On boundary values of Poisson transforms for differential forms

Christoph Harrach

University of Vienna

42nd Winter School of Geometry and Physics, Srní January 20, 2022

Christoph Harrach 1/17

Overview

- Ontivation
- Intertwining operators
 - Poisson transforms
 - Intertwining operators adapted to BGG-complexes
- PT for complex hyperbolic space
 - General background
 - Boundary value theorem

Motivation

Let $G = SO_0(n+1, 1)$ and $K \cong SO(n+1)$ its maximal compact subgroup. Then G/K is the real hyperbolic space of dimension n+1, which has a natural boundary sphere S^n at infinity.

The Poisson transform Φ_w assigns to each complex parameter $w \in \mathbb{C}$ and smooth function $f \in C^{\infty}(S^n)$ a smooth map $\Phi_w(f) \in C^{\infty}(G/K)$ which is an eigenfunction for the Laplace. Moreover, taking the limit of $\Phi_w(f)$ to a boundary point $u \in S^n$ we recover the initial data f(u) up to a nontrivial factor.

Let $\mathcal{E}[w] \to G/P$ denote the bundle of *w*-densities. Then we can view the Poisson transform as a map $\Gamma(\mathcal{E}[w]) \to C^{\infty}(G/K)$, which is equivariant with respect to the natural *G*-actions.

In [4], Gaillard generalized this construction to intertwining operators

$$\Phi_k\colon \Omega^k(G/P,\mathcal{E}[w])\to \Omega^k(G/K)$$

whose image consist of coclosed differential forms which are eigenforms of the Laplace operator. Moreover, it was shown that these transforms recover the initial boundary value (up to a factor) if and only if $k < \frac{n}{2}$.

More generally: G connected semisimple Lie group, $K \subset G$ maximal compact subgroup, $P \subset G$ parabolic subgroup, G/K of non-compact type. Then we can view G/P as (part of) the boundary of the symmetric space G/K at infinity.

Question: Given a generalized Poisson transform

$$\Phi: \Omega^k(G/P) \to \Omega^\ell(G/K),$$

does Φ have boundary values?

Construction of Poisson transforms BGG-complexes Intertwining operators and BGG-complex

Construction of Poisson transforms |

Via the Iwasawa decomposition we obtain $G/K \times G/P \cong G/M$ with $M := K \cap P$ and thus a double fibration

with G-equivariant projections.

The product structure induces a pointwise decomposition

$$\Lambda^{k}T^{*}(G/M) \cong \bigoplus_{p+q=k} \left(\Lambda^{p}T^{*}(G/K)\right) \otimes \left(\Lambda^{q}T^{*}(G/P)\right).$$

Thus, we have a natural notion of a (p, q)-form on G/M. In particular, for $n := \dim(G/P)$ we can integrate (ℓ, n) -forms over the compact fibre of π_K , which is isomorphic to G/P.

Construction of Poisson transforms BGG-complexes Intertwining operators and BGG-complex

Construction of Poisson transforms II

Fix a differential form $\varphi \in \Omega^{\ell,n-k}(G/M)$. For $\alpha \in \Omega^k(G/P)$ we construct $\Phi(\alpha) \in \Omega^{\ell}(G/K)$ as follows:

- Consider the pullback $\pi_P^* \alpha \in \Omega^{0,k}(G/M)$.
- **②** Form the wedge product $φ ∧ π_P^* α ∈ Ω^{ℓ,n}(G/M)$,
- Integrate over G/P.

Definition (Poisson transform)

For all $\varphi \in \Omega^{\ell,n-k} \left(G/M
ight)^G$ we call the intertwining operator

$$\Phi\colon \Omega^k(G/P)\to \Omega^\ell(G/K), \qquad \alpha\mapsto \int_{G/P}\varphi\wedge \pi_P^*\alpha.$$

the Poisson transform associated to the Poisson kernel φ .

Construction of Poisson transforms BGG-complexes Intertwining operators and BGG-complex

Reduction to representation theory

Theorem

Let $\mathfrak{g} = Lie(G)$ and $\mathfrak{m} = Lie(M)$. There is a bijective correspondence between:

- **9** Poisson transforms $\Phi: \Omega^k(G/P) \to \Omega^\ell(G/K)$,
- 2 *M*-invariant elements in $\Lambda^{\ell,n-k}(\mathfrak{g}/\mathfrak{m})^*$,
- **3** G-equivariant maps $\Lambda^{0,k} T^*(G/M) \to \Lambda^{\ell,0} T^*(G/M)$,
- *M*-equivariant maps $\Lambda^{0,k}(\mathfrak{g}/\mathfrak{m})^* \to \Lambda^{\ell,0}(\mathfrak{g}/\mathfrak{m})^*$.

For boundary values: focus on PT which descend to the BGG-complex.

BGG-complex |

The cotangent bundle $T^*(G/P)$ is naturally a bundle of Lie algebras. Thus, differentials in Lie algebra homology induce G-equivariant bundle maps

$$\partial^* = \partial^*_k \colon \Lambda^k T^*(G/P) \to \Lambda^{k-1} T^*(G/P),$$

called the Kostant codifferential.

The subbundles $ker(\partial_k^*) \supset im(\partial_{k+1}^*)$ are *G*-invariant, so their quotient bundle

$$\mathcal{H}_k(G/P) := \ker(\partial_k^*) / \operatorname{im}(\partial_{k+1}^*)$$

is also a homogeneous bundle which is completely reducible.

Construction of Poisson transforms BGG-complexes Intertwining operators and BGG-complex

BGG-complex II

For all k there is a unique natural differential operator

$$L = L_k \colon \Gamma(\mathcal{H}_k(G/P)) \to \Gamma(\ker(\partial^*))$$

with $\pi \circ L = id_{\mathcal{H}_k(G/P)}$ and $\partial^* \circ d \circ L = 0$. ("splitting operator").

The operator $D_k := \pi \circ d \circ L_k$ is called the *k*-th BGG-operator, and the lower line is called the BGG-complex.

Construction of Poisson transforms BGG-complexes Intertwining operators and BGG-complex

Intertwining operators adapted to BGG-complexes

Assume there exists a smooth intertwining operator

$$\Phi \colon \Omega^k(G/P) \to \Omega^\ell(G/K)$$

which vanishes on $im(\partial^*)$ and $im(d\partial^*)$. Then Φ factors to

$$\underline{\Phi}\colon \Gamma(\mathcal{H}_k(G/P))\to \Omega^\ell(G/K)$$

which is G-equivariant and satisfies:

Theorem (H., 2018)

T.f.a.e:

$$\bullet \circ \partial^* = 0 \text{ and } \Phi \circ d \circ \partial^* = 0.$$

In this case we say that Φ is BGG-compatible.

General background Boundary value theorem

PT for complex hyperbolic space.

Let G = SU(n + 1, 1) with maximal compact subgroup K and parabolic $P \subset G$. Then G/K is the complex hyperbolic space in (complex) dimension n + 1 and $G/P \cong S^{2n+1}$ is the CR-sphere.

Let $H \subset T(G/P)$ be the contact subbundle and put Q := T(G/P)/H. Then for all $1 \le k \le 2n$ we have the short exact sequence

$$0 \longrightarrow \Lambda^{k-1} H^* \otimes Q^* \longrightarrow \Lambda^k T^*(G/P) \longrightarrow \Lambda^k H^* \longrightarrow 0.$$

The Kostant codifferential induces a bundle map $\Lambda^k H^* \to \Lambda^{k-2} H^* \otimes Q^*$ which is surjective for $k \leq n$ and injective for $k \geq n+1$. Thus, \mathcal{H}_k are subbundles of $\Lambda^k H^*$ for $k \leq n$ and quotients of $\Lambda^{k-2} H^* \otimes Q$ for $k \geq n+1$.

After complexification the irreducible components of $\mathcal{H}_{p+q} \otimes \mathbb{C}$ for $p+q \leq n$ are the bundles $\Lambda_0^{p,q} H^*$ of tracefree elements with respect to the Levi bracket.

Theorem (Čap, H., Julg, 2020)

Let G = SU(n + 1, 1), $K \subset G$ maximal compact and $P \subset G$ parabolic.

• If $p + q \le n$, there is a unique BGG-compatible Poisson transform $\Omega^{p+q}(G/P, \mathbb{C}) \to \Omega^{p,q}(G/K)$. These induce intertwining operators

$$\underline{\Phi}_{p,q} \colon \Gamma(\Lambda_0^{p,q} H^*) \to \Omega^{p,q}(G/K)$$

whose image consist of harmonic, coclosed and primitive forms.

③ If p + q ≥ n + 1, there is a 2-parameter family of Poisson transforms $\Omega^{p+q}(G/P, \mathbb{C}) \to \Omega^{p,q}(G/K)$. The image of the induced maps

$$\underline{\Phi}_{p,q}^{\alpha,\beta}\colon \Gamma(\mathcal{H}_{p+q}\otimes\mathbb{C})\to\Omega^{p,q}(G/K)$$

consist of harmonic and coprimitive forms.

General background Boundary value theorem

Boundary values of $\Phi_{p,q}$

Consider the Poincaré ball model of G/K, i.e. open unit ball $B \subset \mathbb{C}^{n+1}$ endowed with the Bergman metric

$$g(z)(\xi,\eta)=rac{\langle \xi,\eta
angle}{1-|z|^2}+rac{\langle \xi,z
angle\langle z,\eta
angle}{(1-|z|^2)^2}.$$

The topological boundary S^{2n+1} of B naturally identifies with G/P. We identify G/M with $B \times S^{2n+1}$.

Theorem (H., 2021)

For $0 \le p, q \le n$ with $k := p + q \le n$ let $\alpha \in \Gamma(\Lambda_0^{p,q}H^*)$. For all $u \in S^{2n+1}$ let $\gamma : [0, T) \to \overline{B}$ be a continuous curve with $\gamma(t) \in B$ for t > 0 and $\gamma(0) = u$. Then

$$\lim_{t\to 0} \underline{\Phi}_{p,q}(\alpha)(\gamma(t)) = C \cdot \alpha(u)$$

with a constant $C \neq 0$ depending on p, q and n.

General background Boundary value theorem

Sketch of BV-proof I, $\alpha(u) = 0$

By *K*-equivariance of $\underline{\Phi}$: w.l.o.g. u = eP.

Case 1: $\alpha(u) = 0$.

• Let $\phi_{p,q} \colon \Lambda^{0,k} T^*(G/M) \to \Lambda^{k,0} T^*(G/M)$ the G-equivariant map so that

$$\underline{\Phi}_{\rho,q}(\alpha) = \int_{G/P} \phi_{\rho,q}(\pi_P^*\alpha) \operatorname{vol}_M$$

with G-invariant form $\operatorname{vol}_M \in \Omega^{0,n}(G/M)^G$.

2 Let $\pi_K : G/M \to G/K$ projection. Choose an invariant metric g_M on G/M so that $g_M = \pi_K^* g$. Then $\phi_{p,q}$ is conformal with respect to g_M .

General background Boundary value theorem

Sketch of BV-proof II, $\alpha(u) = 0$

• For $u \in S^{2n+1}$ compute the change of $||\alpha(u)|| \operatorname{vol}_M$ along the fibre $\pi_P^{-1}(u) = B \times \{u\}$. This is governed by $P(z, u)^{n+1-\frac{k}{2}}$, where

$$P(z, u)^{n+1} = \left(\frac{1-|z|^2}{|1-\langle z, u \rangle|^2}\right)^{n+1}$$

is the Poisson-Szegö kernel. The function $P(z, u)^{n+1-\frac{k}{2}}$ is bounded on B if and only if $0 \le k \le n$.

Estimate

$$\|\Phi_{p,q}(\alpha)(z)\| \leq \int_{S^{2n+1}} P(z,v)^{n+1-\frac{k}{2}} \|\alpha(v)\| dv$$

and apply a simple ϵ , δ argument.

General background Boundary value theorem

Sketch of BV-proof III; $\alpha(u) \neq 0$

Case 2: $\alpha(u) \neq 0$.

By Case $1 \Rightarrow$ boundary value of α only depends on its value in $u \in S^{2n+1}$. Therefore: replace α with a "constant" differential form.

 Let 𝔅 := Lie(𝐾) and put 𝒱_{p,q} := Λ₀^{p,q}(𝔅/𝔅)*. Then the vector space Hom(𝒱_{p,q}, Λ₀^{p,q} 𝑘*) is 1-dimensional. By Frobenius reciprocity this is isomorphic to

$$\operatorname{Hom}_{\mathcal{K}}(\mathbb{V}_{p,q}, \Gamma(\Lambda_0^{p,q}H^*))$$

and for a fixed generator σ we can find $v \in \mathbb{V}_{p,q}$ so that $\sigma(v)$ coincides with α at $u \in S^{2n+1}$.

Put w.l.o.g.: $\alpha = \sigma(\mathbf{v})$.

General background Boundary value theorem

Sketch of BV-proof IV; $\alpha(u) \neq 0$

Q Consider polar decomposition (r, θ): B ≅ (0,1) × S²ⁿ⁺¹. By uniqueness in Step 1 we have

$$\underline{\Phi}_{p,q}(\sigma(v)) = f(r)(\theta^*\sigma(v))$$

for $f: (0,1) \rightarrow \mathbb{R}$ smooth.

• The property $\Delta \circ \underline{\Phi}_{p,q} = 0$ yields a hypergeometric ODE on f(r). Its solution converges for $r \to 1$.

General background Boundary value theorem

References

- A. Čap, C. Harrach, P. Julg: *A Poisson transform adapted to the Rumin complex*, to appear in J. Topol. Anal.
- C. Harrach: *Poisson transforms adapted to BGG-complexes,* Diff. Geom. Appl., Vol. 64, 2019, pp. 92-113
- C. Harrach: Poisson transforms for differential forms, Arch. Math. (Brno), Tomus 52 (2016), pp. 303-311
- P.-Y. Gaillard: Transformation de Poisson de formes differentielles. Le cas de l'espace hyperbolique. Comment. Math. Helvetici, Vol. 61 (1986), Birkhäuser.