Weyl sturcutes for path geometries

Zhangwen Guo
University of Vienna
Faculty of Mathematics

The 42. Winter School Geometry and Physics, Srní, 21 January, 2022

From 2nd order ODEs to path geometries

- Consider a system of 2nd order ODEs

$$
f: \mathbb{R} \rightarrow \underline{N}, \ddot{f}(t)=F(t, f(t), \dot{f}(t))
$$

From 2nd order ODEs to path geometries

- Consider a system of 2nd order ODEs

$$
f: \mathbb{R} \rightarrow \underline{N}, \ddot{f}(t)=F(t, f(t), \dot{f}(t))
$$

- View F as an assignment

$$
T N=T \mathbb{R} \times T \underline{N} \ni\left(1_{t}, X(x)\right) \mapsto\left(\dot{1}_{t}, F(t, x, X(x)) \in T T N\right.
$$

where $N:=\mathbb{R} \times \underline{N} \ni(t, x)$ and $X(x) \in T_{x} \underline{N}$.

From 2nd order ODEs to path geometries

- Consider a system of 2nd order ODEs

$$
f: \mathbb{R} \rightarrow \underline{N}, \ddot{f}(t)=F(t, f(t), \dot{f}(t))
$$

- View F as an assignment

$$
T N=T \mathbb{R} \times T \underline{N} \ni\left(1_{t}, X(x)\right) \mapsto\left(\dot{1}_{t}, F(t, x, X(x)) \in T T N\right.
$$

where $N:=\mathbb{R} \times \underline{N} \ni(t, x)$ and $X(x) \in T_{x} \underline{N}$.

- Arbitrary parametrization for $t \Rightarrow$ record the data as

$$
P T N \ni \ell \mapsto \text { a line } E_{\ell} \subseteq T_{\ell} P T N
$$

From 2nd order ODEs to path geometries II

- The ODE-system yields a (possibly locally defined) line bundle

$$
E \subseteq T P T N: T_{\ell} \pi\left(E_{\ell}\right)=\ell \text { for all } \ell \in P T N
$$

with $\pi: P T N \rightarrow N, V:=\operatorname{ker}(T \pi)$.

From 2nd order ODEs to path geometries II

- The ODE-system yields a (possibly locally defined) line bundle

$$
E \subseteq T P T N: T_{\ell} \pi\left(E_{\ell}\right)=\ell \text { for all } \ell \in P T N
$$

with $\pi: P T N \rightarrow N, V:=\operatorname{ker}(T \pi)$.

- These data put together into a (generalized) path geometry (PTN, $E \oplus V$).

From 2nd order ODEs to path geometries II

- The ODE-system yields a (possibly locally defined) line bundle

$$
E \subseteq T P T N: T_{\ell} \pi\left(E_{\ell}\right)=\ell \text { for all } \ell \in P T N
$$

with $\pi: P T N \rightarrow N, V:=\operatorname{ker}(T \pi)$.

- These data put together into a (generalized) path geometry (PTN, $E \oplus V$).
- Moreover, leaves of E in PTN descends to solution graphs in $\mathbb{R} \times \underline{N}$.

Generalized path geometries

Definition

A generalized path geometry $(M, E \oplus V)$ consists of a (2n+1)-dimensional manifold M and subbundles $E \oplus V \subseteq T M$ of rank 1 and n , respectively, such that
(i) $\left[\eta, \eta^{\prime}\right] \in \Gamma(E \oplus V)$ for all $\eta, \eta^{\prime} \in \Gamma(V)$;
(ii) The Levi bracket $\mathcal{L}:(E \oplus V) \times(E \oplus V) \rightarrow T M /(E \oplus V)$ is nondegenerate in each fiber.
Note: $\mathcal{L}:=$ (projection) \circ (Lie bracket on vector fields) is an anti-symmetric tensorial map, thus
(i) \&(ii) $\Leftrightarrow \mathcal{L}(V, V)=0$ and $\left.\mathcal{L}\right|_{E \times V}$ in each fiber is the standard scalar multiplication $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Generalized path geometries

Definition

A generalized path geometry $(M, E \oplus V)$ consists of a
(2n+1)-dimensional manifold M and subbundles $E \oplus V \subseteq T M$
of rank 1 and n , respectively, such that
(i) $\left[\eta, \eta^{\prime}\right] \in \Gamma(E \oplus V)$ for all $\eta, \eta^{\prime} \in \Gamma(V)$;
(ii) The Levi bracket $\mathcal{L}:(E \oplus V) \times(E \oplus V) \rightarrow T M /(E \oplus V)$ is nondegenerate in each fiber.
Note: $\mathcal{L}:=($ projection $) \circ$ (Lie bracket on vector fields) is an anti-symmetric tensorial map, thus
(i) $\&($ ii $) \Leftrightarrow \mathcal{L}(V, V)=0$ and $\left.\mathcal{L}\right|_{E \times V}$ in each fiber is the standard scalar multiplication $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- When $\operatorname{dim}(M) \neq 5, V$ is automatically involutive; when $\operatorname{dim}(M)=5$, assume additionally that V is involutive, then by general theory, M is locally isomorphic to a path geometry on PTN for some N.

The corresponding parabolic geometry

- Categorical equivalence
\{generalized path geometries of dimension $(2 n+1)\}$
$\leftrightarrow\{$ normal regular parabolic geometries of type $(G, P)\}$
$G=S L(n+2, \mathbb{R}), P$ block upper triangular matrices in G of size $(1,1, n)$. Thus

The corresponding parabolic geometry

- Categorical equivalence
\{generalized path geometries of dimension $(2 n+1)\}$
$\leftrightarrow\{$ normal regular parabolic geometries of type $(G, P)\}$
$G=S L(n+2, \mathbb{R}), P$ block upper triangular matrices in G of size $(1,1, n)$. Thus
- We have some canonical information on ($M^{2 n+1}, E \oplus V$) encoded on a principal P-bundle $\mathcal{G} \rightarrow M$ via $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$. We want to interpret this information on M.

We indicate the grading of $\mathfrak{g}:=\mathfrak{s l}(n+2, \mathbb{R})$, block size in $(1,1, n)$

$$
\left(\begin{array}{c|c|c}
\mathfrak{g}_{0} & \mathfrak{g}_{1}^{E} & \mathfrak{g}_{2} \\
\hline \mathfrak{g}_{-1}^{E} & \mathfrak{g}_{0} & \mathfrak{g}_{1}^{V} \\
\hline \mathfrak{g}_{-2} & \mathfrak{g}_{-1}^{V} & \mathfrak{g}_{0}
\end{array}\right)
$$

We indicate the grading of $\mathfrak{g}:=\mathfrak{s l}(n+2, \mathbb{R})$, block size in $(1,1, n)$

$$
\left(\begin{array}{c|c|c}
\mathfrak{g}_{0} & \mathfrak{g}_{1}^{E} & \mathfrak{g}_{2} \\
\hline \mathfrak{g}_{-1}^{E} & \mathfrak{g}_{0} & \mathfrak{g}_{1}^{V} \\
\hline \mathfrak{g}_{-2} & \mathfrak{g}_{-1}^{V} & \mathfrak{g}_{0}
\end{array}\right)
$$

- Frame bundle $\mathcal{G}_{0}:=\mathcal{G} / P_{+}$modeling
$(T M /(E \oplus V)) \oplus E \oplus V$ over $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{E} \oplus \mathfrak{g}_{-1}^{V}$, respecting components and the Levi bracket.
P_{+}: the strictly block upper triangular matrices in G.
Structure group of \mathcal{G}_{0} is G_{0}, the block-diagonal matrices in G.
$\Rightarrow E^{*}, V^{*},(T M /(E \oplus V))^{*}$ model over $\mathfrak{g}_{1}^{E}, \mathfrak{g}_{1}^{V}, \mathfrak{g}_{2}$

Weyl structures

- G_{0}-equivariant sections $\sigma: \mathcal{G}_{0} \rightarrow \mathcal{G}$ (Weyl Structures), this brings the information on ω down to M via $\sigma^{*} \omega$

$$
\begin{aligned}
\sigma^{*} \omega_{\mathfrak{g}_{-}} & \Rightarrow T M \cong \operatorname{gr}(T M) \text { i.e. transversal bundle of } E \oplus V \\
\sigma^{*} \omega_{\mathfrak{g}_{0}} & \Rightarrow \text { principal connection on } \mathcal{G}_{0} \\
\sigma^{*} \omega_{\mathfrak{g}_{+}} & \Rightarrow P: T M \rightarrow \operatorname{gr}\left(T^{*} M\right) \Rightarrow P: T M \times T M \rightarrow \mathbb{R}
\end{aligned}
$$

Weyl structures

- G_{0}-equivariant sections $\sigma: \mathcal{G}_{0} \rightarrow \mathcal{G}$ (Weyl Structures), this brings the information on ω down to M via $\sigma^{*} \omega$

$$
\begin{aligned}
\sigma^{*} \omega_{\mathfrak{g}_{-}} & \Rightarrow T M \cong \operatorname{gr}(T M) \text { i.e. transversal bundle of } E \oplus V \\
\sigma^{*} \omega_{\mathfrak{g}_{0}} & \Rightarrow \text { principal connection on } \mathcal{G}_{0} \\
\sigma^{*} \omega_{\mathfrak{g}_{+}} & \Rightarrow P: T M \rightarrow \operatorname{gr}\left(T^{*} M\right) \Rightarrow P: T M \times T M \rightarrow \mathbb{R}
\end{aligned}
$$

$\sigma^{*} \omega_{\mathfrak{g}_{0}}$ induces a linear connection on any associated vector bundle (Weyl connections), it is equivalent to the Weyl connections on E and V.

Weyl structures

- G_{0}-equivariant sections $\sigma: \mathcal{G}_{0} \rightarrow \mathcal{G}$ (Weyl Structures), this brings the information on ω down to M via $\sigma^{*} \omega$

$$
\begin{aligned}
\sigma^{*} \omega_{\mathfrak{g}_{-}} & \Rightarrow T M \cong \operatorname{gr}(T M) \text { i.e. transversal bundle of } E \oplus V \\
\sigma^{*} \omega_{\mathfrak{g}_{0}} & \Rightarrow \text { principal connection on } \mathcal{G}_{0} \\
\sigma^{*} \omega_{\mathfrak{g}_{+}} & \Rightarrow P: T M \rightarrow \operatorname{gr}\left(T^{*} M\right) \Rightarrow P: T M \times T M \rightarrow \mathbb{R}
\end{aligned}
$$

$\sigma^{*} \omega_{\mathfrak{g}_{0}}$ induces a linear connection on any associated vector bundle (Weyl connections), it is equivalent to the Weyl connections on E and V.

- Can use E to parametrize Weyl structures \{nowhere vanishing sections of $E\} \leftrightarrow$ $\{$ exact Weyl structures $\} \subseteq\{$ Weyl structures $\}$
- Fix any Weyl structure $\sigma: \mathcal{G}_{0} \rightarrow \mathcal{G}$, any other one is written as

$$
\hat{\sigma}: u \mapsto \sigma(u) \exp (\Upsilon(u))
$$

for a unique equivariant maps $\Upsilon: \mathcal{G}_{0} \rightarrow \mathfrak{g}_{+}$. Write $\Upsilon=\Upsilon_{1}^{E}+\Upsilon_{1}^{V}+\Upsilon_{2}$.

- Fix any nowhere vanishing $\xi_{0} \in \Gamma(E)$. The relation of the two Weyl connections ($\sigma \Rightarrow \nabla, \hat{\sigma} \Rightarrow \hat{\nabla}$) on E :

$$
\begin{aligned}
\hat{\nabla} \xi_{0}= & \nabla \xi_{0}+\Upsilon_{1}^{E} \xi_{0} \text { in direction } E \\
\hat{\nabla} \xi_{0}= & \nabla \xi_{0}-\Upsilon_{1}^{V} \xi_{0} \text { in direction } V \\
\hat{\nabla} \xi_{0}= & \nabla \xi_{0}+\Upsilon_{2} \xi_{0}+\frac{3}{2} \Upsilon_{1}^{E} \otimes \Upsilon_{1}^{V} \xi_{0} \\
& \text { in the transversal (} \sigma \text {) direction }
\end{aligned}
$$

In particular, we established an injective assignment $\xi_{0} \mapsto \sigma: \nabla \xi_{0}=0$ from non-vanishing sections of E to Weyl structures.

Theory behind: E is a bundle of scales

- An element $\left(a, b, \frac{-a-b}{n} \mathbb{I}_{n}\right) \in \mathfrak{z}\left(\mathfrak{g}_{0}\right)$ is a scaling element \Leftrightarrow $a, b, \frac{-a-b}{n} \in \mathbb{R}$ are mutually distinct.
- The corresponding element for the line bundle $E=\mathcal{G}_{0} \times{ }_{G_{0}} \mathfrak{g}_{-1}^{E}$ is a scaling element $A:=\frac{1}{6}(-1,1,0) \in \mathfrak{z}\left(\mathfrak{g}_{0}\right)$ i.e. $\operatorname{tr}_{\mathfrak{g}}(\operatorname{ad}(A) \operatorname{ad}(B))=\left.\operatorname{ad}(B)\right|_{\mathfrak{g}_{-1}}$ for all $B \in \mathfrak{g}_{0}$. Hence E is a bundle of scales.
- General theory: nowhere-vanishing $\xi_{0} \in \Gamma(E) \rightarrow$ unique Weyl structure with $\nabla \xi_{0}=0$.

Geometric information on a distinct Weyl structure

- The canonical Cartan connection is characterized by the fact that its curvature κ lies in $\operatorname{ker}\left(\partial^{*}\right) \subseteq \Omega^{2}(M, \mathcal{G} \times p \mathfrak{g})$, where $\partial^{*}: \Omega^{2}\left(M, \mathcal{G} \times_{p} \mathfrak{g}\right) \rightarrow \Omega^{1}\left(M, \mathcal{G} \times_{P} \mathfrak{g}\right)$ is tensorial.
- The Weyl structure σ pulls back the curvature to $\kappa_{\sigma} \in \operatorname{ker}\left(\partial^{*}\right) \subseteq \Omega^{2}\left(M, \mathcal{G}_{0} \times G_{0} \mathfrak{g}\right)$, with identification $\mathcal{G}_{0} \times{ }_{G_{0}} \mathfrak{g}=Q \oplus E \oplus V \oplus \operatorname{End}_{0}(\operatorname{gr}(T M)) \oplus E^{*} \oplus V^{*} \oplus Q^{*}$, where $Q:=T M /(E \oplus V)$
- General theory \Rightarrow some components (those of homogeneity 1 and 2) of κ_{σ} have to be zero.
- Vanishing of these components and $\partial^{*} \kappa_{\sigma}=0$ provides equations on the components of a Weyl structure.

The projection $\Pi: T M \rightarrow E \oplus V$

Let $q: T M \rightarrow T M /(E \oplus V)=: Q$ denote the natural projection.

- $\Pi: T M \rightarrow E \oplus V$ is the identity on $E \oplus V$, and
- For $\eta \in \Gamma(V),\left[\xi_{0}, \eta\right]$ is a lift of $\mathcal{L}\left(\xi_{0}, \eta\right) \in \Gamma(Q)$. One computes that

$$
\begin{aligned}
\Pi\left(\left[\xi_{0}, \eta\right]\right) & \in \Gamma(V) \\
\mathcal{L}\left(\xi_{0}, \Pi\left(\left[\xi_{0}, \eta\right]\right)\right) & =\frac{1}{2} q\left(\left[\xi_{0},\left[\xi_{0}, \eta\right]\right]\right)
\end{aligned}
$$

for all $\eta \in \Gamma(V)$.
We decompose $\Pi=\Pi_{E}+\Pi_{V}$ for $\Pi_{E}: T M \rightarrow E, \Pi_{V}: T M \rightarrow V$

The Weyl connection ∇

- ∇ can be described by how it behaves on the bundles E and V.
- By assumption $\nabla \xi_{0}=0$. This determines ∇ on E.
- ∇ on V : let $\eta, \eta^{\prime} \in \Gamma(V), \zeta \in \Gamma(\operatorname{ker} \Pi)$ one computes that

$$
\begin{aligned}
\mathcal{L}\left(\xi_{0}, \nabla_{\xi_{0}} \eta\right) & =\frac{1}{2} q\left(\left[\xi_{0},\left[\xi_{0}, \eta\right]\right]\right) \\
\mathcal{L}\left(\xi_{0}, \nabla_{\eta^{\prime}} \eta\right) & =q\left(\left[\eta^{\prime},\left[\xi_{0}, \eta\right]\right]\right) \\
\mathcal{L}\left(\xi_{0}, \nabla_{\zeta} \eta\right) & =\mathcal{L}\left(\xi_{0}, \Pi([\zeta, \eta])\right)+P\left(\eta, \xi_{0}\right) q(\zeta)
\end{aligned}
$$

The Rho tensor P on $(E \oplus V) \times(E \oplus V)$

Let $\eta, \eta^{\prime} \in \Gamma(V)$.

$$
\begin{array}{r}
P\left(\eta, \eta^{\prime}\right) \xi_{0}=P\left(\eta^{\prime}, \eta\right) \xi_{0}=\Pi_{E}\left(\left[\xi_{0}, \eta\right], \eta^{\prime}\right) \\
-P\left(\xi_{0}, \eta\right) \xi_{0}=2 P\left(\eta, \xi_{0}\right) \xi_{0}=\Pi_{E}\left(\left[\xi_{0},\left[\xi_{0}, \eta\right]\right]\right) \\
P\left(\xi_{0}, \xi_{0}\right)=\frac{1}{n} \operatorname{tr}\left(V \rightarrow V, \eta \mapsto \Pi_{V}\left(\left[\xi_{0},\left[\xi_{0}, \eta\right]-\Pi\left(\left[\xi_{0}, \eta\right]\right)\right]\right)\right)
\end{array}
$$

The Rho tensor P on other components

Let R denote the curvature of ∇. Let $\eta \in \Gamma(V), \zeta \in \Gamma(\operatorname{ker} \Pi)$ such that $\mathcal{L}\left(\xi_{0}, \eta\right)=q(\zeta)$. P on some other components:

$$
\begin{aligned}
P\left(\xi_{0}, \zeta\right)= & \frac{1}{n+2}\left(\xi_{0} \cdot P\left(\eta, \xi_{0}\right)-\eta \cdot P\left(\xi_{0}, \xi_{0}\right)+\operatorname{tr}_{\mathrm{ker} \Pi}\left(R\left(\xi_{0}, \cdot\right) \zeta\right)\right) \\
P\left(\zeta, \xi_{0}\right) \xi_{0}= & \frac{1}{n+2} R\left(\zeta, \xi_{0}\right) \xi_{0} \\
& +\frac{\xi_{0}}{n+2}\left(\xi_{0} \cdot P\left(\eta, \xi_{0}\right)-\eta \cdot P\left(\xi_{0}, \xi_{0}\right)\right. \\
& \left.+\operatorname{tr}_{V}\left(\Pi_{V}\left(\left[\zeta,(i d-\Pi)\left(\left[\xi_{0}, \cdot\right]\right)\right]\right)\right)\right)
\end{aligned}
$$

and other components of P expressed in terms of R, Π and P

