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Incarnations of L∞ algebras

▶ L∞ algebras are a “homotopical” generalization of Lie algebras.

▶ Many different incarnations: multibrackets, free dg-coalgebra, free
dg-algebra, derived brackets, . . .

▶ Free dg-coalgebra: simple axioms, straightforward generalization of
Chevalley-Eilenberg algebra, “large” underlying vector space.

▶ Multibrackets: direct generalization of (super-)Lie algebras, more
complicated higher Jacobi identities, “small” underlying vector space.

▶ Goal: simplify some formulas from L∞ theory on the side of multibrackets
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Generating function notation
▶ Start with (R- or C-) vector space V graded by (parity Z2, (ghost)# Z).

▶ Formally, we allow ourselves to extend the scalars of V to polynomials
(R or C)[ϵ1, ϵ2, . . .] in odd variables ϵ1, ϵ2, . . . . Multiplication by an ϵ swaps
Vodd and Veven.

▶ Poloarization:
▶ Adopt sign conventions for graded multilinear maps [−, · · · ,−] : SnV → V

that are compatible with extension of scalars.
▶ Obs. Any graded multilinear [−, . . . ,−] : SnV → V is determined by its

values [A, . . . ,A], for even A.
▶ S(V )even = span⟨An | A ∈ Veven⟩.
▶ For odd B use A = ϵB, where |ϵ| = |B|. Ex.: ϵ︸︷︷︸

odd

[ B︸︷︷︸
odd

,−] := (−)|ϵ|[ ϵB︸︷︷︸
even

,−].

▶ A sequence of n-ary brackets, []0 = 0, [A]1 = sA, [A,B]2, . . . , can be
collected as the graded components of the functional

[−] : S(V )→ V , [−] = []0 ⊕ [−]1 ⊕ [−,−]2 ⊕ [−,−,−]3 ⊕ · · ·
▶ Hence, to fix the total bracket [−] it is sufficient to specify the values of

[eA], where for even A

eA =
⊕

n

1
n!

An.
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Compact L∞ axioms

▶ L∞ algebra on V , (V , [−], “higher Jacobi”).
⇐⇒ Free unital, differential, graded commutative algebra on V ∗

(S(V ∗),D,D2 = 0), with [−] = (D|V∗)∗.
▶ Normalize the pairing between S(V ) and S(V ∗) so that ⟨ez ,eA⟩ = e⟨z,A⟩,

or ⟨zn,An⟩ = n!⟨z,A⟩n, where z ∈ V ∗ and A ∈ V are naturally paired.
▶ Lem. The higher Jacobi identities are equivalently expressed as

D2 = 0 ⇐⇒ [eA[eA]] = 0.

In terms of n-ary brackets

s2A = 0, 2[AsA] + s[A2] = 0, 3[A2sA] + 3[A[A2]] + s[A3] = 0,

. . . ,

n∑
k=0

n!
(n − k)!k !

[An−k [Ak ]] = 0.
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Grading conventions, Example

▶ Convention:
▶ |[−]n| = |[−]| = (parity odd, ghost # 1), à la BV-BRST.

▶ Front bracket is odd:

[ϵ · · · ] = (−)|ϵ|[· · ·], [· · · ϵ, · · · ] = [· · · , ϵ · · · ], [· · · ϵ] = [· · ·]ϵ.

▶ Maurer-Cartan elements A ∈ V
(
[eA] = 0

)
live in (ghost) degree 0.

▶ Other conventions correspond to parity or degree shifts.

▶ Canonical example: (Super-)dg-Lie algebra

(g,s, [−,−])⇝ (g[odd,−1], [−] = s + [−,−])

canonically gives rise to an L∞ algebra.
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L∞ morphisms
▶ Lem. A dg-algebra homomorphism Λ: S(W ∗)→ S(V ∗), translates to an L∞ algebra

homomorphism λ = (Λ|V∗)∗ : S(V )→W satisfying

ΛDW = DVΛ ⇐⇒ [eλ(eA)]W = λ(eA[eA]V ).

▶ In terms of n-ary brackets and functionals

sWλ(A) = λ(sV A),
1
2
(sWλ(A2) + [λ(A)2]W ) =

1
2
λ(2AsV A + [A2]V ),

1
3!
(sWλ(A3) + [3λ(A2)λ(A)]W + [λ(A)3]W ) =

1
3!
λ(3A2sV A + 3A[A2]V + [A3]V ), · · ·

The general formula is

1
n!

[Bn(λ(A), . . . , λ(An))]W =
1
n!

n∑
k=1

n!
(n − k)!k !

λ(An−k [Ak ]V ),

where B1(x1, . . . , xn) = xn + · · ·+ xn
1 are the complete (exponential) Bell polynomials,

defined by the generating function

exp

( ∞∑
k=1

xk
tk

k !

)
=

∞∑
n=0

Bn(x1, . . . , xn)
tn

n!
.
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L∞ homotopy transfer

▶ Folklore: Consider homotopy equivalent dg-vector spaces
λ1 : (V ,s) ∼→ (V ′,s′) and an L∞ algebra structure (V ′, [−]′ = s′ + · · · ).
Then there exists unique up to homotopy L∞ algebra structure on V and
and isomorphism λ = λ1 + · · · : (V , [−] = s + · · · )→ (V ′, [−]′).

▶ Closest precise statement known to me: Thm 10.3.{1,5}, Loday-Vallette
(’12). Uses highly abstract language of operads,∞-operads, (co-)bar
constructions, etc.

▶ Q: In what sense the general homotopy transfer theorem provides explicit
formulas?
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Homotopy transfer to minimal model

▶ Lem. Given a homotopy equivalence λ1 : (V ,s = 0)
∼
↠ (V ′,s′) of

dg-vector spaces, it extends to an L∞ algebra morphism
λ : (V , [−])→ (V ′, [−]′), with λ|V = λ1, [−]1 = s, [−]′1 = s′.

Proof: Proceed by induction on arity. Induction hypothesis implies

λ(eA[eA])− [eλ(eA)]′ = λ1([An])− s′λn(An) + err(l.o.t) = err(l.o.t)

The cohomology class of (err) fixes [−]n, then we solve for λn.
Consistency of (err) terms and inductive check of higher Jacobi are
guaranteed by generating function identities.

▶ The output is similar to the minimal model brackets in the papers of Jurčo
et al (e.g., review ’20) and other references.
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Homotopy transfer from minimal model
▶ Hyp. There exists an integer q such that V |#>q = 0, the graded vector

space V is trivial for degrees > q.

▶ Lem. Given a homotopy equivalence λ1 : (V ,s)
∼
↠ (V ′,s′ = 0) of

dg-vector spaces, it extends to an L∞ algebra morphism
λ : (V , [−])→ (V ′, [−]′), with λ|V = λ1, [−]1 = s, [−]′1 = s′.

Proof: Select λ = λ1 and any extension [−] of s, so that [−]n|#>nq = 0
and systematically correct it in a double induction on degree and arity

total#: · · · q − 2 q − 1 q
[−]2 · · · ∗ ∗ ∗ ∗ ∗
[−]3 · · · ∗ ∗ ∗ ∗ ∗
[−]4 ← ⊛ ∗ ∗ ∗
... ↓

Solve s[An] = −[(eA− 1)[eA]] + err(l.o.t), to correct higher Jacobi, and use
under-determinacy to keep λ1([An]) = [λ1(A)n]′, to enforce morphism.

▶ N.B.: Generalizes construction of Barnich-Fulp-Lada-Stasheff (’98),
assumed [−]′ = [−,−]′2 and (V ,s) an acyclic resolution of V ′[−1].
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Discussion

▶ Explicit, compact recursive formulas for L∞ homotopy transfer to and
from minimal models.

▶ Q: Are formulas at the same level of explicit already in the literature?

▶ TODO: Understand L∞ homotopies in this notation.

▶ TODO: Generalize to (non-minimal↔ non-minimal) case.

Thank you for your attention!
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