined) line
bundle

E ⊆ TPTN : T`π(E`) = ` for all ` ∈ PTN

with π : PTN → N,V := ker(Tπ).

I These data put together into a (generalized) path geometry
(PTN,E ⊕ V ).

I Moreover, leaves of E in PTN descends to solution graphs
in R× N.
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Generalized path geometries

Definition
A generalized path geometry (M,E ⊕ V ) consists of a
(2n + 1)-dimensional manifold M and subbundles E ⊕ V ⊆ TM
of rank 1 and n, respectively, such that
(i) [η, η′] ∈ Γ(E ⊕ V ) for all η, η′ ∈ Γ(V );
(ii) The Levi bracket L : (E ⊕ V )× (E ⊕ V )→ TM/(E ⊕ V ) is
nondegenerate in each fiber.
Note: L := (projection) ◦ (Lie bracket on vector fields) is an
anti-symmetric tensorial map, thus
(i)&(ii)⇔ L(V ,V ) = 0 and L|E×V in each fiber is the standard
scalar multiplication R× Rn → Rn.

I When dim(M) 6= 5, V is automatically involutive; when
dim(M) = 5, assume additionally that V is involutive, then
by general theory, M is locally isomorphic to a path
geometry on PTN for some N.
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The corresponding parabolic geometry

I Categorical equivalence

{generalized path geometries of dimension (2n + 1)}
↔ {normal regular parabolic geometries of type (G,P)}

G = SL(n + 2,R), P: block upper triangular matrices in G
of size (1,1,n). Thus

I We have some canonical information on (M2n+1,E ⊕ V )
encoded on a principal P-bundle G → M via ω ∈ Ω1(G, g).
We want to interpret this information on M.
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We indicate the grading of g := sl(n + 2,R), block size in
(1,1,n) 

g0 gE
1 g2

gE
−1 g0 gV

1

g−2 gV
−1 g0



I Frame bundle G0 := G/P+ modeling
(TM/(E ⊕ V ))⊕ E ⊕ V over g−2 ⊕ gE

−1 ⊕ gV
−1, respecting

components and the Levi bracket.
P+: the strictly block upper triangular matrices in G.
Structure group of G0 is G0, the block-diagonal matrices in
G.
⇒ E∗,V ∗, (TM/(E ⊕ V ))∗ model over gE

1 , g
V
1 , g2
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Weyl structures

I G0-equivariant sections σ : G0 → G (Weyl Structures), this
brings the information on ω down to M via σ∗ω

σ∗ωg− ⇒ TM ∼= gr(TM) i.e. transversal bundle of E ⊕ V
σ∗ωg0 ⇒ principal connection on G0

σ∗ωg+ ⇒ P : TM → gr(T ∗M)⇒ P : TM × TM → R

σ∗ωg0 induces a linear connection on any associated vector
bundle (Weyl connections), it is equivalent to the Weyl
connections on E and V .

I Can use E to parametrize Weyl structures
{nowhere vanishing sections of E} ↔
{exact Weyl structures} ⊆ {Weyl structures}
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I Fix any Weyl structure σ : G0 → G, any other one is written
as

σ̂ : u 7→ σ(u)exp(Υ(u))

for a unique equivariant maps Υ : G0 → g+. Write
Υ = ΥE

1 + ΥV
1 + Υ2.

I Fix any nowhere vanishing ξ0 ∈ Γ(E). The relation of the
two Weyl connections (σ ⇒ ∇, σ̂ ⇒ ∇̂) on E :

∇̂ξ0 =∇ξ0 + ΥE
1 ξ0 in direction E

∇̂ξ0 =∇ξ0 −ΥV
1 ξ0 in direction V

∇̂ξ0 =∇ξ0 + Υ2ξ0 +
3
2

ΥE
1 ⊗ΥV

1 ξ0

in the transversal (σ) direction

In particular, we established an injective assignment
ξ0 7→ σ : ∇ξ0 = 0 from non-vanishing sections of E to Weyl
structures.



Theory behind: E is a bundle of scales

I An element (a,b, −a−b
n In) ∈ z(g0) is a scaling element⇔

a,b, −a−b
n ∈ R are mutually distinct.

I The corresponding element for the line bundle
E = G0 ×G0 g

E
−1 is a scaling element

A := 1
6(−1,1,0) ∈ z(g0) i.e. trg(ad(A)ad(B)) = ad(B)|gE

−1

for all B ∈ g0. Hence E is a bundle of scales.
I General theory: nowhere-vanishing ξ0 ∈ Γ(E)→ unique

Weyl structure with ∇ξ0 = 0.



Geometric information on a distinct Weyl structure

I The canonical Cartan connection is characterized by the
fact that its curvature κ lies in ker(∂∗) ⊆ Ω2(M,G ×P g),
where ∂∗ : Ω2(M,G ×P g)→ Ω1(M,G ×P g) is tensorial.

I The Weyl structure σ pulls back the curvature to
κσ ∈ ker(∂∗) ⊆ Ω2(M,G0 ×G0 g), with identification
G0 ×G0 g = Q ⊕ E ⊕ V ⊕ End0(gr(TM))⊕ E∗ ⊕ V ∗ ⊕Q∗,
where Q := TM/(E ⊕ V )

I General theory⇒ some components (those of
homogeneity 1 and 2) of κσ have to be zero.

I Vanishing of these components and ∂∗κσ = 0 provides
equations on the components of a Weyl structure.



The projection Π : TM → E ⊕ V

Let q : TM → TM/(E ⊕ V ) =: Q denote the natural projection.
I Π : TM → E ⊕ V is the identity on E ⊕ V , and
I For η ∈ Γ(V ), [ξ0, η] is a lift of L(ξ0, η) ∈ Γ(Q). One

computes that

Π([ξ0, η]) ∈Γ(V )

L(ξ0,Π([ξ0, η])) =
1
2

q([ξ0, [ξ0, η]])

for all η ∈ Γ(V ).
We decompose Π = ΠE + ΠV for ΠE : TM → E , ΠV : TM → V



The Weyl connection ∇

I ∇ can be described by how it behaves on the bundles E
and V .

I By assumption ∇ξ0 = 0. This determines ∇ on E .
I ∇ on V : let η, η′ ∈ Γ(V ), ζ ∈ Γ(ker Π) one computes that

L(ξ0,∇ξ0η) =
1
2

q([ξ0, [ξ0, η]])

L(ξ0,∇η′η) = q([η′, [ξ0, η]])

L(ξ0,∇ζη) = L(ξ0,Π([ζ, η])) + P(η, ξ0)q(ζ)



The Rho tensor P on (E ⊕ V )× (E ⊕ V )

Let η, η′ ∈ Γ(V ).

P(η, η′)ξ0 = P(η′, η)ξ0 = ΠE ([ξ0, η], η′)

−P(ξ0, η)ξ0 = 2P(η, ξ0)ξ0 = ΠE ([ξ0, [ξ0, η]])

P(ξ0, ξ0) =
1
n

tr(V → V , η 7→ ΠV (
[
ξ0, [ξ0, η]− Π([ξ0, η])

]
))



The Rho tensor P on other components

Let R denote the curvature of ∇. Let η ∈ Γ(V ), ζ ∈ Γ(ker Π)
such that L(ξ0, η) = q(ζ). P on some other components:

P(ξ0, ζ) =
1

n + 2

(
ξ0.P(η, ξ0)− η.P(ξ0, ξ0) + trker Π(R(ξ0, ·)ζ)

)
P(ζ, ξ0)ξ0 =

1
n + 2

R(ζ, ξ0)ξ0

+
ξ0

n + 2
(ξ0.P(η, ξ0)− η.P(ξ0, ξ0)

+ trV (ΠV ([ζ, (id − Π)([ξ0, ·])])))

and other components of P expressed in terms of R,Π and P


